
Designing Compact Repair Groups
for Reed-Solomon Codes

Thi Xinh Dinh∗†, Serdar Boztas∗‡, Son Hoang Dau∗, and Emanuele Viterbo§
∗RMIT University, Melbourne VIC 3000, Australia, {s3880660@student.rmit, serdar.boztas@rmit, sonhoang.dau@rmit}.edu.au

†Tay Nguyen University, Vietnam, dinhthixinh@ttn.edu.vn
‡University Research Foundation, Greenbelt, MD 20770, USA, boztas@urf.com
§Monash University, Clayton VIC 3800, Australia, emanuele.viterbo@monash.edu

Abstract—Motivated by the application of Reed-Solomon codes
to recently emerging decentralized storage systems such as Storj
and Filebase/Sia, we study the problem of designing compact
repair groups for recovering multiple failures in a decentralized
manner. Here, compactness means that the corresponding trace
repair schemes of these groups of helpers can be generated from
a single or a few seed repair schemes, thus saving the time
and space required for finding and storing them. The goal is to
design compact repair groups that can tolerate as many failures
as possible. It turns out that the maximum number of failures
a collection of repair groups can tolerate equals the size of a
minimum hitting set of a collection of subsets of the finite field Fq`

minus one. When the repair groups for each symbol are generated
from a single subspace, we establish a pair of asymptotically tight
lower bound and upper bound on the size of such a minimum
hitting set. Using Burnside’s Lemma and the Möbius inversion
formula, we determine a number of subspaces that together attain
the upper bound on the minimum hitting set size when the repair
groups are generated from multiple subspaces.

I. INTRODUCTION

Unlike traditional distributed storage systems such as Google
File System II [1] or Facebook’s f4 [2], in which most failures
among the servers storing a file or a data object are single
failures [3], in recently emerging decentralized storage systems
such as the blockchain-based Storj [4] and Filebase/Sia [5],
multiple failures are the norm. This difference between the
distributed and the decentralized systems stems from the fact
that storage nodes in a decentralized system are not under the
control of any centralized party and can join and leave the
system or go online and offline more freely. By contrast, in
traditional distributed storage systems, all storage nodes are
managed by a centralized service provider and rarely fail or
leave the system.

As a consequence, Reed-Solomon codes employed in decen-
tralized systems have significantly different parameter ranges.
For example, while most major distributed storage systems
use short codes with three or four parities, e.g., RS(9,6)
or RS(14,10), decentralized storage systems like Storj and
Filebase/Sia rely on longer codes with larger redundancies,
e.g., RS(30,10), RS(40,20), or RS(80,40) [6, Table I]. Larger
redundancies allow these codes to tolerate a greater number of
node failures as often occurring in a decentralized environment.

When nodes storing codeword symbols corresponding to a
particular data object fail (or leave the system), other nodes
may join as replacement nodes for that object. These can be new
nodes that just joined the system or existing nodes that are ready
to provide extra storage. There must be a mechanism for these

nodes to recover the lost symbols. Current decentralized systems
like Storj [4] are using the “lazy repair” mechanism [7]–
[9], which waits for a number of failures to happen before
applying the naive centralized repair approach to repair all
failures at once. This approach assigns one random node as the
repair node, which collects codeword symbols from k arbitrary
available nodes (k is the code dimension), recovers all lost
codeword symbols at once and sends them to the corresponding
replacement nodes (see Fig. 1). We observe that the repair
bandwidth of the naive centralized repair approach, i.e., the
total amount of bits communicated among the storage nodes
during the repair process, can potentially be reduced by using
the trace repair method for multiple failures developed in the
literature [10]–[16]. Also, as the (heuristic) search problem for
a low-bandwidth repair scheme is highly intensive for multiple
failures, algebraic constructions offer a more feasible approach,
which, however, work for a limited range of parameters only.

We study in this work a second approach, namely, the
decentralized repair approach, in which different replacement
nodes perform the repair process independently not necessarily
simultaneously. In its naive version, each replacement node
performs the naive repair scheme, downloading data from k
helper nodes and recovering the lost symbol. We are interested
in a more bandwidth-efficient version in which the trace repair
method [10], [11] is applied: each replacement node downloads
data from more than k nodes, which, however, results in lower
repair bandwidth compared to the naive scheme. While this
approach may require a higher total repair bandwidth compared
to Storj’s naive centralized repair approach1, the recovery task is
split over multiple nodes, which eliminates the communication
and computation bottle neck at the single repair node. This may
potentially help to reduce the total recovery time of the system
and lower the chance that the recovery process is disrupted
due to the failure of the assigned repair node itself. Moreover,
repairing nodes actively instead of lazily reduces the risk of data
loss due to correlated failures (software bugs or virus attacks).

However, using trace repair to improve the repair bandwidth
incurs additional overheads: the computational overhead when
finding a trace repair scheme (see [6, Section IV. B]) and
the storage overhead to store the parameters of a trace repair
scheme (see [6, Section V. B]). One extreme solution that

1To repair e failed nodes for an RS(n, k) code, Storj’s repair scheme requires
a total bandwidth of k`+(e−1)` symbols, while our scheme requires ek`(1−s)
symbols, where s represents the saving/reduction in bandwidth achieved by the
trace repair approach compared to the naive one, e.g., s = 0.3.

ar
X

iv
:2

30
5.

06
60

0v
1

 [
cs

.I
T

]
 1

1
M

ay
 2

02
3

Fig. 1: An illustration of Storj’s centralized approach and the
decentralized approach when repairing e = 2 failed nodes in a
code with dimension k = 2.

achieves minimum computation/storage overhead is to use a
single repair group of fixed d helper nodes for each codeword
symbol. Unfortunately, this solution cannot tolerate even one
failure: as soon as one node in that repair group fails, the
corresponding repair scheme no longer works. At the other
extreme, one can tolerate up to n−1−d failures by selecting all(
n−1
d

)
different repair groups and find/store the corresponding

repair schemes. Clearly, this solution requires an exponential
overhead in computation and storage. Our goal is to design
compact repair groups for every codeword symbol, which incur
low computational and storage overhead while tolerating as
many failures as possible. Within the scope of this work, we
only consider full-length codes over Fq` , with length n = q`.

Our key insight for constructing compact repair groups is
as follows: instead of using many unrelated repair groups
(resulting in high computation/storage overheads), we carefully
select related repair groups whose corresponding repair schemes
can be interpolated from a single or a few “seed” repair
schemes to reduce the overhead of constructing and storing
them. More specifically, to repair a codeword symbol cj , we
pick a d-subset S 3 0, referred to as a seed, and use all of
its unique multiplicative cosets C(S∗) 4

=
{
bS∗ : b ∈ F∗q`

}
,

where S∗ = S \ {0} and F∗q` = Fq` \ {0}, as different
repair groups (after an appropriate shifting). It turns out that
the repair schemes for all these groups can be easily generated
from a single repair scheme corresponding to S∗. Moreover, the
maximum number of failures tolerable by these compact repair
groups is equal to the size of a minimum hitting set of C(S∗)
minus one. Finally, to further improve this quantity, we can start
with multiple seeds. To achieve tractable results, we study an
Fq-subspace S of Fq` and consider full-length codes.

Our contributions are summarized below.
• First, we introduce a new problem of designing compact

repair groups for Reed-Solomon codes in the decentralized
setting and connect it to the minimum hitting set problem.

• Second, when the repair groups are generated from a single
seed S, we establish asymptotically matching lower bound
and upper bound on the size of a minimum hitting set
of C(S∗) (as q → ∞). Note that in general, the best
approximation ratio for the size of a minimum hitting
set of an arbitrary collection of sets is in the order of
log(n) = log(q`) = ` log(q) [17], [18].

• Lastly, we show that the upper bound on the number of
tolerable failures can be attained by using s seeds where
s is the number of orbits of S∗δ , the set of all S∗, where
S’s are δ-dimensional Fq-subspaces of Fq` , δ = logq d,
under the action of the multiplicative group F∗q` . We derive
an explicit formula for s via Burnside’s Lemma and the
Möbius inversion formula.

II. PRELIMINARIES

A. Definitions and Notations
Let q be a prime power, Fq be the finite field of q elements

and Fq` be the extension field of degree ` of Fq . We use [n] to
denote the set {1, 2, . . . , n}, and a | b to denote that a divides
b, for two integers a and b. For a set S, let S∗ 4= S \ {0}.

Let C be a linear [n, k] code over Fq` . Then C is an k-
dimensional Fq` -subspace of Fnq` . A codeword of C is an
element ~c = (c1, c2, . . . , cn) ∈ C and its codeword symbols
are the components cj , j ∈ [n]. The dual code of a code C
is the orthogonal complement C⊥ of C, C⊥ = {~g ∈ Fq` :
〈~c, ~g〉 = 0,∀~c ∈ C}, where 〈~c, ~g〉 is the scalar product of ~c
and ~g. The code C⊥ is an Fq` -subspace of Fnq` with dimension
n − k. The elements of C⊥ are called dual codewords. The
number n− k is called the redundancy of the code C.

Definition 1. Let A = {αj}nj=1 be a subset size n in Fq` .
A Reed-Solomon code RS(A, k) ⊆ Fnq` of dimension k with
evaluation points A is defined as

RS(A, k) =
{(
f(α1), . . . , f(αn)

)
: f ∈ Fq` [x], deg(f) < k

}
,

where Fq` [x] is the ring of polynomials over Fq` . We also use
the notation RS(n, k), ignoring the evaluation points.

A generalized Reed-Solomon code, GRS(A, k, ~λ), where
~λ = (λ1, . . . ,λn) ∈ Fnq` , is the set of codewords(
λ1g(α1), . . . ,λng(αn)

)
, where λj 6= 0 for all j ∈ [n],

g ∈ Fq` [x], deg(g) < n − k. The dual code of a Reed-
Solomon code RS(A, k) is a generalized Reed-Solomon code
GRS(A,n−k, ~λ), for some multiplier vector ~λ ([19, Chap. 10]).
We sometimes use the notation GRS(n, k), ignoring A and ~λ.

Let f(x) be a polynomial corresponding to a codeword of the
Reed-Solomon code C = RS(A, k), and g(x) be a polynomial
of degree at most n− k− 1, which corresponds to a codeword
of the dual code C⊥. Then

∑n
j=1 g(αj)

(
λjf(αj)

)
= 0, and

we call the polynomial g(x) a check polynomial for C.
For a subset S ⊆ Fq` and a ∈ Fq` , let aS , {as : s ∈ S},

a + S , {a + s : s ∈ S}, C(a, S) , {a + bS : b ∈ F∗q`}, and
C(S) , {bS : b ∈ F∗q`}. Let S be a family of sets {Si}i∈I . A
hitting set of S is a set which has nonempty intersection with
Si, for all i ∈ I . A hitting set of S is called a minimum hitting
set (MHS), if it has the smallest size over all the hitting sets of
S. For simplicity, we denote by MHS(S) a MHS of S.

B. Trace Repair Method
Let RS(n, k) be a Reed-Solomon code over Fq` with evalua-

tion points A, ~c a codeword corresponding to polynomial f(x),
f ∈ Fq` [x], deg(f) < k, and c∗ = f(α∗), where α∗ ∈ A, a
codeword symbol/node of ~c. A (linear) trace repair scheme for
c∗ corresponds to a set of ` check polynomials {gi(x)}i∈[`],
gi ∈ Fq` [x], deg(gi) < n − k, that satisfies the Full-Rank
Condition: rankFq{gi(α∗)}i∈[`] = `. If we require that the set
of helper nodes corresponds to S \ {α∗} where α∗ ∈ S ⊆ A,
then it is necessary that gi(α) = 0 for every i ∈ [`] and α /∈ S.
The repair bandwidth of such a repair scheme (in Fq-symbols)
is bw =

∑
α∈S\{α∗} rankFq ({gi(α)}i∈[`]).

To repair all n components of ~c, we need n such repair
schemes (possibly with repetition). See, e.g. [20], for a detailed
explanation of why the above scheme works with an example.

III. DESIGNING COMPACT REPAIR GROUPS FOR
REED-SOLOMON CODES

A. The Problem Description
The context. We assume that a full-length Reed-Solomon

code RS(n, k) is employed in a decentralized storage system
where multiple failures occur. A number of storage nodes,
i.e., codeword symbols, are lost and need to be recovered. To
repair each failed node, the corresponding replacement node
will contact a set of d ≤ n − 1 helper nodes among the
surviving nodes (independently of other replacement nodes). A
low-bandwidth repair scheme corresponding to each of such
group of d helper nodes and the lost node must be determined
and stored before it can be used in the repair process.

The problem. The trace repair method [10], [11] can be
employed to construct repair schemes with low bandwidths. As
it may take a significant time to find a low-bandwidth repair
scheme with respect to an arbitrary repair group via heuristic
algorithms (see [6]), the system should find all repair schemes
offline and pre-store their parameters. The more repair groups
are used, the larger the number of failures that these groups can
tolerate (i.e. at least one group is intact). However, having more
repair groups requires higher computation/storage cost. We aim
to address this dilemma in this work.
B. The General Strategy

Our key idea is to use multiple related repair groups, i.e.
although multiple repair schemes will be used, they are all
generated from one or a few seed repair schemes only. We
refer to these as compact repair groups. For such repair groups,
we only need to store one or a few sets of evaluation points,
referred to as seeds, and their corresponding repair schemes,
which can then be used to generate all others.

More specifically, for the case of a single seed, assume that
we already have a repair scheme for f(0) with helper nodes
correspond to S∗

4
= S \ {0}, where 0 ∈ S ⊆ F∗q` . Then for

every α∗ ∈ Fq` , we can create a repair scheme for f(α∗)
with the same bandwidth and with helper nodes correspond to
α∗ + bS∗ for every b ∈ F∗q` . As shown in Lemma 1 (see also
[6, Corollary 4]), this can be done by appropriately dilating
and translating the (seed) repair scheme for f(0) to yield a
repair scheme for f(α∗). For multiple seeds, we simply start
from multiple sets {St}t∈[s]. Note that all these statements hold
under the assumption that the considered RS code is full length,
so that α∗ + bS∗ corresponds to a subset of evaluation points,
i.e. a valid set of helper nodes, for every α∗, b, and S.
Lemma 1. Assume that 0 ∈ S ⊆ Fq` . Suppose that
{gi(x)}`i=1 ⊂ Fq` [x] forms a repair scheme with bandwidth
bw and helper nodes correspond to S∗ for f(0) of a RS code
with evaluation points S. Then {hi(x)

4
= gi

(
(x − α∗)/b

)
}`i=1

forms a repair scheme with bandwidth bw and helper nodes
correspond to α∗ + bS∗ for f(α∗) of a RS code of the same
dimension with evaluation points α∗ + bS, for every b ∈ F∗q` .

Proof. Since hi(α
∗) = gi(0) for every i ∈ [`], we have

rankFq
(
{hi(α∗)}`i=1

)
= `, which means that the Full-Rank

Condition is satisfied. Furthermore, for a ∈ α∗ + bS∗ =
(α∗ + bS) \ {α∗}, we have a = α∗ + bα for some α ∈ S∗.
Hence, h(a) = h(α∗ + bα) = g(α) and as a consequence,∑
a∈α∗+bS∗

rankFq
(
{hi(a)}`i=1

)
=
∑
α∈S∗

rankFq
(
{gi(α)}`i=1

)
= bw.

Thus, {hi(x)}`i=1 forms a repair scheme for f(α∗) with the
same bandwidth as the repair scheme {gi(α)}`i=1 for f(0). �

Let C(S∗) 4= {bS∗ : b ∈ F∗q`}, the set of distinct multiplica-
tive cosets of S∗, and C(α∗, S∗) 4= {α∗+bS∗ : b ∈ F∗q`}. From
the above discussion, the number of repair schemes for f(α∗)
generated from a single seed S is |C(α∗, S∗)| = |C(S∗)|. When
node failures occur, all the repair schemes involving at least one
failed node as a helper node will become unusable. We say that
these repair schemes are hit by those node failures. Hence, the
maximum number of failures tolerable by these repair groups is
one less than the size of a minimum hitting set of C(α∗, S∗) as
well as of C(S∗). We summarize this discussion in Definition 2
and Lemma 2, generalized to capture the multiple-seed scenario.
Definition 2. Let C

(
α∗, {S∗t }t∈[s]

)
denote the collection

∪t∈[s]{α∗ + bS∗t : b ∈ F∗q`} for s seeds {St}t∈[s]. Then
the maximum number of failures tolerable by this collection,
denoted by F

(
C
(
α∗, {S∗t }t∈[s]

))
, is defined to be the largest

number e so that for every E ⊂ Fq` \ {α∗}, |E| = e, there
exists at least one set in the collection that doesn’t intersect E.

Lemma 2. Let {St}t∈[s] be a collection of s sub-
sets of Fq` containing 0. Then F

(
C
(
α∗, {S∗t }t∈[s]

))
=∣∣MHS

(
C
(
α∗, {S∗t }t∈[s]

))∣∣ − 1 =
∣∣MHS

(
C
(
{S∗t }t∈[s]

))∣∣ − 1,
where C

(
{S∗t }t∈[s]

) 4
= ∪t∈[s]{bS∗t : b ∈ F∗q`}.

Proof. Clearly,
∣∣MHS

(
C
(
α∗, {S∗t }t∈[s]

))∣∣ is the minimum
number of failures that hit all the repair groups
in C

(
α∗, {S∗t }t∈[s]

)
. It is also straightforward that∣∣MHS

(
C
(
α∗, {S∗t }t∈[s]

))∣∣ =
∣∣MHS

(
C
(
{S∗t }t∈[s]

))∣∣.
Therefore, the repair groups corresponding to C(α∗, S∗)
can tolerate at most

∣∣MHS
(
C
(
α∗, {S∗t }t∈[s]

))∣∣−1 failures. �

Thanks to Lemma 2, we have reduced the problem of
determining the number of failures tolerable by a compact
collection of repair groups generated by the seeds {St}t∈[s] to
the problem of finding a minimum hitting set of C

(
{S∗t }t∈[s]

)
.

C. Compact Repair Groups from a Single Seed
Finding an MHS of an arbitrary collection of sets is in general

an NP-hard problem [21]. We focus on a special case when
the seeds are Fq-subspaces of Fq` . Note that low-bandwidth
repair schemes for Reed-Solomon codes with evaluation points
forming a subspace have been proposed in the literature [15],
[22]. In this section we study

∣∣MHS
(
C(S∗)

)∣∣, where S is
a single seed and also a δ-dimensional Fq-subspace of Fq` .
We establish a pair of lower bound and upper bound for∣∣MHS

(
C(S∗)

)∣∣, which are asymptotically tight (Theorem 1) as
q → ∞. Note that this is impossible to achieve in the general
case. As a consequence, exact values for the MHS can be
determined for some special cases (Corollary 2, Corollary 3).

For the upper bound, for a δ-dimensional Fq-subspace S
of Fq` , we first bound

∣∣MHS
(
C(S∗)

)∣∣ by |MHS(S∗δ)| where
S∗δ is the collection of all δ-dimensional Fq-subspaces of Fq`
excluding 0, and then connect MHS(S∗δ) to a special case of
Turán designs [23].
Lemma 3. If S is a δ-dimensional Fq-subspace S of Fq` and
S∗δ

4
= {T ∗ : T is a δ-dimensional Fq-subspace of Fq`}, then∣∣MHS
(
C(S∗)

)∣∣ ≤ ∣∣MHS
(
S∗δ)
)∣∣.

Proof. As a multiplicative coset of an Fq-subspace of Fq` is
another Fq-subspace of the same dimension, if dimFq (S) = δ
then C(S∗) ⊆ S∗δ . The lemma follows. �

It turns out that a MHS of S∗δ corresponds to a special Turán
design [23]. We recall below the definition of Turán designs
and discuss the relation with the MHS of S∗δ .
Definition 3. Let Sδ and Sr be the sets of all Fq-subspaces
of Fq` of dimension δ and r, respectively. A (q, `, δ, r)-Turán
design is a subset D of Sr so that each subspace in Sδ contains
at least one subspace in D. The minimum size of a Turán design
is called the (q, `, δ, r)-Turán number and denoted by Tq(`, δ, r).

In Lemma 4, we show that |MHS(S∗δ)| is the same as the
Turán number (with r = 1) defined above.

Lemma 4. For every prime power q and every 1 ≤ δ ≤ `, we
have |MHS(S∗δ)| = Tq(`, δ, 1), where S∗δ is the set of all Fq-
subspaces of dimension δ of Fq` (excluding the zero element)
and Tq(`, δ, 1) denotes the Turán number in Definition 3. As a
consequence, |MHS(S∗δ)| =

(
q`−δ+1 − 1

)
/(q − 1).

Proof. First, we show that for every hitting set H of S∗δ , there
is a (q, `, δ, 1)-Turán design DH of size |DH | ≤ |H|. Indeed,
let DH be the set of all (distinct) 1-dimensional Fq-subspaces
generated by elements in H . Since each S∗ ∈ S∗δ contains
at least one element h ∈ H , S contains the corresponding
1-dimensional subspace spanFq ({h}). Therefore, DH is an
(q, `, δ, 1)-Turán design with size |DH | ≤ |H|.

Second, we show that if D is a (q, `, δ, 1)-Turán design then
we can construct a hitting set H of S∗δ of size |H| = |D|.
Indeed, let H be the set of generators of all 1-dimensional
subspaces in D. Then |H| = |D| and H hits all the set S∗ ∈ S∗δ .

Thus, |MHS(S∗δ)| = Tq(`, δ, 1) =
(
q`−δ+1 − 1

)
/(q − 1)

(see [23, Theorem 4.10]). �

An upper bound on
∣∣MHS

(
C(S∗)

)∣∣ can be directly derived
from Lemma 3 and Lemma 4.

Corollary 1. Let S be a δ-dimensional Fq-subspace of Fq` .
Then

∣∣MHS
(
C(S∗)

)∣∣ ≤ (q`−δ+1 − 1
)
/(q − 1).

We now discuss a lower bound on
∣∣MHS

(
C(S∗)

)∣∣.
Lemma 5. Let S be a δ-dimensional Fq-subspace of Fq` . Then∣∣MHS

(
C(S∗)

)∣∣ ≥ ⌈ q`−1
qδ−1

⌉
.

Proof. We first note that every two elements x and y of F∗q`
belong to the same number of cosets in C(S∗) because if
x ∈ bS∗, then y = y

xx ∈
(
y
xb
)
S∗ and vice versa. By double

counting the set
{

(x, bS∗) : x ∈ bS∗, b ∈ F∗q`
}

, each element

in F∗q` appears in exactly r
4
= |C(S∗)||S∗|

q`−1
cosets, noting that

|bS∗| = |S∗| for every b ∈ F∗q` . Now, suppose that H is a hitting
set of C(S∗). As proved above, the elements in H together hit
at most r|H| cosets. This implies that r|H| ≥ |C(S∗)|, which
in turn shows that |H| ≥

⌈
q`−1
qδ−1

⌉
, establishing the lemma. �

The derived lower bound and upper bound on∣∣MHS
(
C(S∗)

)∣∣, and consequently, on the maximum number of
failures tolerable by the repair groups in C(α∗, S∗) for every
α∗ ∈ Fq` , are stated in Theorem 1. Note that as q → ∞,
the two bounds match asymptotically. In general, it is known

that the size of a MHS of a collection of sets can only be
approximated to a ratio of log of the size of the underlying
set, i.e. log(q`) = ` log q (see, e.g. [17], [18]). Determining the
exact size of a MHS of C(S∗) for an arbitrary subspace S is
an open problem.

Theorem 1. Let S be a δ-dimensional Fq-subspace of Fq` . Then⌈
q` − 1

qδ − 1

⌉
≤
∣∣MHS

(
C(S∗)

)∣∣ ≤ q`−δ+1 − 1

q − 1
.

As a consequence, for every α∗ ∈ Fq` ,⌈
q` − 1

qδ − 1

⌉
− 1 ≤

∣∣F(C(α∗, S∗))∣∣ ≤ q`−δ+1 − 1

q − 1
− 1.

Proof. The theorem follows directly from Corollary 1,
Lemma 2, and Lemma 5. �

We can determine
∣∣MHS

(
C(S∗)

)∣∣ explicitly for a few special
cases when the two bounds collapse.

Corollary 2. Let S be a multiplicative coset of the subfield Fqδ
in Fq` . Then,

∣∣MHS
(
C(S∗)

)∣∣ = q`−1
qδ−1

.

Proof. We consider an equivalence relation ∼ over the mul-
tiplicative group F∗q` as follows: for a, b ∈ F∗q` , a ∼ b if
and only if b−1a ∈ F∗qδ . This relation classifies F∗q` into
q`−1
qδ−1

disjoint equivalence classes, which are the multiplicative
cosets of Fqδ in Fq` . Since C(S∗) = C(bF∗qδ) = C(F∗qδ),
for all b ∈ F∗q` , and the equivalence classes are disjoint,∣∣MHS

(
C(S∗)

)∣∣ = |C(F∗qδ)| =
q`−1
qδ−1

. �

Corollary 3. Assume that (` − δ) | gcd(`, δ) and that S
is an Fq`−δ -subspace of Fq` of dimension δ/(` − δ) . Then∣∣MHS

(
C(S∗)

)∣∣ = q`−δ + 1.

Proof. Let q 4= q`−δ , ` 4= `/(`−δ) and δ 4= δ/(`−δ). Replacing
q, `, δ in Theorem 1 by q, `, and δ, both left and right hand
sides are equal to q+ 1 or q`−δ + 1, noting that `− δ = 1. �

Example 1. Consider the code RS(16, 2) over F24 . The set S =
{0, z2, z7, z12}, where z is a primitive element of F24 , is a coset
of the subfield F22 , and have

∣∣MHS
(
C(S∗)

)∣∣ = |C(F22)| = 5.
We can generate five repair schemes for f(α∗) from S∗, which
tolerate four node failures: when four nodes fail, at least one of
the five sets of helper nodes survives. For example, when α∗ =
z5, the five repair schemes correspond to five evaluation point
sets in C(z5, S∗) =

{
{z, z13, z14}, {z11, z4, z7}, {z8, z6, z12},

{z10, 0, 1}, {z2, z9, z3}
}

. If S = {0, z4, z5, z8} is chosen,
however, then

∣∣MHS
(
C(S∗)

)∣∣ = 6, and fifteen repair schemes
corresponding to fifteen evaluation point sets of C(z5, S∗) can
be generated. Together, they can tolerate five node failures.

D. Compact Repair Groups from Multiple Seeds
Although the single-seed compact repair groups discussed in

the previous section can asymptotically achieve the upper bound
on the number of maximum tolerable failures, when q is small,
the gap can still be significant. In this section we discuss the
multi-seed approach and determine a set of seeds that attain the
upper bound stated in Theorem 1. We still assume that the seeds
are subspaces of Fq` . The case of general (non-subspace) seeds
is left for future research.

Suppose we build compact repair groups C
(
{S∗t }t∈[s]

)
from

s subspace-seeds {St}t∈[s]. If dimFq (St) = δ for all t ∈ [s]
then C

(
{S∗t }t∈[s]

)
⊆ S∗δ and the upper bound in Theorem 1

still holds. That is,
∣∣MHS

(
C
(
{S∗t }t∈[s]

))∣∣ ≤ ∣∣MHS
(
S∗δ
)∣∣.

Therefore, let s be such that ∪t∈[s]C
(
{S∗t }t∈[s]

))
= S∗δ then the

repair groups based on these s seeds will attain the upper bound∣∣MHS
(
S∗δ
)∣∣. Note that this is a sufficient but not necessary

condition for s. Finding a smallest s remains an open problem.
Lemma 6. Let s 4= |S∗δ /F∗q` | be the number of orbits consid-
ering the action of the group F∗q` on S∗δ with the standard field
multiplication. Let {S∗t }t∈[s] ⊆ S∗δ correspond to the set of s
disjoint orbits. Then

∣∣MHS
(
C
(
{S∗t }t∈[s]

))∣∣ =
∣∣MHS

(
S∗δ
)∣∣.

Proof. It is clear that the orbit of each S∗ ∈ S∗δ is {bS∗ : b ∈
F∗q`} ≡ C(S

∗). Therefore, S∗δ can be written as the disjoint
union of s cosets C

(
{S∗t }t∈[s]

)
, which explains the lemma. �

Armed with Lemma 6, our next task is to calculate the
number of orbits |S∗δ /F∗q` | explicitly. We acomplish this with
Burnside’s Lemma and the Möbius inversion formula. We recall
that for S∗ ∈ S∗δ , the stabilizer of S∗ in F∗q` is the set
StabF∗

q`
(S∗) , {b ∈ F∗q` : bS∗ = S∗}.

Lemma 7 (Burnside’s Lemma). [24] |S∗δ /F∗q` | =
1
|F∗
q`
|
∑
S∗∈S∗δ

|StabF∗
q`

(S∗)|.
We first need to determine StabF∗

q`
(S∗) for S∗ ∈ S∗δ .

Definition 4. Let S be an Fq-subspace of Fq` and m be the
largest positive integer so that S is an Fqm -subspace of Fq` . We
say that S has base Fqm and write base(S) = Fqm .
Lemma 8. Let S be a subspace of F∗q` with base Fqm . Then
StabF∗

q`
(S∗) = F∗qm . Hence, |StabF∗

q`
(S∗)| = qm − 1.

Proof. Assume that S is a subspace of F∗q` with base Fqm . Since
S is an Fqm -subspace, αS = S for all α ∈ F∗qm . Therefore,
F∗qm ⊆ StabF∗

q`
(S∗). It suffices to show that the opposite is also

true, i.e. if αS = S for α ∈ Fq` then α ∈ F∗qm . Indeed, assume
that α /∈ F∗qm for the sake of contradiction. Set F = Fqm(α))
Fqm , which is the extension field of Fqm with respect to α.
Then F =

{∑∆−1
i=0 ciα

i : ci ∈ Fqm
}

, where ∆ is the degree
of a minimal polynomial of α over Fqm . Since αiu ∈ S for
every i ≥ 0 and u ∈ S, we deduce that

(∑∆−1
i=0 ciα

i
)
u =∑∆−1

i=0 ci(α
iu) ∈ S. Hence, S is also an F-subspace of Fq` ,

where F is larger than Fqm , which is a contradiction to the
assumption that Fqm is the base of S. Hence, α ∈ F∗qm . �

From Lemma 8, we know that the stabilizer of S∗ ∈ S∗δ
with respect to F∗q` is base(S). To apply Burnside’s Lemma, it
remains to count the number of S∗ ∈ S∗δ that have base Fqm
for each m | gcd(`, δ). Note that the q-ary Gaussian coefficient[

`
δ

]
q

,
(q` − 1)(q` − q)(q` − q2) . . . (q` − qδ−1)

(qδ − 1)(qδ − q)(qδ − q2) . . . (qδ − qδ−1)

only counts the number of Fq-subspaces of Fq` of dimension δ,
among which are subspaces of different bases. For instance,
with ` = 48, δ = 24, gcd(`, δ) = 24 and its divisors are
2, 3, 4, 6, 8, 12, 24. A 24-dimensional Fq-subspace can have base
Fq2 , Fq3 , Fq4 , Fq6 , Fq8 , Fq12 , or Fq24 . Although the Gaussian
coefficient doesn’t give us directly the number of δ-dimensional
Fq-subspaces of Fq` that have base Fqm , it can still be used to
derive this number via the Möbius inversion formula.

The Möbius function µ(v) (see [25, Chapter XVI]) is defined
over the positive integers as follows: µ(v) , 0 if v is not square-
free, and (−1)r if v is the product of r distinct primes.

Lemma 9 (Möbius inversion formula). [25, Chap. XVI] Let
f and g be functions over Z+ and f(n) =

∑
v|n g(v). Then,

g(n) =
∑
v|n µ(v)f

(
n/v

)
, where µ(v) is the Möbius function.

Theorem 2. Let Nq,`,δ(m) be the number of δ-dimensional Fq-
subspaces of Fq` with base Fqm . Let (a, b)

4
= gcd(a, b). Then

Nq,`,δ(m) =
∑

v| (`,δ)m

µ(v)
[
`/mv
δ/mv

]
qmv

. (1)

Using Burnside’s Lemma, we have

|S∗δ /F∗q` |=
1

q`−1

∑
m|(`,δ)

(qm − 1)

(∑
v| (`,δ)m

µ(v)
[
`/mv
δ/mv

]
qmv

)
. (2)

Proof. To prove (1), we note that the Gaussian coeffi-
cient

[
`/m
δ/m

]
qm

counts the number of δ/m-dimensional Fqm -

subspaces of Fq` , which include all subspaces with bases Fqp
where p ≥ m, m | p, and p | (`, δ). Hence,[

`/m
δ/m

]
qm

=
∑

p≥m, m|p, p|(`,δ)
Nq,`,δ(p). (3)

Fixing q, `, and δ, for each m let n = (`, δ)/m and v =
(`, δ)/p. Since m | p, we also have v | n. It is obvious that
m = (`, δ)/n and p = (`, δ)/v. Define

f(n) ,
[
`/m
δ/m

]
qm

=
[
`n/(`,δ)
δn/(`,δ)

]
q

(`,δ)
n

,

g(v) , Nq,`,δ(p) = Nq,`,δ

((`, δ)

v

)
.

From (3), we have f(n) =
∑
v|n g(v). Applying the Möbius

inversion formula we obtain g(n) =
∑
v|n µ(v)f(n/v), or

Nq,`,δ(m) = Nq,`,δ

(
(`, δ)

n

)
=
∑
v|n

µ(v)
[
`nv /(`,δ)

δ nv /(`,δ)

]
q

(`,δ)
n
v

=
∑
v| (`,δ)m

µ(v)
[
`/mv
δ/mv

]
qmv

,

which establishes (1).
From Burnside’s Lemma and Lemma 8, we have
|S∗δ /F∗q` | =

1

|F∗
q`
|
∑
S∗∈S∗δ

|StabF∗
q`

(S∗)|

=
1

q` − 1

∑
m|(`,δ)

∑
S∗∈S∗δ , base(S∗)=F∗

qm

(qm − 1)

=
1

q` − 1

∑
m|(`,δ)

(qm − 1)Nq,`,δ(m),

which implies (2). �
By using Theorem 2, we achieve an upper bound on the

minimum number of seeds that generate a collection of repair
groups attaining the upper bound in Theorem 1. Identifying the
exact value remains an open problem.
Corollary 4. Let s = |S∗δ /F∗q` | as given in Theorem 2 be
the number of orbits with respect to the action of F∗q` on
S∗δ , and {S∗t }t∈[s] ⊆ S∗δ correspond to the set of s disjoint
orbits. Then

∣∣MHS
(
C
(
{S∗t }t∈[s]

))∣∣ = q`−δ+1−1
q−1 . Using these

s seeds, the resulting compact repair groups can tolerate
F
(
C
(
α∗, {S∗t }t∈[s]

))
= q`−δ+1−1

q−1 − 1 failures.

Acknowledgement. This work is supported by the ARC
DECRA Grant DE180100768 and ARC DP200100731.

REFERENCES

[1] A. Fikes, Colossus, Successor to Google File System, https://cloud.google.
com/files/storage architecture and challenges.pdf, 2010.

[2] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang, , and S. Kumar, “f4: Facebook’s warm
BLOB storage system,” in Proc. 11th ACM/USENIX Symp. Oper. Syst.
Des. Implementation (OSDI), 2014, pp. 383–398.

[3] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Trans. Inform.
Theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[4] Storj Whitepaper, https://www.storj.io/whitepaper.
[5] Filebase/Sia, https://docs.filebase.com/storage-networks/sia.
[6] T. X. Dinh, L. Y. Nhi Nguyen, L. J. Mohan, S. Boztas, T. T. Luong, and

S. H. Dau, “Practical considerations in repairing Reed-Solomon codes,” in
2022 IEEE International Symposium on Information Theory (ISIT), 2022,
pp. 2607–2612.

[7] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker,
“Total recall: System support for automated availability management,” in
Proceedings of the 1st Conference on Symposium on Networked Systems
Design and Implementation - Volume 1, ser. NSDI’04, 2004, p. 25.

[8] M. Silberstein, L. Ganesh, Y. Wang, L. Alvisi, and M. Dahlin, “Lazy
means smart: Reducing repair bandwidth costs in erasure-coded distributed
storage,” in Proc. Int. Conf. Syst. Storage (SYSTOR), 2014, pp. 15:1–15:7.

[9] M. Luby, R. Padovani, T. J. Richardson, L. Minder, and P. Aggarwal,
“Liquid cloud storage,” ACM Trans. Storage, vol. 15, no. 1, feb 2019.

[10] V. Guruswami and M. Wootters, “Repairing Reed-Solomon codes,” in
Proc. Annu. Symp. Theory Comput. (STOC), 2016.

[11] ——, “Repairing Reed-Solomon codes,” IEEE Trans. Inform. Theory,
vol. 63, no. 9, pp. 5684–5698, 2017.

[12] H. Dau, I. Duursma, H. M. Kiah, and O. Milenkovic, “Repairing Reed-
Solomon codes with multiple erasures,” IEEE Trans. Inform. Theory,
vol. 54, no. 10, pp. 6567–6582, 2018.

[13] B. Bartan and M. Wootters, “Repairing multiple failures for scalar MDS
codes,” in Proc. 55th Annual Allerton Conf. Comm Control Comput.
(Allerton), 2017.

[14] J. Mardia, B. Bartan, and M. Wootters, “Repairing multiple failures for
scalar MDS codes,” IEEE Trans. Inform. Theory, vol. 65, no. 5, pp. 2661–
2672, 2018.

[15] W. Li, Z. Wang, and H. Jafarkhani, “On the sub-packetization size and the
repair bandwidth of Reed-Solomon codes,” IEEE Trans. Inform. Theory,
vol. 65, no. 9, pp. 5484–5502, 2019.

[16] I. Tamo, M. Ye, and A. Barg, “The Repair Problem for Reed–Solomon
Codes: Optimal Repair of Single and Multiple Erasures With Almost
Optimal Node Size,” IEEE Transactions on Information Theory, vol. 65,
no. 5, pp. 2673–2695, 2019.

[17] C. Lund and M. Yannakakis, “On the hardness of approximating mini-
mization problems,” Journal of the ACM, vol. 41, no. 5, pp. 960–981,
1994.

[18] U. Feige, “A threshold of ln n for approximating set cover,” Journal of
the ACM, vol. 45, no. 4, pp. 634–652, 1998.

[19] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam: North-Holland, 1977.

[20] S. H. Dau, T. X. Dinh, H. M. Kiah, T. T. Luong, and O. Milenkovic,
“Repairing Reed-Solomon codes via subspace polynomials,” IEEE Trans.
Inform. Theory, vol. 67, no. 10, pp. 6395–6407, 2021.

[21] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algo-
rithms. Springer, 2012.

[22] A. Berman, S. Buzaglo, A. Dor, Y. Shany, and I. Tamo, “Repairing
Reed–Solomon codes evaluated on subspaces,” in Proc. IEEE Int. Symp.
Inform. Theory (ISIT), 2021, pp. 867–871.

[23] T. Etzion and A. Vardy, “On q-analogs of Steiner systems and covering
designs,” Advances in Mathematics of Communications, vol. 5, no. 2, pp.
161–176, 2011.

[24] J. D. H. Smith, Introduction to Abstract Algebra. CRC Press, 2009.
[25] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers.

Oxford University Press, 1975.

https://cloud.google.com/files/storage_architecture_and_challenges.pdf
https://cloud.google.com/files/storage_architecture_and_challenges.pdf
https://www.storj.io/whitepaper
https://docs.filebase.com/storage-networks/sia

	I Introduction
	II Preliminaries
	II-A Definitions and Notations
	II-B Trace Repair Method

	III Designing Compact Repair Groups for Reed-Solomon Codes
	III-A The Problem Description
	III-B The General Strategy
	III-C Compact Repair Groups from a Single Seed
	III-D Compact Repair Groups from Multiple Seeds

	References

