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Abstract—We consider fairness scheduling in a user-centric
cell-free massive MIMO network, where L remote radio units,
each with M antennas, serve K « LM user equipments (UEs).
Recent results show that the maximum network sum throughput
is achieved where Kact «

LM
2

UEs are simultaneously active in
any given time-frequency slots. However, the number of users K
in the network is usually much larger. This requires that users
are scheduled over the time-frequency resource and achieve a
certain throughput rate as an average over the slots. We impose
throughput fairness among UEs with a scheduling approach
aiming to maximize a concave component-wise non-decreasing
network utility function of the per-user throughput rates. In
cell-free user-centric networks, the pilot and cluster assignment
is usually done for a given set of active users. Combined with
fairness scheduling, this requires pilot and cluster reassignment
at each scheduling slot, involving an enormous overhead of
control signaling exchange between network entities. We propose
a fixed pilot and cluster assignment scheme (independent of the
scheduling decisions), which outperforms the baseline method
in terms of UE throughput, while requiring much less control
information exchange between network entities.

Index Terms—User-Centric Clustering, Cell-Free Massive
MIMO, Fairness Scheduling, Pilot Allocation.

I. INTRODUCTION

Cell-free massive MIMO is a form of distributed massive
MIMO that has attracted a great deal of interest in industry and
research in recent years in order to serve a large number of user
equipments (UEs) in dense beyond 5G networks. It is based on
multiuser/massive MIMO [1]–[3], where the LM access point
antennas are distributed across the network area on L remote
radio units (RUs), each equipped with M antennas. A research
direction towards a practical cell-free network considers a
user-centric scalable system [4], [5], where user-centric clus-
ters of RUs serve each UE k P rKs.1 Due to the distribution
of RUs across the network area, cell-free massive MIMO is
expected to serve all UEs with approximately the same quality
of service. Unfortunately, this is not easy to achieve, even
with efforts to make the network more fair [6]. While early
works on cell-free massive MIMO assumed L ą K [4, Ch. 2]
leading to overall large UE data rates, recent works considered
the more realistic UE density regime K ą L, where K is
comparable to ML (i.e., in the same order of magnitude)
taking into account multi-antenna RUs. This regime yields
a relatively unfair distribution of the UE data rates [6], [7].

1The set of integers from 1 to N is denoted by rNs.

For cell-free massive MIMO, very high-density scenarios are
envisaged (e.g., see the real-world deployment in [8]). Since
the total number of UEs K may be on the order of tens of
thousands, it is clear that spatial multiplexing alone cannot
support all UEs at the same time. Hence, for K significantly
larger than ML, users must be scheduled in the time/frequency
domain on different slots, such that on each “resource block”
(RB), i.e., the slots defining the time-frequency granularity of
the scheduler, only a number Kact of “active” users is served
using spatial multiplexing. In particular, recent results [9] have
shown that for typical network layouts and operating condi-
tions the network total spectral efficiency (SE) is maximum
when Kact «

LM
2 , and such maximum is quite “flat”, i.e.,

quite insensitive with respect to the exact value of Kact.
To give an idea, consider a network with 100 RBs per time

slot serving K “ 10000 users with L “ 20 RUs and M “ 16.
Each user is allocated a block of F “ 10 RBs in frequency
to achieve a certain level of frequency diversity. Hence, a
scheduler must choose on every RB a set of Kact « 160 users
out of 1000 users per RB. Therefore, the relevant performance
metric is the per-user throughput rate, i.e., the rate averaged
over a long sequence of slots. Since the number of active users
is much less than K, it is important to operate the network such
that each user obtains a “fair share” of the total throughput
rate. Hence, the scheduler must be designed to achieve some
desired form of fairness of the per-user throughput distribution.
Finally, also as a consequence of this setting, we notice that the
familiar ergodic rate used as performance metric in most stan-
dard literature on cell-free networks (e.g., see [4]–[7]) is not
relevant any longer. In fact, the scheduler must allocate an “in-
stantaneous” rate on each RB (or block of F RBs) and decod-
ing is performed block by block, such that averaging over a vir-
tually infinite sequence of fading states is no longer possible.
In this case, the instantaneous rate must be scheduled accord-
ing to the notion of information outage rate (e.g., see [10]).

A. Related Literature

Scheduling in cell-free massive MIMO has been considered
in relatively few works [9], [11]–[13] in comparison with
the very large number of papers considering the ergodic rate
of a fixed set of “always active” users (see, e.g., [4] and
references therein). We build on the system proposed in [9],
which considers K ą Kact UEs, and sets Kact as the number
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of active users that (approximately) maximizes the network
total SE. Using the dynamic scheduling framework of [14],
hard and proportional fairness scheduling (resp., HFS and
PFS) are addressed. A system design challenge with a high
UE density consists of the assignment of uplink (UL) pilots
for channel estimation and the user-centric cluster formation
[4], [7]. This problem is exacerbated in the presence of
dynamic scheduling, since the set of active user changes at
every scheduling decision (time slot). In [9], this challenge
is addressed by performing the pilot and cluster assignment
at each scheduling decision, i.e., after selecting the set of
Kact ă K active UEs. In fact, users sharing the same pilot
and located in proximity of each other may suffer from severe
pilot contamination. Nevertheless, pilot contamination comes
only from active users, the identity of which is not known
prior the scheduling decision on the current slot. In practice,
performing these operations at each slot comes at the cost of
a large communication overhead between UEs and RUs.

B. Contributions

We propose a less communication-intensive pilot and clus-
ter assignment scheme with pilots and clusters permanently
assigned to the K UEs. For those co-pilot users that may
cause severe mutual pilot contamination, we construct a con-
flict graph that prohibits these UEs from being scheduled
on the same RB. The proposed method requires far less
communication and it is much better suited for a practical
implementation, compared to the per-slot reassignment scheme
in [9]. Interestingly, our simulations show that it can also
achieve a (slightly) larger throughput rate, due to the avoidance
of strong co-pilot interference expressed by the conflict graph.

Furthermore, as anticipated before, we use information
outage rates for the instantaneous rate scheduling, reflecting
the fact that channel coding is performed on a block by block
basis on a finite number of RBs. In particular, our numerical
results show the benefit of a moderate frequency diversity
order of F ą 1 RBs. As F increases, the instantaneous mutual
information distribution “concentrates” and behaves in a more
deterministic way, allowing a more aggressive instantaneous
rate allocation on the active slots.2

II. SYSTEM DESCRIPTION

We consider a cell-free massive MIMO network as in [9]
in TDD operation mode with L RUs, each equipped with M
antennas, and K single-antenna UEs. Both RUs and UEs are
distributed on a squared region on the 2-dimensional plane.
We let Hpt, fq P CLMˆK denote the channel matrix between
all the K UE antennas and all the LM RU antennas on a given
RB f in time slot t, formed by M ˆ 1 blocks h`,kpt, fq in
correspondence of the M antennas of RU ` and UE k. Letting
Aptq Ď rKs denote the set of active users scheduled in slot

2We consider scheduling over time and allocate all F RBs to active users.
The allocation of RBs to different users in the same time slot to avoid conflicts
is beyond the scope of this work. The proposed conflict graph-based scheme
would be an approach to assign users to different RBs if it is done in a
sequential manner, e.g., RB by RB. The problem would then be very similar
to what is done in this paper.

t, the columns hkpt, fq of Hpt, fq corresponding to inactive
UEs k P rKs : k R Aptq contain the identically zero vector 0.

Let F denote the M ˆM unitary DFT matrix with pm,nq-
elements rFsm,n “

e´j
2π
M
mn

?
M

for m,n “ 0, 1, . . . ,M ´ 1,
and consider the angular support set S`,k Ď t0, . . . ,M ´ 1u
obtained according to the single ring local scattering model
[15], where S`,k contains the DFT quantized angles (multiples
of 2π{M ) falling inside an interval of length ∆ placed
symmetrically around the direction joining UE k and RU
`. Then, the channel between RU ` and the active UE k
with large-scale fading coefficient (LSFC) β`,k on RB f in
slot t is h`,kpt, fq “

b

β`,kM
|S`,k| F`,kν`,kpt, fq, where, using

a MATLAB-like notation, F`,k
∆
“ Fp:,S`,kq denotes the

tall unitary matrix obtained by selecting the columns of F
corresponding to the index set S`,k3, and ν`,kpt, fq is an
|S`,k|ˆ1 i.i.d. Gaussian vector with components „ CN p0, 1q.
Note that the LSFC, angular support and thus also F`,k are
independent of the RB and time indices, while ν`,kpt, fq has
different realizations on each RB f and in each slot t. As in
most cell-free massive MIMO literature (see [4]), we assume
that the LSFCs are known at the RUs.

In slot t and for all RBs f P rF s, each UE k is connected to
a cluster Ckptq Ď rLs of RUs and each RU ` has a set of asso-
ciated UEs U`ptq Ď rKs. The UE-RU association is described
by a bipartite graph Gptq with two classes of nodes (UEs and
RUs) such that the neighborhood of UE-node k is Ckptq and
the neighborhood of RU-node ` is U`ptq. The set of edges of
Gptq is denoted by Eptq, i.e., Gptq “ GprLs, rKs, Eptqq. We
assume OFDM modulation and that the channel in the time-
frequency domain follows the standard block-fading model
[3]–[5]. The channel vectors from UEs to RUs are random
but constant over coherence blocks of T signal dimensions in
the time-frequency domain, of which τp dimensions are used
for the finite-dimensional UL pilot signal, such that a fraction
1 ´

τp
T of dimensions per RB is used for data transmission.

We assume that one time-frequency slot, i.e., one realization
of t and f , corresponds to one channel coherence block.

A. Uplink Decoding with Partial Channel State Information

We consider partial channel state information obtained by
subspace projection channel estimation. Each RU ` computes
locally the channel estimates ph`,kpt, fq for UEs k P U`ptq
from the received orthogonal UL pilot signal, where perfect
subspace knowledge is assumed (see [7] for details).

Based on the channel estimates tph`,kpt, fq : k P U`ptqu,
RU ` locally computes a unique receiver combining vector
v`,kpt, fq for each associated UE k P U`, where a linear
MMSE principle is used. For k R U`ptq, we have v`,kpt, fq “
0. The cluster Ckptq combines the vectors tv`,kpt, fq : ` P

Ckptqu to form a receiver unit norm vector vkpt, fq P CLMˆ1

3Note that for uniform linear arrays (ULAs) and uniform planar arrays
(UPAs), as widely used in today’s massive MIMO implementations, the
channel covariance matrix is Toeplitz (for ULA) or Block-Toeplitz (for
UPA), and that large Toeplitz and block-Toeplitz matrices are approximately
diagonalized by DFTs on the columns and on the rows (see [15] for a precise
statement based on Szegö’s theorem).



for UE k, aiming to maximize the UL signal to Interference
plus noise ratio (SINR) (see [16] for details). Note that the
cluster combining uses weights to fuse the signals from the
RUs ` P Ckptq, which replace power control in the UL [4, Sec.
2.6]. It is further shown in [4, Sec. 7.3] that uniform UL power
allocation yields comparable results compared to common
power control schemes in cell-free networks. We focus on UL
results, since by duality, the UL and downlink data rates and
system performance are almost identical [5], [17], [18].

III. UPLINK DATA TRANSMISSION

Let all active UEs transmit with the same average energy
per symbol P ue, and we define the system parameter SNR ∆

“

P ue{N0, where N0 denotes the complex baseband noise power
spectral density. The received LM ˆ 1 symbol vector at the
LM RU antennas for a single channel use on RB f in slot t
of the UL is given by

ypt, fq “
?
SNR Hpt, fqspt, fq ` zpt, fq, (1)

where spt, fq P CKˆ1 is the vector of information symbols
transmitted by the UEs on RB f in slot t (zero-mean unit
variance and mutually independent random variables) and
zpt, fq is an i.i.d. noise vector with components „ CN p0, 1q.
The goal of cluster Ckptq is to produce an effective channel
observation for symbol skpt, fq, the k-th component of the
vector spt, fq, from the collectively received signal at the RUs
` P Ckptq. Using the receiver vector vkpt, fq, the correspond-
ing scalar combined observation for symbol skpt, fq is given
by ŝkpt, fq “ vkpt, fq

Hypt, fq. We let Hptq
a

“ Hpt, 1 : F q

and vkptq
a

“ vkpt, 1 : F q denote the realization of the channel
matrix and of the receiver vector for UE k in time slot t for
RBs f “ t1, . . . , F u, respectively. The instantaneous mutual
information Iptŝkpt, fq : f P r1 : F su; tskpt, fq : f P r1 :
F suq in slot t is a function of tvkptq,Hptqu and given by4

Ikpvkptq,Hptqq
a

“
1

F

F
ÿ

f“1

logp1` SINRkpt, fqq, (2)

where we define

SINRkpt, fq “
|vkpt, fq

Hhkpt, fq|
2

SNR´1
`
ř

j‰k |vkpt, fq
Hhjpt, fq|2

. (3)

A. Rate Allocation

Following [9], we consider outage rates as the effective data
rates, such that the receiver can reliably decode an allocated
rate under the condition that no information outage occurs
[19]. This condition holds if the allocated rate rk is smaller
than the mutual information Ikpvkptq,Hptqq. The effective
instantaneous service rate of UE k in time slot t (expressed
in bit per time-frequency channel use) is thus given by [10]

µkptq “

#

p1´
τp
T qRkptq, if k P Aptq,

0, if k R Aptq,
(4)

where, letting 1tSu be the indicator function of an event S,

Rkptq
a

“ rk ˆ 1trk ă Ikpvkptq,Hptqqu. (5)
4This is in the assumption that the channel state information is known at

the receiver and “Gaussian” single-user codebooks are used.

Notice that in the information outage regime, even if a
user is active (i.e., k P Aptq), it may still have zero rate,
depending on the condition trk ă Ikpvkptq,Hptqqu. In fact,
while the channel state information may be assumed known at
the receiver, it is definitely not known at the transmitter, such
that instantaneous slot-by-slot rate allocation is not possible.
Instead, rk must be chosen on the basis of the random variable
Ikpvkptq,Hptqq. In stationary conditions, the instantaneous
mutual information distribution is independent of the slot
time t. In practice, with moderate user mobility, this changes
slowly over time. In addition, it is very difficult to analytically
characterize such distribution since in general SINRkpt, fq in
(3) depends not only on the channel state, but also on the set of
active users. For the time being, we assume such distribution
to be known for each user k. Later in this section we present
an adaptive algorithmic solution for effective rate allocation.

The per-user throughput rate is defined as

µ̄k “ lim
tÑ8

1

t

t´1
ÿ

τ“0

µkpτq “ ErµkpHqs, (6)

where, with some abuse of notation, we denote by µkpHq the
random variable induced by the scheduling policy (i.e., the
selection of rk and the active set Aptq in (4) as a function
of the channel state H), and where the convergence of the
time average in (6) is guaranteed by the ergodicity of the
channel process (in our case, i.i.d. over the RBs) and the
stationarity of the scheduling policy in the class of dynamic
policies considered here [14].

Letting the complementary cumulative distribution func-
tion (CDF) of the instantaneous mutual information of user
k be Pkpzq

a

“ PpIkpvk,Hq ą zq, from (5) we have that
ErRkptqs “ rkPkprkq. Hence, the optimization of rk is
immediate and yields [10]

r˚k “ arg max
z

z ˆ Pkpzq. (7)

Since, as said before, the statistics of Ikpvkptq,Hptqq for a
UE k are generally extremely hard to obtain and depend on
the scheduling policy itself, here we consider the localized
adaptive scheme proposed in [9], where each user k collects a
sliding window of N past samples of the instantaneous mutual
information and optimizes its transmission rate rk using the
empirical complementary CDF based on these samples.5 In
the following, we let R̄k

a

“ r˚kPkpr
˚
k q, i.e., the maximum of

the objective function in the right-hand side of (7).

IV. SYSTEM OPTIMIZATION

We consider a network in the UL with a total number of
K UEs, which operates at its optimal load, when serving
Kact ă K UEs. Further, we assume an infinite backlog situa-
tion, where each UEs has an infinite buffer of data to transmit.

5As in [9], the allocated rates are initialized by a “start-up” phase consisting
of Ninit time slots. In each of the Ninit time slots Kact out of the K
UEs are, considering the conflict graph, randomly selected to be active. In
practice, a user joining the system would start with a very conservative rate
and progressively “ramp up” the value of rk until the maximum of the product
in (7) is achieved. Actual practical algorithms for rate scheduling work on
averaged local statistics along these lines, such that non-stationary (slowly
varying) statistics can be tracked.



By scheduling at most Kact UEs per time slot, the scheduler
wishes to maximize the network utility function, defined as
a suitable concave component-wise non-decreasing function
gp¨q of the user throughput rate vector µ̄ “ pµ̄1, . . . , µ̄Kq.
The problem to be solved is

maximize gpµ̄q, subject to µ̄ P R, (8)

where R is the system achievable throughput rate region [14].
Since R is not characterized easily, the solution µ̄‹ of (8)
is generally very hard to find analytically [10]. However, the
framework of [14] can be used to find a scheduling scheme
that approximates µ̄‹ within any desired accuracy.

Specifically, the scheduler solves at each scheduling slot t
the weighted sum rate maximization (WSRM) problem (with
respect to the active set Aptq)

max
ÿ

kPAptq

QkptqR̄k, (9)

where tQkptqu are the backlogs of “virtual queues” used as
weights in (9) with update rule

Qkpt` 1q “ maxtQkptq ´ µkptq, 0u `Akptq (10)

and tAkptqu is a set of “virtual arrival processes”. For each t,
we have Akptq “ ak, where a “ pa1, . . . , aKq is the solution
to the convex optimization problem

maximize
a

V gpaq ´
ř

kPrKsQkptqak

subject to 0 ď ak ď Amax, @k P rKs.
(11)

Here, V and Amax are suitably chosen constant parameters
that determine the behavior of the algorithm [14]. In particular,
it is known that for Amax sufficiently large the time-averaged
service rates generated by the algorithm (i.e., 1

t

řt
τ“1 µkpτq

for large t) approximate the optimal throughput rate point
solution of (8) within a gap Op1{V q, while the time-averaged
sum queue backlog grows as OpV q.6

A. Proportional Fairness and Hard Fairness Scheduling

We consider PFS and HFS, leading to different solutions
to the optimization problem (11). In case of PFS, we have
gpaq “

ř

kPrKs log ak in (11), which yields the arrivals [10]

ak “ min

"

V

Qkptq
, Amax

*

. (12)

For HFS, gpaq “ min
kPrKs

ak and the solution to (11) is [10]

ak “

#

Amax, if V ą
ř

kPrKsQkptq,

0, else.
(13)

V. ALGORITHMIC SOLUTIONS

We first describe an algorithmic solution proposed in [9]
including a reassignment of pilots and clusters at each schedul-
ing decision. Then we will describe our proposed scheme
with fixed pilot and cluster assignments, reducing greatly the

6The proof under the assumptions made in this paper differs from the perfor-
mance guarantees given in [10], [14] and will be published in a journal paper
on scheduling in cell-free massive MIMO. Further, in most literature, the time-
averaged queue backlog is referred to as “delay” but here since we are in the
infinite buffer regime and the queues are virtual, this quantity is rather an in-
dication of the time it takes for the algorithm to converge to a stationary state.

required communication between UEs and RUs. For both
schemes, Qp0q “ 0, and UEs with empty queues are not
scheduled, so in some slots the number of active UEs may be
smaller than Kact, in particular when HFS is employed.

A. Pilot and Cluster Reallocation Scheme

This scheme proposed in [9] carries out the UL pilot
allocation for channel estimation and cluster formation in each
time slot after selecting the set of active UEs. Having defined
Kact as the desired number of simultaneously active UEs, we
solve the WSRM (9) as

maximize
x

ř

kPrKsQkptqR̄kxk

subject to
ř

kPrKs xk ď Kact,

xk P t0, 1u,

(14)

where xk “ 1 if UE k P Aptq and 0 otherwise. The solution is
immediate and consists of sorting the users in decreasing order
of the product QkptqR̄k and letting Aptq the set of the top
Kact sorted users. Given the selected set Aptq, UL pilots and
user-centric clusters are assigned to the active UEs following
the semi-overloaded pilot assignment method from [20], where
an RU may assign the same pilot sequence to multiple UEs
provided that the channel subspaces of the UEs are nearly
mutually orthogonal, such that accurate channel estimation
is possible (negligible mutual pilot contamination, using the
decontamination method of [7]). An RU-UE association can
only be established, when the SNR association threshold
criterion β`,k ě

η
MSNR is fulfilled, where η is an association

threshold parameter.

B. Fixed Pilots and Clusters

In this case, we first define a conflict graph C “ prKs, ECq
with a vertex set corresponding to all K UEs in the network
and an edge set EC accounting for the conflicts. Letting pk
denote the UL pilot index of UE k, we define that a UE-pair
pk, k1q has a scheduling conflict if
1) the UEs are associated to at least one common RU, i.e.,

Ck,k1
a

“ Ck X Ck1 ‰ H, and
2) the UEs are assigned the same UL pilot, i.e., pk “ pk1 , and
3) the subspaces of the UEs overlap with regard to at least

one RU ` P Ck,k1 , i.e.,
ř

`PCk,k1
|S`,k X S`,k1 | ą 0, where

| ¨ | denotes the cardinality of a set.
The graph C has an edge between the vertex k and vertex k1

for all UE-pairs pk, k1q in conflict, with the meaning that any
UE-pair pk, k1q P EC is not allowed to be scheduled in the same
time slot, since they would interfere in the channel estimation
process. Based on this conflict definition, we propose the
following pilot assignment and cluster formation scheme.
1) When a UE k joins the system, it connects to a maximum of

Q RUs with the largest LSFCs, provided that β`,k ě η
MSNR ,

forming the set Ck.7

2) For each UL pilot index τ piq “ rτps the RUs ` P Ck count
the number of associated UEs k1 ‰ k : k1 P U` with a

7In a practical system, UEs join and leave the network, such that each
UE could be assigned a pilot and an RU cluster according to the proposed
scheme. In our simulations, we carry out the proposed scheme for each UE
in the order of their index.
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Fig. 1. User throughput for HFS (left) and PFS (right), where “Baseline”
accounts for the reassignment scheme from [9].

non-orthogonal subspace. The set of potentially conflicting
UEs with pilot τ piq regarding UE k is given by Ckpτ

piqq “
 
Ť

`PCk C`,kpτ
piqq

(

, where

C`,kpτ
piqq “ tk1 P U` : 1tpk1 “ τ piqu X 1t|S`,k X S`,k1 | ą 0u

(

,

and where Ckpτ
piqq contains each possible UE only once.

Here, perfect subspace knowledge at RU ` for associated
UEs k P U` is assumed. Schemes for channel subspace
and covariance matrix estimation, respectively, in cell-free
massive MIMO are presented in [7], [21].

3) The pilot corresponding to the smallest number of con-
flicting UEs, i.e., τ pi

‹
q “ arg min

i
|Ckpτ

piqq|, is assigned to

UE k. If more than one pilot corresponds to the smallest
number of conflicting UEs, an arbitrary choice of these
pilots is made.

The fixed pilot and cluster assignment to all K UEs in the
network is carried out independently of scheduling decisions.
The resulting WSRM problem (9), subject to the conflict
graph, is given by the linear integer program

maximize
x

ř

kPrKsQkptqR̄kxk

subject to
ř

kPrKs xk ď Kact,

xk P t0, 1u,
xk ` xk1 ď 1, @pk, k1q P EC,

(15)

which can be efficiently solved with standard tools (e.g.,
Gurobi or MATLAB) even for fairly large systems.

VI. NUMERICAL EVALUATIONS AND OUTLOOK

We consider a system like in [9], i.e., a squared network
area of A “ 50 ˆ 50m2 with a torus topology to avoid
boundary effects, containing L “ 12 RUs, each with M “ 8
antennas, and K “ 100 UEs. We assume a bandwidth of
W “ 10 MHz and noise with power spectral density of
N0 “ ´174 dBm/Hz. We let the angular interval of length
∆ “ π{8, the SNR threshold η “ 1 and the maximum
cluster size Q “ 10 (RUs serving one UE) in the simulations.
We define P ue such that β̄MSNR “ 1 (i.e., 0 dB), when
the expected pathloss β̄ with respect to LOS and NLOS is
calculated for distance 3dL, where dL “

b

A
πL is the radius

of a disk of area equal to A{L. This leads to a certain level
of overlap of the RUs’ coverage areas considering the SNR
association threshold. The UEs are randomly dropped in the
network area, while the RUs are placed on 3ˆ 4 rectangular
grid. The online rate adaptation is carried out for all schemes
with Ninit “ 500 and N “ 100, and we consider RBs of
dimension T “ 200 symbols. Since we consider a network like
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Fig. 2. The empirical CDF of Ikpvk,Hq of an example UE k (left) and the
user throughput (right) with F “ t1, 8u in a network employing PFS.

in [9], we choose τp “ 20 and Kact “ 40, the approximate
optimal parameters according to the results in [9]. We simulate
5 different setups (random placement of UEs) that are equal
for all investigated approaches. The algorithm parameters are
chosen as Amax “ 100 and V “ 10000. We refer the reader
to [9], [10] for an evaluation of different values of V .

A. Fixed Pilots and Clusters vs. Reassignment Scheme

Considering a narrowband system with F “ 1 RB, Fig. 1
shows that the proposed method with fixed pilot and cluster
allocations (slightly) outperforms the reassignment scheme.
The proposed method has the advantage that each UE k is
connected to all (at most Q) RUs with the largest LSFCs.
Severe pilot contamination is then prevented by the conflict
graph. In contrast, a scheduled UE k using the reassignment
scheme might end up being connected to only a fraction of
possible serving RUs. This can happen since conflicts are
avoided by not associating a UE k to a possible RU ` if that
RU already serves another UE k1 with the same pilot and a
non-orthogonal channel subspace, i.e., |S`,k X S`,k1 | ą 0. In
this way however, severe interference is not prevented.

B. PFS in a Wideband System

We compare the performance of a wideband system with
F “ 8 RBs to the narrowband system with F “ 1 using the
proposed pilot and cluster allocation method. Fig. 2 shows that
because of coding over F “ 8 RBs in (2), the empirical CDF
of the instantaneous mutual information behaves in a more
deterministic way. This allows a more aggressive instantaneous
rate allocation in the active slots. As a result, see Fig. 2,
the user throughput rate in a system with F “ 8 can be
significantly increased compared to F “ 1.

C. Concluding Remarks

In this work, we considered a user-centric cell-free massive
MIMO network with a total number of users in its area that is
much larger than the optimal user load. We proposed a fixed
pilot and cluster assignment scheme under scheduling, which
greatly reduces the communication overhead between UEs and
RUs, while also achieving better performance compared to
the scheme in [9]. We further showed that when coding over
several RBs in a wideband system, the mutual information can
be predicted more accurately, yielding a smaller probability
of information outage. This in turn leads to a larger UE
throughput compared to the narrowband system with one RB.
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