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Abstract—Generalized approximate message passing (GAMP)
is a computationally efficient algorithm for estimating an un-
known signal wy € RY from a random linear measurement
y = Xwo+e € RM, where X € RM*V js a known measurement
matrix and e is the noise vector. The salient feature of GAMP
is that it can provide an unbiased estimator #+© ~ N (wo, $*Iy),
which can be used for various hypothesis-testing methods. In this
study, we consider the bootstrap average of an unbiased estimator
of GAMP for the elastic net. By numerically analyzing the
state evolution of approximate message passing with resampling,
which has been proposed for computing bootstrap statistics of
the elastic net estimator, we investigate when the bootstrap
averaging reduces the variance of the unbiased estimator and
the effect of optimizing the size of each bootstrap sample and
hyperparameter of the elastic net regularization in the asymptotic
setting M, N — oo, M/N — «a € (0,00). The results indicate
that bootstrap averaging effectively reduces the variance of the
unbiased estimator when the actual data generation process is
inconsistent with the sparsity assumption of the regularization
and the sample size is small. Furthermore, we find that when wg
is less sparse, and the data size is small, the system undergoes a
phase transition. The phase transition indicates the existence of
the region where the ensemble average of unbiased estimators of
GAMP for the elastic net norm minimization problem yields the
unbiased estimator with the minimum variance.

I. INTRODUCTION

Consider estimating an unknown signal wy € RY from a
random linear measurement y € R™ in the form,

y = Xwy+ e €))

In (1), X € RM*N js a known measurement matrix whose
elements are independent and identically distributed (i.i.d.)
standard Gaussian variables, and € ~ N(0,Al) is the
measurement noise. We also assume that each element of the
unknown signal wy is i.i.d., according to a distribution g.

Generalized approximate message passing (GAMP) [1],
[2]| is a computationally efficient algorithm for solving this
problem. A striking feature of GAMP is its applicability to
various hypothesis testing [3]. Specifically, GAMP can provide
an unbiased estimator #C ~ N(wo, 3%I57) [2] in a high-
dimensional asymptotic setting with M, N — oo, M/N —
a € (0,00), where the variance 8% depends on the quality of
the measurement y and denoising function used in GAMP.
This unbiased estimator has been used to test the significance
of estimated signals [3[|-[6]].

The statistical power of these tests depends on the variance
52, with a lower variance leading to a higher statistical power.

However, reducing the variance 52 is not a trivial task. Replac-

ing the denoising function used in GAMP with a powerful one
based on nonconvex regularization, for example, can worsen
the convergence of GAMP [7/] or, even if convergence is
achieved, the improvement may be insignificant [[8]. This study
aims to find an alternative way to reduce the variance without
nonconvex regularization.

To reduce the variance, we use the bootstrap averaging
[9]] of computational statistics (commonly known as ensemble
learning in machine learning [10]], [11]]). Specifically, we con-
sider averaging the unbiased estimators of GAMP for multiple
bootstrap samples with arbitrary size Mug, up € (0,00].
For denoising function of GAMP, we consider the one for
the elastic net [12].

However, the efficient computation and theoretical analysis
of an averaged unbiased estimator remains unresolved. To
resolve this problem, we use AMP with resampling (AMPR)
[13]], [14] that has been proposed for computing bootstrap
statistics of the elastic net estimator by running a variant of
GAMP once. We will argue that AMPR is actually computing
the bootstrap average of the unbiased estimators of GAMP.
That is, the averaged unbiased estimator can be computed
efficiently, and its variance can be analyzed using the state
evolution (SE) of AMPR, which has been developed to analyze
the performance of AMPR in [13]], [[14]. We then conduct
a thorough numerical analysis of the SE of the AMPR to
investigate when bootstrap averaging reduces the variance
of the unbiased estimator, and what phenomena occur when
optimizing the bootstrap sample size and the hyperparameter
of the elastic net regularization.

The findings of this study are summarized as follows:

o As mentioned above, the averaged unbiased estimator
is obtained by AMPR. Furthermore, its variance can be
estimated using the output of AMPR without knowing the
actual signal wg. Thus, we can minimize the variance by
adjusting the bootstrap sample size and the hyperparam-
eters of the elastic net (see Section [[II] and

o The variance of the averaged unbiased estimator can
be reduced via bootstrapping, especially when the true
data generation process is inconsistent with the sparsity
assumption of the regularization and the data size is
insufficient (see Section [V-B))

e When wg is less sparse, and the data size is small, a
phase transition occurs. This phase transition indicates the
existence of the region where the value of the regulariza-



Algorithm 1 AMPR

Require: Measurement matrix X € RM*N measurement
y € RM, denoising function ¢ and its derivative ¢’ from
() and (@), the bootstrap sample size up € (0, 0], and
the number of iterations T};.

1: Select initial hy € RN, Qq, 09 € (0, 00).

2: Set zp =0y, an = M/N

3: Let & and ¢ be random variables distributed as n ~

N(0,Iy) and ¢ ~ Poisson(ug).

4 fort=0,1,...,T;y — 1 do

5y = Eylg(he + Vi, Q).

6 xt = (Eqlg'(he + V0n, Q1))

7 v = (Eplg(he +Voim, Q1)) — 7).

8 fip = Belmlhi], £ = Bel(m2)?).
9: Qi1 = Olet.H-
10: a1 = ft(Jlr)1(y — Xy + xray).
11: ht+1 = XTat + Qt+1’li7t.

X 2 £ -2

12: D1 = an( t(+)1vf, + %«ﬁ-&-l»
(feg1)

13: end for

14: Return (hTiHQﬂHﬁﬂt)~

tion parameter is infinitesimally small, and the number
of unique data points in each bootstrap sample is less
than the dimension of wg. That is, in this region, the
ensemble average of the unbiased estimators of GAMP
for the elastic norm minimization problem (also known
as the minimum norm interpolation in machine learning
[15]—[17]]) yields the best averaged unbiased estimator
(see Section [V-C)

A. Notation

N (u,0%) denotes a Gaussian distribution with mean g
and variance o2 and Poisson(up) denotes a Poisson dis-
tribution with mean pp. For a random variable X ~ px,
we denote by Ex|...] an average [(...)px(x)dz. Given a
vector £ € RY and scalar function f R — R, we write
f(x) for the vector obtained by applying f componentwise.
For a vector € = (71,22,...,2y)" € RY, we denote by
x? = (22,23,...,2%) " the componentwise operations and

by (z) = N~! Ziil x; the empirical average.

II. BACKGROUND ON AMPR

A. AMPR

Algorithm [I|shows AMPR [[13]] with an elastic net denoising
function. Function g : R x (0,00) — R is the elastic net
denoising function and ¢’ is a derivative of g with respect to
the first argument:

0 if |h] < Ay,
h —sgn(h)yA (2)

9(h, Q) = ~ otherwise,
Q+A1-7)

0 if |h] < My,
’ A\
g'(h,Q) = A; otherwise. 3
Q+A(1—7)

where A > 0 represents the regularization strength and v €
[0,1] is the ¢;-ratio. At a fixed point, AMPR offers bootstrap
statistics of the elastic net estimator as follows:

Proposition 1 (bootstrap statistics based on AMPR [|13]]):
Let 7" be the elastic net estimator for a bootstrap sample D*
of size ugpM.

M N
~ % . Cy 1—
w* = argmin E TZB (yu—w;w)Z—&— E /\(y\wi\—&——vwf),

i=1 2
“)
where ¢, ~i 4. Poisson(pup) represents the number of times
the data point (x,,y,), «, being the p-th row of X, appears
in the bootstrap sample D*. Then once the AMPR reaches its
fixed point at sufficiently large T, the bootstrap statistics of
w™ can be computed as

Ec[t(w])] = By [¥(g(hs +Vin, Q))],

where ¢ : R — R is such that the expression in (3] is well-
defined and otherwise arbitrary. The variables without iteration
indexes (h;, 9, Q) are the output of AMPR at a fixed point.
Note that the averages E,[g(h + Vin; Q)],IE,7 [g(h +
Von; Q)% and E,[¢'(h + von; Q)] can be written in closed-
form by the error function, thus computing these quantities
is computationally easy. Also, E.[...] is an average over a
one-dimensional discrete random variable. It can be computed
numerically without much computational overhead. Hence the
computational complexity of computing the RHS of (@) is
dominated by the matrix-vector product operations in lines
of Algorithm 1] instead of repeatedly computing @”* for
numerous realizations of ¢, making AMPR a computationally
efficient algorithm for computing the bootstrap statistics.

n~N(0,1), (5

B. SE of AMPR

AMPR displays remarkable behavior. Let 7; = h;/ Qs t =
1,2,...,Ti. Then #; behaves like a white Gaussian noise-
corrupted version of the true signal wy [[13]]. Furthermore, the
variance can be estimated using SE.

Proposition 2 (SE of AMPR [13]): ©; behaves as a white

Gaussian noise-corrupted version of the actual signal wy:
o7 = Xe/Q%, (©)
for some positive value x;, indicating that 7; can be used as
an unbiased estimate of wy. The variance is predicted in the
asymptotic setting M, N — oo, M/N — « € (0,00) using
the scalar SE specified in Algorithm 2] There, &,t = 1,2, ...
corresponds to the mean squared error (MSE) of the AMPR
estimate 1w: & = N ~!||1; —wo||3. To track the performance
of AMPR, & should be inputted as the MSE of .

Using the SE of the AMPR, we can predict the variance
of the unbiased estimator in the asymptotic setting M, N —
oo, M/N — «a € (0,00) for each value of up, A\, and
~. Hence variance can be minimized by tuning (ugp, A7)

P~ N(wo, 67),



Algorithm 2 SE of AMPR

Require: Initial state of AMPR (80,(21,131), variance of
the measurement noise A, distribution gy of the signal
wy, measurement ratio «, denoising function g and its
derivative ¢’ from (2) and (B), the bootstrap sample size
up € (0,00], and the number of iterations Tj;.

1: Set {1 = a1Q2(& + A)
. Let &,m,wo and ¢ be random variables distributed as
&, ~N(0,1),wp ~ qo, and ¢ ~ Poisson(upg).

[\°)

afori=1,.... Ty —1do .

4y = g(Quwo + VXi€ + Voum; Qu).

550 &= wo,E[(En[wt] —wo)?]

6: Xt = wo g, 7][ (Qtwo + \/75 + \/77]7 Qt)]

7 v = By gy [07] — En[wt] J-

8 i =B, 1) = Be[(5kE )Y,
9: Qi1 = O‘ft}rl'

10: Xt+1 = a(ft(}k)l)z(gt +A4)

b = a(fiDec+ (A - (FE)DE) -

12: end for

using versatile black-box optimization methods implemented
in various optimization libraries [18], [19].

ITI. AVERAGED UNBIASED ESTIMATOR

Here, we explain the meaning of the SE of AMPR. Subse-
quently, we argue that 7; of AMPR is the bootstrap average
of the unbiased estimators of GAMP.

The first point is the meaning of ¢ and 7 that appear
in SE. Propositions [I] and [2] indicate that, once the AMPR
reaches its fixed point at sufficiently large Tj, for any func-
tions ¢,% : R — R such that the following expression is
well defined, the following holds in the asymptotic setting
M,N — co, M/N — a € (0, 00):

NDf’

) = Eunee |6 (Eqlu(9(Quo
+VREVa Q)] @)

where the variables Q, X, U are the outputs of SE at a fixed
point. In (7), one can interpret that & and 7 effectively
represents the randomness originating from (X,y) and c,
respectively.

The next point is the relationship between AMPR and
GAMP. For this, we define ¢ = & + v; and x; = Xt + 0.
Then, the evolution of (Qt, Xt, ¢, Xt) is equivalent to the SE
of GAMP for computing " for one realization of ¢ [1],
[2]. Recall that @™ is specified in (@). In addition, y,/Q? (=
(& +14)/Q?) represents the variance of the unbiased estimate
of GAMP 7 (c) at each iteration. These observations indicate
that the unbiased estimator of GAMP at each iteration ¢ can
be decomposed into two Gaussian variables:

VXt VXt VU
= = + —= + — s
0, 0wt f

#(c) =
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Fig. 1: Q-Q plot of 7 — ?‘G(c) for one realization of X, 1y,

and c. The parameters are set as (N,a, A\ v,up,p) =
(4096, 0.25,0.1,0.5,0.5,0.1).
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Fig. 2: Scatter plot for # and E.[#“
of X,y. The parameters are set as (N
(4096,0.8,0.25,0.1,0.5,0.5,0.1). E.[7
from 65536 realizations of c.

(c)] for one realization

20 B, Vs By p) =
S(¢)] was computed

where &,,&,m ~ N(0,Iy), and & and n represent the
randomness originating from (X,y) and ¢, respectively. We
can interpret that AMPR computes the bootstrap statistics by
decomposing &, into £ and 7, and averaging over 7). This
yields the unbiased estimator ; as in (6) that is the bootstrap
average of 7“(cka). We verify this point numerically in

section (see Fig. [I] and 2).
IV. VARIANCE OPTIMIZATION

In this section, we describe the properties of the variance
of the unbiased estimate of AMPR.

First, the following proposition states that bootstrap averag-
ing for the optimal choice of (up,\,7) does not increase the
variance of the unbiased estimator.

Proposition 3: Let 82 be the variance of the unbiased
estimator of GAMP at a fixed point to compute the elastic net
estimator w of D = (X, y): w = argmin,, cpw~ % Eﬂil(yu—
alw)%—Z?il A(7|w;|+152 )w?. We can select the parameter
(1%, A*,v*) such that the variance of AMPR’s unbiased
estimator 2 at a fixed point does not exceed 52.

Proof: We denote by 0, v the values of ©; and v; at the
fixed point of the SE of AMPR. We consider the limit up —
oo. In this limit, the random variable ¢/up, ¢ ~ Poisson(up)
that appears in () and Algorithm [I| behaves deterministically;
the mean and variance of ¢/up converge to 1 and 0. Then
proposition |1| indicates that ¥ = 0. Moreover, from line [11] in
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Fig. 3: Ratio of optimal variances 62 /32 is plotted against the sparsity of the true signal p and the measurement ratio « as heat
maps. In panels (a) and (b), the ¢;-ratio of the elastic net regularization is fixed. In panel (c), the ¢;-ratio is also optimized.

The measurement noise is set as A = 0.15.

Algorithm [2} © = 0 implies v = 0, which yields the GAMP
algorithm for computing the elastic net estimator of D [1]. m
Although SE prediction of the variance of 7, requires
information on the unknown signal wg, we can predict the
variance from the data. In other words, estimating the variance
of 7; does not require explicit knowledge on wy.
Proposition 4 (Variance estimation from data): In the
asymptotic setting M, N — oo, M/N — « € (0,00), the
variance 62 of the unbiased estimate 7; can be estimated as

o7 = ala})/ Q7. ©)
Proof: In SE of AMPR, ¥;/Q? is determined by the
MSE €&;_; and variance of measurement noise A as ¢/ Qf =
a1 (&_1+A). For linear models, £ _1+A corresponds to the
prediction error for a new sample and can be estimated using
the leave-one-out error (LOOE) [20]. LOOE can be estimated
from a; because it is proportional to the leave-one-out estimate
for the data point y: a;,, = Q;a~ " (y, fmZﬁ)}”), where ﬁ)}”
is the AMPR’s estimate of w without the sample ;1 (Equation
(19) of reference [[13]]). [ ]
Propositions |3| and El indicate that the variance 62 can be
minimized even if the signal wgy is unknown. However, we
use SE for the theoretical assessment in the next section for
convenience.

V. NUMERICAL ANALYSIS

In the sequel, by numerically minimizing the variance using
SE, we investigate when bootstrapping reduces the variance of
the unbiased estimator and the phenomena that occur when op-
timizing the bootstrap sample size yp and the hyperparameter
of the elastic net regularization (A, 7).

For this, we searched for the optimal parameter (%, A*, v*)
that yielded the minimum variance using the SE of AMPR
and the Nelder-Mead algorithm in the Optim.jl library [18].
We obtained the fixed point of the SE by iterating the
SE a sufficient number of times. For comparison, the same
optimization was performed for the non-bootstrap case. For the
signal distribution gy, we consider the Gauss-Bernoulli model:
qo = pdo + (1 — p)N(0,1), with sparsity p € (0, 1).

In this section, we denote the outputs of the AMPR or
GAMP at fixed points by unindexed variables.

A. Distribution of the unbiased estimator

We verified the interpretation of AMPR’s output 7 described
in Section [T} For this, we compared the output of GAMP
#(c) for each realization of ¢ as in (@), and the output of
AMPR. The parameters used to produce the figure were set
as (N, o, A\ v, ug, p) = (4096,0.8,0.25,0.1,0.5,0.5,0.1).

Fig. |1| shows the sample quantiles of # — #©(¢) versus the
normal distribution with variance 9/ Q2. The scattered points
are approximately aligned with a line with a slope of 1 and
an intercept of 0. Fig. [2| shows the scatter plot of 7 versus
E.[#%(c)]. Again, the scattered points are approximately
aligned with a line with a slope of 1 and an intercept of 0. This
is consistent with the decomposition of the Gaussian noise (8).
Thus, AMPR computes the bootstrap average of the unbiased
estimator of GAMP.

B. Variance reduction

We quantitatively compare the variance 62 of the averaged
unbiased estimator with that of $2 without bootstrapping. Fig.
shows the ratio of the optimal 62 and the optimal 2. Panels
(a) and (b) show the results when the ¢;-ratio ~y is fixed and
panel (c) shows when the /;-ratio is optimized. As expected
from Proposition [3] the variance is reduced compared to the
case without bootstrapping. The magnitude of the reduction
is larger when the /¢;-ratio is fixed and close to 1 (LASSO
[21]] case). In particular, the largest improvement is obtained
when p is large (less sparse) and the measurement ratio « is
small. The improvement is minor when ¢;-ratio is optimized.
This suggests that using the bootstrap average is effective
when the actual data generation process is inconsistent with
the sparsity assumption of the regularization and the data
size is insufficient. However, when the data size is too small,
meaningful improvement cannot be obtained.

C. Phase transition to an ensemble of interpolators

Fig. [] shows the optimal regularization strength \* for
&2. Panels (a) and (b) show the results when the ¢;-ratio is
fixed, and panel (c) shows when the ¢;-ratio is optimized. In
all cases, it is clear that a phase transition has occurred in
which A* drops to an infinitesimally small value (although for
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Fig. 4: The optimal regularization parameter log,, A for the bootstrap averaged unbiased estimator are plotted against the
sparsity of the true signal p and the measurement ratio « = M /N as a heat map. The measurement noise is set as A = 0.15.
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Fig. 5: The typical number of unique samples in each bootstrap sample (1 — e #B) scaled by N is visualized. In the purple
region, (1 — e #B) < 1, and in the yellow region, a(1 — e #) > 1. The red dashed line shows a = 1. A = 0.15.

numerical reasons, ) is constrained to exceed 10~7) as the
measurement ratio o decreases or p increases. Moreover, Fig.
shows a(1 — p%;), the typical number of unique data points
in each bootstrap sample scaled by N: limps n o0 (M pug)/N.
From Fig. 3] it is clear that the typical number of unique data
points is always smaller than 1 in the region where A\* ~ +4-0.
This holds, even if the measurement ratio o« > 1. Thus,
when \* ~ +0, the elastic net estimator in @]) becomes the
minimum elastic net norm estimator as

N
- ¥ . 1—y .
W' = min ;21 | w; | + Tw?, subject to
e, > 0)(yu —apw) =0, p=1,2,...., M, (10)

which is commonly known as minimum elastic net norm
interpolator in machine learning [[15]—[|L7]]. These suggest that
when elastic net regularization cannot determine an appro-
priate sparse structure of wy, it is better to use an over-
parameterized setting in which the number of unique data
points of each bootstrap data is smaller than the dimension
of wg and use an ensemble of interpolators.

VI. SUMMARY AND DISCUSSION

In this study, we investigated the behavior of the bootstrap-
averaged unbiased estimator of GAMP using AMPR and its
SE. We found that the bootstrap averaging procedure can
effectively reduce the variance of the unbiased estimator when
the actual data generation process is inconsistent with the

sparsity assumption of the regularization and the data size
is insufficient. We also found a phase transition where the
regularization strength drops to infinitesimally small values
by decreasing the measurement ratio « or increasing p.

Although increasing the variance of weak learners is key
to the success of ensemble learning [22]-[24], the phase
transition to an ensemble of interpolators may be unexpected.
Investigating whether similar phase transitions occur in other
more sophisticated machine-learning models, such as neural
networks, would be an interesting future direction.

We also remark that the landscape in (5, A)-space may not
be convex in general. Thus, the uniqueness of the optimizer
should be investigated in the future, paying attention to the
relationship with the implicit regularization [25]—[27].

On the technical side, the key to this study was the precise
performance characterization of the averaged estimator by
AMPR, which was developed by combining GAMP and the
replica method of statistical physics [28], [29]. Such a com-
bination of approximate inference algorithms and the replica
method has been used to develop approximate computation
algorithms [13]], [[14]], [30]-[34] and has not been applied to
precise performance analysis of ensemble methods. It would
be an interesting direction to try similar performance analysis
for other bootstrap methods or ensemble learning.
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