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Abstract. We develop a connection between tripartite information I3, secret sharing
protocols and multi-unitaries. This leads to explicit ((2, 3)) threshold schemes in arbitrary
dimension minimizing tripartite information I3. As an application we show that Page
scrambling unitaries simultaneously work for all secrets shared by Alice. Using the I3-
Ansatz for imperfect sharing schemes we discover examples of VIP sharing schemes.

1. Introduction

A major resource for many quantum tasks are EPR-pairs. In contrast, this note quan-
tifies three party entanglement using different concepts in quantum information theory.
Three party entanglement is even more complex than two party entanglement. A major
obstacle in understanding three party entanglement is the absence of a suitable analogue
of entanglement entropy. The analogue of the maximally entangled state, the GHZ state,
is insufficient in producing unbounded multipliciative violations of high dimensional Bell
inequalities [1]. Tripartite information was first introduced as “topological entropy" in [2] to
characterize multi-party entanglement in a topologically ordered system. Tripartite infor-
mation I3 and out-of-order-correlations are used to measure delocalization of information
in the bulk-boundary picture of the AdS/CFT correspondence, see e.g. [3], and see [4] for
a connection to neural networks, and e.g. [5] for further information.

In this paper we will develop a connection between tripartite information I3 and secret
sharing protocols. Tripartite information is defined for any tripartite state as

I3(P1 : P2 : P3) = S(P1) + S(P2) + S(P3)− S(P1P2)− S(P1P3)− S(P2P3) + S(P1P2P3)

and enjoys many symmetry properties. As pointed out in [6], the notion I3 measures
indeed entanglement for the four partite pure state |φ〉RP1P2P3 given by the purification
of the density matrix ρP1P2P3 . We refer to [6] for the rich symmetry properties of I3. In
particular, we recall that

I3(P1 : P2 : P3) = I(R,P1) + I(R,P2)− I(R,P1P2)

= −2S(R) + I(R,P1) + I(R,P2) + I(R,P3) .

As it is the case for conditional entropy, I3 may have positive and negative values. A
negative or even strictly negative value is an indication of existing entanglement. In [3] it is
shown that under the premisses of famous Hayden-Preskill Gedankenexperiment I3 is always
strictly negative. The setting in this paper, following [6] is more general. In [7] Harlow
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analyzes the situation of two finite dimensional von Neumann algebras M,M ′ ⊂ B(Hcode)
which are sent to two different registers

Hcode ⊂ H⊗̄H ′

such that

D(ρM ||σM ) = D(ρH ||σH) and D(ρM
′ ||σM ′) = D(ρH

′ ||ρH′)(1.1)

holds for all densities in a code space. Harlow shows the equivalence of simultaneous relative
entropy recovery and the existence of a certain pair of unitaries, and a state measuring
entanglement threads.

In quantum information theory the equality case in entropic inequalities often occurs
under specific algebraic requirements. Therefore it is natural to ask for equality in the
obvious lower bound

−2S(R) ≤ I3(P1 : P2 : P3) .

The bound follows easily from the positivity of mutual information, see e.g. [8]. As pointed
out by [6], see also [9], random unitaries and perfect tensor almost achieve equality of I3 in
many cases, when applied to maximally entangled states between M and M ′. Let us recall
the famous Hayden-Preskill Gedankenexperiment where Alice’s secret can be recovered from
the gamma radiation of a black hole which has been observed for a long time. This leads to
an interpretation of scrambling in terms of error correction and decoding, closely connected
to the powerful tool of decoupling, [9].

The link to a secret sharing protocol follows from Harlow’s setup considering a subspace

S ⊂ P1P2P3 .

By fixing a basis |̃i〉 the Referee may send a signal from his register R of the same dimension
r by constructing the purification

|φ〉RP1P2P3 =
r∑
i=1

√
λi|ψi〉R|ψ̃i〉P1P2P3

of any density matrix ρ̃ =
∑

i λi|ψ̃i〉〈ψ̃i| in S.
We will say that fixing a basis {|̃i〉}ri=1 defines a quantum secret sharing scheme, if a referee

can send a secret state to a collection of untrusted parties such that only authorized subsets
of the parties can reconstruct the secret perfectly while those that are unauthorized gain
zero information. Quantum secret sharing has been a long-established topic in quantum
information theory [10]. It has a variety of applications such as quantum money and
quantum resource distribution, to name a few [10]. Quantum secret sharing protocols can
also be defined in terms of the mutual information among subsets of the given collection
of parties and the ancillary party [11]. In our situation minimality of I3 is equivalent to
so-called ((2, 3)) threshold schemes, i.e. the secret is sent to three parties, and all pair of
them can perfectly recover the secret, but no single party can. In the following text, we will
use the terms ((2, 3)) threshold scheme and secret sharing scheme interchangeably without
ambiguity.
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We observe that there is a one-to-one correspondence between minimality of I3 and the
((2, 3)) secret sharing schemes. Moreover, if the code space is fixed with the same dimension:

d = |S| = |P1| = |P2| = |P3| ,

then they admit a third, equivalent formulation using multi-unitaries:

Minimal I3

Multi- ((2,3)) secret sharingunitary

�
�
����
�
��	 @

@
@@I@
@
@@R-�

If we choose a basis, the four leg tensor t is given by

(1.2) |̃i〉 =
∑

s1,s2,s3

1√
d
tis1s2s3 |s1s2s3〉 .

The multi-unitary condition then refers to the condition that for all three choices a = 1, 2, 3,
we have that t :=

∑
i,s1,s2,s3

tis1s2s3 |sbsc〉〈isa| becomes a unitary. We refer to section 2 for
details.

Using the predicted relation between sharing schemes and I3 one can also produce new
examples with small, but not necessarily minimal values, of I3, as in Page scrambling.
Indeed, for a unitary u : RP1 → P2P3, and we may define the tensor ti,s1,s2,s3 = u(is1),(s2s3)

and then estimate tripartite information:

Theorem 1.1. Let u : RP1 → P2P2 be a random unitary. Then with probability 1− δ

−2S(R) ≤ I3(P1P2P3) ≤ −2S(R) + C(δ)

holds for all purified input states |φ〉.

Previous result were usually restricted to a maximally entangled state |φ〉 and did not
provide good enough concentration of measure to work for all densities simultaneously. Al-
though this estimate is not as tight as Page’s original estimate it adds a concrete dimension
free relation between δ and C(δ). As observed by Kitaeev an additive factor is expected as
long as |P2| = |P3|.

The paper is organized as follows. After some preliminaries in section 1, the equivalence
of the three conditions and the connection to Uhlmann’s theorem is presented in section 2.
In section 3, we study conditions satisfying the minimality of I3 up to a constant term, and
in section 4, this is shown to be generic for random matrices provided |S| = |Pj |. Section 5
provides concrete examples of perfect secret sharing schemes that work for all dimension,
and also an example of imperfect secret sharing schemes that always requires a fixed party
to be present to recover a secret.
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2. Equivalence Conditions for Perfect Secret Sharing Schemes

As mentioned in the introduction, the ((2,3)) threshold scheme means that a referee
sends a secret to three parties, and any two parties can recover the secret; however, any
single party alone is forbidden from decoding the secret. This ability to recover from the
erasure of one party has been well studied in the context of quantum error correction [12].
In fact, Harlow et al. [13] has shown, using Uhlmann’s theorem, that for a S ⊂ P1P2P3

spanned by {|̃i〉}ri=1, and for any party Pa to be erased, the following are equivalent:

(i) I(R,Pa) = 0 for the state |φ〉 = 1/
√
r
∑

i |i〉R |̃i〉P1P2P3 ,
(ii) there exists a unitary Ua : RP ′a → PbPc such that for any i = 1, 2, . . . , r,

|̃i〉PaPbPc = idPa ⊗Ua|i〉R|χa〉P
′
aPa ,(2.1)

where |χa〉P
′
aPa does not depend on the choice of i, and the prime denotes an ancillary

copy of the party.
We should make a remark that (ii) is the condition for two parties PbPc to be able to
recover any state sent by referee R, using unitary transformations acting only on their
parties. Indeed, by applying the unitary mapping idPa ⊗ U

†PbPc→RP′a
a on PbPc, we can

actually recover any density matrix in S, i.e., a matrix of the form ρ̃PaPbPc =
∑

ij ρij |̃i〉〈j̃|
will be mapped to ρR ⊗ χP

′
aPa
a =

∑
ij ρij |i〉〈j|R ⊗ |χa〉〈χa|P

′
aPa . Thus the message ρR sent

by the referee is recovered.
Since the secret sharing scheme requires the recoverability against the erasure of any

party P1, P2 or P3, we have

I(R,P1) = I(R,P2) = I(R,P3) = 0.

Recall that this is exactly the necessary and sufficient condition to have minimal I3:

I3 = −2S(R) + I(R,P1) + I(R,P2) + I(R,P3)

≥ −2S(R),

with equality obtain if and only if I(R,Pj) = 0 for all j = 1, 2, 3. Therefore, we obtain two
equivalent definitions of a ((2,3)) threshold scheme:

Definition 2.1. A code space S ⊂ P1P2P3 spanned by {|̃i〉}ri=1 is a ((2,3)) threshold scheme
if either

(a) I3 = −2S(R) for the state |φ〉 = 1/
√
r
∑

i |i〉R |̃i〉P1P2P3 ,
or (b) There exist three unitary maps, Ua : RP ′a → PbPc, a = 1, 2, 3 that all satisfy (2.1).

In contrast to the traditional definition of secret sharing schemes [11], which only uses
mutual information, we define it using I3 because it quantifies imperfection for sharing
schemes. See section 3 for details.

We now discuss another equivalent definition for a perfect secret sharing scheme in the
special case when |R| = |P1| = |P2| = |P1| = d. Let us now define the secret subspace
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S ⊂ P1P2P3 by fixing its basis as

|̃i〉 =
d∑

s1,s2,s3=1

1√
d
tis1s2s3 |s1s2s3〉P1P2P3 , i = 1, 2, . . . , d.(2.2)

Theorem 2.2. S is a ((2,3)) threshold scheme if and only if tis1s2s3 is multi-unitary [14]:
1. the map t :=

∑
i,s1,s2,s3

tis1s2s3 |s2s3〉〈is1| is unitary,
2. its reshuffling, tR :=

∑
i,s1,s2,s3

tis1s2s3 |s1s3〉〈is2| is unitary, and
3. its partial transposition (followed by a flip), tΓ :=

∑
i,s1,s2,s3

tis1s2s3 |s1s2〉〈is3| is
unitary.

Moreover, the error-correcting unitaries U1, U2 and U3 are uniquely given, up to a local
unitary, by

U1 =
∑

i,s1,s2,s3

tis1s2s3 |s2s3〉P2P3〈is1|RP
′
1 ,

U2 =
∑

i,s1,s2,s3

tis1s2s3 |s1s3〉P1P3〈is2|RP
′
2 , and

U3 =
∑

i,s1,s2,s3

tis1s2s3 |s1s2〉P1P2〈is3|RP
′
3 .

(2.3)

Before proving Theorem 2.2, we first show some properties of ((2,3)) sharing schemes.

Proposition 2.3. Let S be a ((2,3)) threshold scheme, then for any ρ̃P1P2P3 ∈ S, its
reduced densities ρ̃Pa is independent of the choice of ρ̃P1P2P3, and for any ρ̃P1P2P3 ∈ S,
I3 = −2S(R).

Proof. Suppose ρ̃ =
∑

ij ρij |̃i〉〈j̃|. Let Pa denote any party, and Pb, Pc the remaining
parties. By definition (b), for some unitary Ua : RP ′a → PbPc

ρ̃PaPbPc = Ua ⊗ idPa

∑
ij

ρij|i〉〈j|R ⊗ |χa〉〈χa|P
′
aPa

U†a ⊗ idPa .(2.4)

If we take the partial trace over Pb and Pc, we get

ρ̃Pa = TrPbPc(ρ̃
PaPbPc) = TrP ′a

(
|χa〉〈χa|P

′
aPa
)
,(2.5)

which is independent of the choice of ρ̃. If we take partial trace over Pa, we get

ρ̃PbPc = TrPa(ρ̃PaPbPc) = Ua

∑
ij

ρij |i〉〈j|R ⊗ TrPa
(
|χa〉〈χa|P

′
aPa
)U †a .(2.6)

Since von Neumann entropy is invariant under unitary, we have

S(PbPc) = S

∑
ij

ρij |i〉〈j|

+ S
(
TrPa |χa〉〈χa|P

′
aPa
)

= S(R) + S(Pa).(2.7)
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Substituting this into the expression of I3, we get I3 = −2S(R).

Corollary 2.4. I3 = −2S(R) for the state |φ〉 = 1/
√
r
∑

i |i〉R |̃i〉P1P2P3 implies I3 =
−2S(R) for all ρ̃ ∈ S.

The above lemma does not assume the parties to have the same dimension. If we add
this assumption, we have

Proposition 2.5. Let S be a ((2,3)) threshold scheme and assume that |R| = |Pj | = d for
j = 1, 2, 3, then for any ρ̃P1P2P3 ∈ S, its reduced densities for any party must be maximally
mixed, ie. for any Pa, ρ̃Pa = TrPbPc ρ̃

PaPbPc =
∑

s
1
d |s〉〈s|

Pa.

Proof. From Lemma 2.3, it is sufficient to show for only ρ̃P1P2P3 =
∑

i
1
d |̃i〉〈̃i|, since the

reduced density is independent of the choice of ρ̃P1P2P3 .
For this state, I3 = −2S(R) = −2 log d. From the fact that I3 is symmetric with respect

to the choice of parties, we have I3 ≥ −2S(Pa) for any party Pa. Therefore, S(Pa) ≥ log d,
which is possible only when ρ̃Pa is maximally mixed.

Remark 2.6. Since |χa〉P
′
aPa is a purification of ρ̃Pa =

∑
s

1
d |s〉〈s|

Pa, up to a local unitary,
it is of the form |χa〉 =

∑
s

1√
d
|s〉P ′a |s〉Pa . Incorporating the local unitary into Ua, without

loss of generality, we can restate equation (2.1) as

|̃i〉PaPbPc = Ua ⊗ idPa
∑

s

1√
d
|i〉R|s〉P′a |s〉Pa .(2.8)

With these properties, we can prove Theorem 2.2.

Proof of Theorem 2.2. Let S ⊂ P1P2P3 be a ((2,3)) sharing scheme spanned by {|̃i〉}di=1.
According to definition (b), we have three unitaries U1, U2, U3 that all satisfy (2.8).

Denote tis1s2s3 to be the coefficients of U1, i.e.

tis1s2s3 = 〈s2s3|P2P3U1|is1〉RP
′
1 .(2.9)

By substituting this into (2.8), we already have a tensor representation of the basis as in
(2.2),

|̃i〉 =

d∑
s1,s2,s3=1

1√
d
tis1s2s3 |s1s2s3〉P1P2P3 ,

and that
U1 =

∑
i,s1,s2,s3

tis1s2s3 |s2s3〉P2P3〈is1|RP
′
1 .

Our goal is to show that tis1s2s3 must be multi-unitary. We already have the condition 1
that t :=

∑
tis1s2s3 |s2s3〉〈is1| is unitary.

Assume U2 =
∑

j,k,l,m gjk,lm|lm〉P1P3〈jk|RP ′2 , then apply (2.8) twice, we get∑
s

1√
d
|i〉R|s2〉P

′
2 |s2〉P2 =

(
U
†P1P3→RP ′2
2 ⊗ idP2

)
|̃i〉
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=
∑
s1

1√
d

(
U
†P1P3→RP ′2
2 ⊗ idP2

)(
U
RP ′1→P2P3

1 ⊗ idP1

)
|i〉R|s1〉P

′
1 |s1〉P1

=
∑
k,s2

1√
d

(∑
s1s3

g∗jk,s1s3tis1s2s3

)
|j〉R|k〉P ′2 |s2〉P2 .(2.10)

So one must have
∑

s1s3
g∗jk,s1s3tis1s2s3 = δijδk,s2 . This is same as saying the maps

g :=
∑

gjk,lm|lm〉〈jk|

tR :=
∑

tis1s2s3 |s1s3〉〈is2|

satisfy g†tR = id. Since g is a unitary, we have that g = tR, So the reshuffling tR must also
be unitary, i.e. the condition 2 of multi-unitary is satisfied. In addition, we have

U2 =
∑

i,s1,s2,s3

tis1s2s3 |s1s3〉P1P3〈is2|RP
′
2

By repeating the same procedure for U3 we can see that the partial transpose tΓ :=∑
tis1s2s3 |s1s2〉〈is3| must also be unitary and it gives the coefficient expression of U3:

U3 =
∑

i,s1,s2,s3

tis1s2s3 |s1s2〉P1P2〈is3|RP
′
3 .

We will exploit this algebraic form in the next section.

3. Small I3

In this section we investigate code spaces which almost achieve the ((2,3)) threshold
schemes. As usual we start with a code space S ⊂ P1P2P3 and a fixed orthonormal basis

|̃i〉P1P2P3 =
∑

s1,s2,s3

1√
d
tis1s2s3 |s1s2s3〉 .

However, now tis1s2s3 does not need to be multi-unitary. We can still define the linear maps

tR
′P ′1→P2P3 :=

∑
i,s1,s2,s3

tis1s2s3 |s2s3〉P2P3〈is1|R
′P ′1 ,

tR
′P ′2→P1P3 :=

∑
i,s1,s2,s3

tis1s2s3 |s1s3〉P1P3〈is2|R
′P ′2 , and

tR
′P ′3→P1P2 :=

∑
i,s1,s2,s3

tis1s2s3 |s1s2〉P1P2〈is3|R
′P ′3 .

where R′, P ′a are copies of R,Pa.

Lemma 3.1. For all ρ̃P1P2P3 ∈ S,

D(ρRP1 ||ρR ⊗ ρP1) ≤ 2 log ‖tR′P ′1→P2P3‖ .
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Proof. By definition of the code space, we still have

|̃i〉P1P2P3 = idPa ⊗ tR′P ′1→P2P3
∑
s1

1√
d
|i〉R′ |s1s1〉P

′
1P1 .

Let ρ̃ =
∑

i λi|ψ̃i〉〈ψ̃i| be the spectral decomposition, then by superposition,

|ψ̃i〉P1P2P3 = idPa ⊗ tR′P ′1→P2P3
∑
s1

1√
d
|ψi〉R

′ |s1s1〉P
′
1P1 .

So the purification satisfies

|φ〉RP1P2P3 : =
∑
i

√
λi|ψi〉R|ψ̃i〉P1P2P3

= idPa ⊗ tR′P ′1→P2P3

∑
i,s1

√
λi/d|ψi〉R

′ |s1〉P
′
1 ⊗ |ψi〉R|s1〉P1


Let |χ〉 be the vector on the right hand side before applying t. Then we get

ρRP1 = trP2P3(|φ〉〈φ|)

= trP2P3

(
t|χ〉〈χ|t†

)
≤ ‖t‖2trR′P ′1(|χ〉〈χ|)

= ‖t‖2
∑
i

λi|ψi〉〈ψi| ⊗
id

d

= ‖t‖2ρR ⊗ ρP1

Recall that (see [8])

D(ρ||σ) ≤ D∞(ρ||σ) = inf{λ|ρ ≤ 2λσ} .

In particular,
D(ρRP1 ||ρR ⊗ ρP1) ≤ log ‖t‖2 .

The assertion follows.

Corollary 3.2. Let S ⊂ P1P2P3 be a coding subspace and t the tensor as above. Then

−2S(R) ≤ I3(P1 : P2 : P3) ≤ −2S(R)

+ 2 log ‖tR′P ′1→P2P3‖+ 2 log ‖tR′P ′2→P1P3‖+ 2 log ‖tR′P ′3→P1P2‖ ,

for any ρ̃ ∈ S.

Proof. We have seen above that

I3(R : P1 : P2) = −2S(R) + I(R,P1) + I(R,P2) + I(R,P3) .

Therefore applying Lemma 3.1 three times, we get the assertion.
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4. Random estimates

Page scrambling [15] turned out to be of fundamental importance in building up a suitable
theory for black holes (see [16–18]). We will briefly indicate how random unitaries for
RP1, P2P3 will deliver low I3 estimates. Here we will assume that H = RP1 and |R| =
|P1| = |P2| = |P3|. Let us start with some probabilistic background by fixing a basis
(et)1≤t≤d2 for H. Recall that a random unitary here means Haar distributed. A complex
gaussian matrix is of the form

g = (gst)s,t

such that each entry

gst =
gst(1) + ig′st(2)√

2
is given by a complex gaussian entry, which are i.i.d. The following Lemma is implicitly
contained in [19]. Indeed, we use the complex version of [19, Corollary 2.4] by considering
the Banach space X obtained from Mn equipped with the semi-norm. Then we may write

g =
∑
rs

tr(g|s〉〈r|)|r〉〈s|) .

For a reader interested in seeing how [19] directly implies our next result, we suggest to work
with the Banach space valued matrices xrs = |s〉〈r| ⊗ |r〉〈s| ∈Mn(X). For the convenience
of the reader and an explicit control of constants, we provide the proof for a special case
of [19].

Theorem 4.1. Let ‖ ‖ be a semi-norm on Mn and 1 ≤ p ≤ ∞. Then
√
n

8
(E‖u‖p)1/p ≤ (E‖g‖p)1/p ≤ 4

√
pn(E‖u‖p)1/p .

Proof. We will make frequent use of the Khintchine-Kahane inequalities (which has bet
constant

√
2 for comparing ‖ ‖2 and ‖ ‖1 norms see [20]), and Chevet’s inequality see

e.g. [21]. Let g = (grs) be the complex gaussian variable from above. For complex unitaries
u,w we see that ugw =D g has the same distribution. For a matrix g we recall that
g = ugDs(g)wg is the singular value decomposition with diagonal matrix Ds(g) given by the
singular values, i.e. the eigenvalues of the absolute value, sj(g) = λj(|g|) . Therefore, we
deduce equality in distribution

g =D ugw =D uugDs(g)wgw =D uDs(g)w =D uMσDs(g)Mσ−1w .

Here Mσ is a permutation matrix. This implies by convexity

(E‖g‖p)1/p = (Eu,w,σ‖uMσDs(g)Mσ−1w‖p)

≥ (Eu,w‖uEσ(MσDs(g)M
−1
σ )w‖p)1/p

= E
1

n
tr(|g|)(Eu,w‖uw‖p)1/p

= E
1

n
tr(|g|)(E‖u‖p)1/p .
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An upper bound for ‖g‖∞ follows from Chevet’s inequality for real gaussian matrices (see
[21]), namely

(E‖gC‖p∞)1/p ≤
√

2pE‖gC‖∞
≤ 2
√
pE‖gR‖∞

≤ 4
√
p
√
n .

Thus by duality, we deduce from the Khintchine-Kahane inequality that

n2 = Etr(g∗g) ≤ E‖g‖∞‖g‖1
≤ (E‖g‖21)1/2(E‖g‖2∞)1/2

≤ 4
√

2
√

2
√
nE‖g‖1 .

Here ‖g‖1 and ‖g‖∞ refer to the trace class, or operator norm, respectively. This completes
the proof of the lower estimate. For the upper estimate, we may use an extreme point
argument, i.e., for any diagonal matrix Dλ, it can be written as

Dλ =
∑
ε

α(ε, λ)Dε

such that ∑
ε

|α(ε, λ)| ≤ ‖λ‖∞ .

Indeed, the extreme points of [−1, 1]n are given by the ω1 matrices ε. This allows us to use
the triangle inequality for fixed g and random u,w

(Eu,w‖uDσ(g)w‖p)1/p = (Eu,w‖u
∑
ε

α(ε, g)Dεw‖p)1/p

≤
∑
ε

|α(ε, g)|(E‖uDεw‖p)1/p

≤ ‖g‖∞(E‖u‖p)1/p .

Integrating this over g implies that

(E‖g‖p)1/p ≤ (E‖g‖p∞)1/p(E‖u‖p)1/p .

The assertion follows.

Corollary 4.2. Let |R| = d and u : RP1 → P2P3 be a random unitary. Let δ > 0. Then
with probability 1− δ

max{‖u‖, ‖uR‖, ‖uΓ‖} ≤ 48e

√
2 log

1

δ
.

where uR, uΓ are defined as the reshuffling and partial transpose with a flip, defined in
Theorem 2.2.
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Proof. Let g = (gab) be a complex gaussian matrix. Since H = SP1 we may assume that
a = (i, s) is given by pairs and gab is given by m = d2 many complex independent gaussian
random variables. Note that the map w(ei,s,j,r) = ei,r,j,s is a permutation unitary and hence
preserves the norm:

(E‖(w(g)ab)‖p∞)1/p = (E‖(gab)‖p∞)1/p ≤ 2
√

2p
√
m .

The same applies for all permutation of the indices. Let us introduce the new seminorm

‖g‖ = max{‖g‖∞, ‖gR‖∞, ‖gΓ‖∞} .

Then we deduce from the triangle inequality that

(E‖u‖p)1/p ≤ 8√
m

(E‖g‖p)1/p

≤ 24√
m

(E‖g‖p∞)1/p

≤ 48
√

2p .

Thus for every λ ≥ 1, by Chebyshev inequality, we see that

Prob(‖u‖ ≥ λ) ≤ 48pλ−p
√

2p
p
.

Now we choose p = ( λ
48e
√

2
)2 and deduce

Prob(‖u‖ ≥ λ) ≤ e−p = e
−( λ

48e
√
2

)2
.

Thus it suffices to choose λ = 48e
√

2 log 1
δ so that p ≥ 1.

Combining these estimates, we obtain the following result.

Theorem 4.3. Let d = |R| = |P1| = |P2| = |P3| and δ > 0. Let u : RP1 → P2P3 be a
random unitary and

|̃i〉 =
1√
d

∑
s1,s2,s3

u(i,s1),(s2,s3)|s1s2s3〉 .

With probability 1− e−µ the estimate

I3(P1 : P2 : P3) ≤ −2S(R) + ln(48
√

2) + 6 + 3 lnµ

holds for all purified input states.

Remark 4.4. Here we used the natural logarithm. With the base two, we find our estimate
is worse than the estimates from [6], but it works for all the states. With high probability
we just have to allow for a small number of additional bits.
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5. examples

5.1. A perfect secret sharing protocol for arbitrary dimension.
We first characterize a permutation code space S ⊂ P1P2P3 by fixing its basis to be

|̃i〉P1P2P3 =
1√
n

d∑
s=1

|σi1(s)〉P1 |σi2(s)〉P2 |σi3(s)〉P3 , i = 1, · · · , d,(5.1)

where σj denotes a permutation operator in Sd for j ∈ {1, 2, 3}, and σij denotes the com-
position of σj for i times.

Proposition 5.1. The code space S is a ((2,3)) threshold scheme if and only if for any
a 6= b ∈ {1, 2, 3},
(5.2) σia(s) 6= σib(s) for all s ∈ {1, · · · , d}, i ∈ {1, · · · , d− 1}.

Proof. From Definition 2.1, we use the definition (a) of a secret sharing scheme. Namely,
we need to show that the condition (5.2) is equivalent to I3 = −2S(R) = −2 log d for the
state ρ̃ =

∑
i |̃i〉〈̃i|/d.

It is easy to show that for any j ∈ {1, 2, 3},

ρ̃Pj =
1

d

∑
s

|s〉〈s|Pj ,

and therefore we have S(Pj) = log d. Moreover, for any a 6= b ∈ {1, 2, 3},

ρ̃PaPb =
1

d2

∑
is

|σia(s)σib(s)〉〈σia(s)σib(s)|PaPb ,

so S(PaPb) ≤ 2 log d, with equality holds if and only if {|σia(s)σib(s)〉PaPb}di,s=1 forms an
orthonormal basis. Note that the orthonormality requirement is equivalent to the condition
(5.2). In addition,

I3 =
∑
j

S(Pj)−
∑
a6=b

S(PaPb) + S(R)

≥ 3 log d− 3 · 2 log d+ log d = −2 log d,

with equality obtained if and only if equality hold for S(PaPb) ≤ 2 log d. Thus condition
(5.2) is satisfied if and only if S is a ((2,3)) threshold scheme.

Using a concrete set of permutations that satisfies (5.2), we now provide a ready-to-use
((2,3)) threshold scheme. Remark that this protocol works for all dimensions d, which is
an improvement over the existing examples of minimal I3.

Example 5.2. Let S ⊂ P1P2P3 be generated by

(5.3) |̃i〉 =
1√
d

d∑
s=1

|s〉P1 |s+ k1i〉P2 |s+ k2i〉P3 ,

where k1 6= k2, and both k1 and k2 are coprime with d. The additions are mod d.
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It is not hard to verify that this is indeed a permutation code space in the form of (5.1),
and that it satisfies (5.2). Therefore, the code space is a ((2,3)) threshold scheme.

We can also find the unitaries for erasure correction in the definition (b) of secret sharing
scheme. We write the basis in the tensor form

|̃i〉 =
1√
d

∑
s1s2s3

tis1s2s3 |s1s2s3〉P1P2P3 ,

where tis1s2s3 = δs2,s1+k1iδs3,s1+k2i. Then we have the usual construction for the error
correcting unitaries using (2.3).

Note that this is a generalization of a well-known example [10, 13] of ((2,3)) threshold
scheme given by

|0̃〉 =
1√
3

(|000〉+ |111〉+ |222〉),

|1̃〉 =
1√
3

(|012〉+ |120〉+ |201〉),

|2̃〉 =
1√
3

(|021〉+ |102〉+ |201〉).

Our example 5.2 reduces to this when d = 3, k1 = 1, k2 = 2.

5.2. An imperfect secret sharing protocol with a VIP party.
We provide an secret sharing protocol such that after the referee send a secret to P1, P2

and P3,
• {P1, P3} or {P2, P3} together can reconstruct the secret, but
• {P1, P2} together cannot reconstruct the secret.

It is as if the party P3 is a VIP, since in order to reconstruct the secret, party P3 has to be
present. However, P3 is not too powerful because he alone still cannot decode the message.

We define the code space S ⊂ P1P2P3 by fixing the basis

(5.4) |̃i〉 =
d∑

j,k,l=1

1√
d
tijkl|jkl〉P1P2P3 , where tijkl :=

1√
d
〈j|λkul|i〉,

where λk is a shift operator and ul is a phase shift operator such that

(5.5) λk : |j〉 7→ |j + k〉, ul : |i〉 7→ wil|i〉,

where w = e2πi/d. One can define the maps as usual,

tR
′P ′1→P2P3 :=

∑
tijkl|kl〉〈ij|,

tR
′P ′2→P1P3 :=

∑
tijkl|jl〉〈ik|,

tR
′P ′3→P1P2 :=

∑
tijkl|jk〉〈il|.

We can verify that indeed tR′P ′1→P2P3 and tR′P ′2→P1P3 are unitaries but not tR′P ′3→P1P2 , thus
giving the pairs {P1, P3} and {P2, P3} the ability to recover the secret, but not {P1, P2}.
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We show the calculation for tR′P ′1→P2P3 as an example:(
tR
′P ′1→P2P3

)(
tR
′P ′1→P2P3

)†
=
∑

k,k′,l,l′

∑
ij

tijklt
∗
ijk′l′

 |kl〉〈k′l′|,
where ∑

ij

tijklt
∗
ijk′l′ =

1

d

∑
ij

〈i|u†l′λ
†
k′ |j〉〈j|λkul|i〉

=
1

d
Tr
(
u†l′ul

)
δkk′ = δll′δkk′ .

One can also verify that
∑

ik tijklt
∗
ij′kl′ = δjj′δll′ . Thus the maps tR′P ′1→P2P3 and tR′P ′2→P1P3

are unitary. But we have
∑

il tijklt
∗
ij′k′l = δl′−j′,l−j , so the map tR′P ′3→P1P2 is not unitary.

From Theorem 2.2, if there were a decoding scheme for {P1, P2}, the error-correcting
unitary must be uniquely defined to be equal to tR′P ′3→P1P2 . But here we do not have the
unitarity, so there is no decoding scheme for parties {P1, P2}.

Moreover, we must note that this is not the trivial case where all the secret is contained
in P3. It can be shown that

‖tR′P ′3→P1P2‖2 = d.

Thus from Lemma 3.1, I(R,P3) ≤ log d for any ρ̃ ∈ S. So at least we can show for the
maximally mixed state

∑
i |̃i〉〈̃i|/d,

I(R,P3) ≤ log d < 2 log d = I(R,P1P2P3),

which implies that party P3 alone cannot recover the secret.
Moreover, we have

(5.6) − 2S(R) ≤ I3(ρ̃) ≤ −2S(R) + log d, for any ρ̃ ∈ S.

Interestingly, we see that I3 remains non-positive for both the pure state (I3 = 0) and
the maximally mixed state (I3 = − log d). Our conjecture is that I3 ≤ 0 holds for all
ρ̃ ∈ S. This property is called monogamy and has significant implications in the context of
holography and AdS/CFT correspondence [22].

6. Conclusion

In summary, our note develops a connection between tripartite information I3 and secret
sharing protocols. In particular, we observed that the sharing protocol is perfect if and
only if the tripartite information is minimal for all states in the secret sharing protocol.
Moreover, we showed that perfect secret sharing protocol is also equivalent to the recovery
unitary defined in Harlow coming from multi-unitary.

Based on the connection of tripartite information and perfect secret sharing protocol, we
find imperfect sharing schemes given by Page-scrambling unitaries working for almost all
of Alice’s secrets and VIP models with preference to one fo three parties.
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