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Abstract—Pre-transformation with an upper-triangular matrix
(including cyclic redundancy check (CRC), parity-check (PC)
and polarization-adjusted convolutional (PAC) codes) improves
the weight spectrum of Reed-Muller (RM) codes and polar
codes significantly. However, a theoretical analysis to quantify
the improvement is missing. In this paper, we provide asymptotic
analysis on the number of low-weight codewords of the original
and pre-transformed RM codes respectively, and prove that pre-
transformation significantly reduces low-weight codewords, even
in the order sense. For polar codes, we prove that the average
number of minimum-weight codewords does not increase after
pre-transformation. Both results confirm the advantages of pre-
transformation.

I. INTRODUCTION

Polar codes [1], invented by Arıkan, are a great break-

through in coding theory. As code length approaches infinity,

the synthesized channels become either noiseless or pure-

noise. Channel polarization occurs under successive cancel-

lation (SC) decoding, which has a low complexity. However,

the performance of polar codes under SC decoding is poor at

short to moderate block lengths.

To boost finited-length performance, a successive cancella-

tion list (SCL) decoding algorithm was proposed [2]. As list

size L increases, the performance of SCL decoding approaches

that of maximum-likehood (ML) decoding. But the ML perfor-

mance of polar codes is still inferior due to low minimum dis-

tance. Consequently, concatenation of polar codes with CRC

[3] and PC [4] were proposed to improve weight spectrum.

In Arıkan’s PAC codes [5], convolutional precoding and RM

rate-profiling were applied to approach binary input additive

white Gaussian noise (BIAWGN) dispersion bound [6] under

large list decoding [7].

CRC-Aided (CA) polar, PC-polar, and PAC codes can be

viewed as pre-transformed polar codes with upper-triangular

transformation matrices [8]. In polar codes, frozen bits are all

zeros, while in pre-transformed polar codes, traditional frozen

bits are replaced by dynamically frozen bits [9], whose value

depends on previous bits. It is proved that any upper-triangular

pre-transformation does not reduce minimum distance [8]. In

[10], efficient recursive formulas were proposed to calculate

the average weight spectrum of pre-transformed polar codes

with polynomial complexity rather than exponential complex-

ity.

In this paper, we simplify the recursive formulas in [10]

through the monomial representation of row vectors. From

[8] [10], low-weight codewords are induced by low-weight

row vectors. We further prove that, low-weight codewords are

mainly induced by a small fraction of low-weight row vectors.

Based on this discovery, we provide asymptotic analysis

on the number of low-weight codewords of pre-transformed

codes, and quantitatively analyze the improvement of weight

spectrum.

This paper is organized as follows. In section II, we review

polar codes and pre-transformed polar codes. In section III,

we analyze the number of low-weight codewords of the origi-

nal and pre-transformed RM codes respectively. Asymptotic

analysis shows that low-weight codewords reduce signifi-

cantly after pre-transformation. For polar codes, we prove

that the average number of minimum-weight codewords does

not increase after pre-transformation, as long as the code is

decreasing [11]. Finally we draw some conclusions in section

IV.

II. BACKGROUND

A. Polar Codes as Monomial Codes

Let F =

(

1 0
1 1

)

, N = 2m, and FN = F⊗m. Starting

from N binary-input discrete memoryless channels (B-DMC)

W , we obtain N synthetic channels W
(i)
N after polarization.

Polar codes can be constructed by selecting the indices of K
most reliable information sub-channels, i.e., K row vectors of

FN , as information set I. Density evolution (DE) algorithm

[12], Gaussian approximation (GA) algorithm [13] and the

channel-independent polarization weight (PW) construction

method [14] are efficient methods to find reliable sub-channels.

After determining the information set I, its complement set

is called the frozen set F . Let uN
1 = (u1, u2, . . . , uN) be the

bit sequence to be encoded. K bits are inserted into uI , and
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all zeros are filled into uF . Then the codeword cN1 is obtained

by cN1 = uN
1 FN .

Polar codes can also be expressed as monomial codes [11]

and the monomial set is denoted by

Mm
def
= {xam−1

m−1 · · ·xa0
0 |(am−1, . . . , a0) ∈ F

m
2 }.

From this point of view, each row vector of FN corresponds

to a monomial represented by m binary variables {xi}, 0 ≤
i ≤ m− 1. For instance, a monomial f = xir−1 · · ·xi0 , where

0 ≤ i0 < ... < ir−1 ≤ m − 1, the degree of f is r, denoted

by deg(f). Denote If = i, if the monomial f represents the

i-th row vector of FN .

To be specific, let (am−1, ..., a0) be the binary represen-

tation of N − i, i.e., N − i =
m−1
∑

j=0

2jaj , then the i-th row

vector of FN can be represented by monomial x
am−1

m−1 · · ·xa0
0 .

For example, the monomial representation of F8 is shown in

Fig. 1.

Fig. 1. The monomial representation of F8.

From now on, the i-th row vector of FN and the correspond-

ing monomial x
am−1

m−1 · · ·xa0
0 are used interchangeably because

they refer to the same thing.

B. Decreasing Monomial Codes

It was revealed in [11] and [15] that the reliability of

synthetic channels follows a partial order “�”. If f, g ∈ Mm,

g � f means g is universally more reliable than f . For

monomials of the same degree, partial order is defined as

xir−1 · · ·xi0 � xjr−1 · · ·xj0 ⇐⇒ is ≤ js, 0 ≤ s ≤ r − 1,

and for monomials of different degrees

g � f ⇐⇒ ∃f∗ | f, deg(f∗) = deg(g), and g � f∗.

Denote the monomial code with information set I by C(I),
C(I) is a decreasing monomial code if I satisfies partial order,

i.e.,

∀f ∈ I and g ∈ Mm, if g � f then g ∈ I.

For example, the information set of RM(m, r) consists of

monomials with degree no larger than r. By definition, RM

codes are decreasing monomial codes.

C. Pre-Transformed Polar Codes

T =











1 T12 · · · T1N

0 1 · · · T2N

...
...

. . .
...

0 0 · · · 1











.

Let GN = TFN be the generator matrix of pre-transformed

polar codes, where T is an upper triangular pre-transformation

matrix defined above. The codeword of the pre-transformed

polar codes is given by cN1 = uN
1 GN = uN

1 TFN . In PAC

codes, the pre-transformation matrix T is a Toeplitz matrix.

In [16], a deterministic algorithm for computing the weight

spectrum of any given pre-transformed polar code was pro-

posed. However, the computational complexity is still ex-

ponential. In [10], an efficient algorithm was proposed to

compute the average weight spectrum of pre-transformed

polar codes with polynomial complexity. The code ensemble

assumes that Tij , 1 ≤ i < j ≤ N are i.i.d. Bernoulli(12 )
r.v..

III. THE NUMBER OF LOW-WEIGHT CODEWORDS

In this section, we provide asymptotic analysis on the

number of low-weight codewords of the original and pre-

transformed RM codes respectively. We prove that, for de-

creasing polar codes, the average number of minimum-weight

codewords after pre-transformation is no larger than that of

the original codes.

A. Notations and definitions

In this paper, log x is the base-2 logarithm of x, ⌈x⌉ is the

ceiling function of x, and w(x) is the Hamming weight of x.

The entropy function h(x) = −x log x − (1 − x) log(1 − x),
0 < x < 1, and |S| is the cardinality of set S. To characterize

asymptotic results, we define the following notations1.

Let f
(i)
N be the i-th row vector of FN , and g

(i)
N be the i-

th row vector of GN . Information set I = {I1, I2, . . . , IK},

where I1 < ... < IK . The number of codewords with

Hamming weight d of polar/RM codes is denoted by N(d),
and the number of codewords with Hamming weight no

larger than d is denoted by A(d). The minimum distance is

denoted by dmin. The corresponding number of codewords

of pre-transformed codes with transformation matrix T is

denoted by N(d, T ) and A(d, T ), respectively. The average

number is denoted by E(N(d, T )) and E(A(d, T )), where

the expectation is with respect to random pre-transformation

matrix T , and we assume Tij , 1 ≤ i < j ≤ N are i.i.d.
Bernoulli(12 ) r.v..

1f(x) ≤ O(g(x)) (f(x) ≥ Ω(g(x))), if lim sup
x→∞

f(x)
g(x)

< +∞
(

lim inf
x→∞

f(x)
g(x)

> 0

)

, where g(x) > 0. f(x) = Θ(g(x)), if 0 <

lim inf
x→∞

|
f(x)
g(x)

| ≤ lim sup
x→∞

|
f(x)
g(x)

| < +∞, f(x) = o(g(x)), if

lim
x→∞

|
f(x)
g(x)

| = 0.



Let P (m, i, d)
def
= P

(

w
(

g
(i)
2m

)

= d
)

be the probability

that the i-th row vector of GN has Hamming weight d. By

[10, Lemma 2], P (m, i, d) = 0, if d < w(f
(i)
N ), i.e., pre-

transformation does not reduce the Hamming weight of row

vectors. According to [10, Lemma 1], the probability that the

codeword cN1 = uN
1 GN has Hamming weight d is equal to

P (m, Ij , d), as long as uIj is the first non-zero bit in uN
1 ,

thus we can combine the weight-d codewords induced by these

2K−j codewords in E(N(d, T )) whose first non-zero bit is

uIj . Let N(m, Ij , d)
def
= 2K−jP (m, Ij , d), according to [10,

eq.(7)],

E(N(d, T )) =
∑

1 ≤ j ≤ K

w(fIj
) ≤ d

2K−jP (m, Ij , d)

=
∑

1 ≤ j ≤ K

w(fIj
) ≤ d

N(m, Ij , d), (1)

where K − j is the number of information bits whose indices

are greater than Ij . As explained above, N(m, Ij , d) is the

number of weight-d codewords where uIj is the first non-

zero bit in the encoded bit sequence uN
1 . We call N(m, Ij , d)

the number of weight-d codewords induced by the Ij -th row

vector. From (1), all weight-d codewords are induced by

row vectors f
(i)
N with weight no larger than d. Therefore,

when analyzing the number of weight-d codewords in pre-

transformed codes, we only need to consider the row vectors

with weight no larger than d.

For convenience, we use P (m,xir−1 · · ·xi0 , d) and

N(m,xir−1 · · ·xi0 , d) instead of P (m, i, d) and N(m, i, d)
when xir−1 · · ·xi0 represents the i-th row vector of FN .

B. Low-weight codewords of RM codes

In this section, we analyze low-weight codewords with

Hamming weight within a constant multiple of minimum

distance. We provide asymptotic analysis on the number of

codewords in RM(m, r) with Hamming weight no larger than

2m−r+k, where k is a non-negative integer. The proof idea of

Theorem 1 follows from [17] and [18].

Theorem 1. Assume 0 < α1 < r
m

< α2 < 1, where α1, α2

are constants,

Ω(mk+1) ≤ logA
(

2m−r+k
)

≤ O(mk+2). (2)

Proof. The proof is in Appendix A.

Remark 1. When k = 0, logA(2m−r) = Θ(m2) [11] reaches

the upper bound of (2), and when k = 1, logA
(

2m−r+1
)

=
Θ(m2) [19] reaches the lower bound of (2) .

C. Minimum-weight codewords of pre-transformed RM codes

According to (1), the average number of minimum-weight

codewords of pre-transformed RM(m, r) is

E
(

N(2m−r, T )
)

=
∑

0≤i0<...<ir−1≤m−1

N(m,xir−1 · · ·xi0 , 2
m−r). (3)

Thus we first analyze the number of minimum-weight code-

words induced by xir−1 · · ·xi0 .

Lemma 1. In RM(m, r), the number of information bits whose

indices are greater than Ixir−1
···xi0

is
r−1
∑

s=0

s+1
∑

t=0

(

is
t

)

, and

logP (m,xir−1 · · ·xi0 , 2
m−r) =

r−1
∑

s=0

(

2is−s − 2is
)

. (4)

Thus logN(m,xir−1 · · ·xi0 , 2
m−r) =

r−1
∑

s=0

(

2is−s − 2is +

s+1
∑

t=0

(

is
t

)

)

. (5)

Proof. We prove Lemma 1 via induction on m, the proof is

in Appendix B.

Remark 2. In Lemma 1, we simplify the recursive for-

mulas in [10, Theorem 1] through the monomial represen-

tation of the i-th row vector of FN , this simplified form

is convenient for the further theoretical analysis. As seen,

P (m,xir−1 · · ·xi0 , 2
m−r) holds for all sub-channel selections,

thus (4) will also apply to polar codes.

Based on Lemma 1, we provide asymptotic analysis on

N(m,xir−1 · · ·xi0 , 2
m−r) as well as E(N(2m−r, T )).

Theorem 2.

logN(m,xir−1 · · ·xi0 , 2
m−r) ≤



















0 ir−1 ≥ r + 3, and

r sufficiently large;

2r + 3 ir−1 = r + 2;

3r ir−1 ≤ r + 1.

(6)

Assume m− r ≥ 2, r
m

> γ, where γ > 0 is a constant, then

3r ≤ logE
(

N(2m−r, T )
)

≤ 3r +O(log r). (7)

Proof. The proof is in Appendix C. We briefly introduce the

proof outline below.

Firstly, we prove (6) by Step 1-2.

Step 1, to further calculate (5), let

N (is, s) = 2is−s − 2is +

s+1
∑

t=0

(

is
t

)

= 2is−s −
is−s−2
∑

t=0

(

is
t

)

, (8)

we prove N (is, s) ≤ 0 if s ≥ 1, is − s ≥ 3. We analyze

N (is, s) according to the value of s, the proof is mainly based

on the estimation of combinatorial number.

Step 2, since logN(m,xir−1 · · ·xi0 , 2
m−r) =

r−1
∑

s=0
N (is, s),

based on Step 1, we analyze logN(m,xir−1 · · ·xi0 , 2
m−r)

with respect to ir−1, the proof details can be found in

Appendix C.

Next, we prove (7) by Step 3.



Step 3, we divide the sum terms in (3) into three parts

according to ir−1:
∑

ir−1≥r+3

N(m,xir−1 · · ·xi0 , 2
m−r),

∑

ir−1=r+2

N(m,xir−1 · · ·xi0 , 2
m−r) and

∑

ir−1≤r+1

N(m,xir−1 · · ·xi0 , 2
m−r). From Step 2, the first

term converges to zero, and the second term is negligible

compared to the third term. Thus the minimum-weight code-

words are mainly induced by N(m,xir−1 · · ·xi0 , 2
m−r) with

ir−1 ≤ r + 1, so

E(N(2m−r, T )) ≈
∑

ir−1≤r+1

N(m,xir−1 · · ·xi0 , 2
m−r)

≤|{xir−1 · · ·xi0 , ir−1 ≤ r + 1}|23r =
(

r + 2
2

)

23r. (9)

Remark 3. Since we can not efficiently calculate the weight

spectrum of specific pre-transformed codes, we analyze the

average weight spectrum of the code ensemble defined by the

random pre-transformation matrix.

The results on the average weight spectrum are significant

in two aspects. On the one hand, there exist good codes with

minimum-weight codewords no larger than the average. On the

other hand, numerical results confirm that, the actual number

of minimum-weight codewords is usually very close to the

average, i.e., has small variance. In practice, this means that

most random pre-transformation matrices are good.

Remark 4. The

(

r + 2
2

)

monomials xir−1 · · ·xi0 with

ir−1 ≤ r + 1 induce the majority of miminum-weight

codewords of pre-transformed RM codes, which is a tiny

part of

(

m
r

)

monomials with degree r. It implies that in

pre-transformed polar codes, the minimum-weight codewords

are mainly induced by a small fraction of monomials. For

example, in RM(9, 2), the 498-th row vector x4x3x2 satisfies

ir−1 ≤ r + 1, its corresponding binary representation is

(0, 0, 0, 0, 1, 1, 1, 0, 0). Monomials xir−1 · · ·xi0 with ir−1 ≤
r + 1 share similar characteristics: they are at the bottom of

FN and have high reliability among monomials with degree

r.

In Fig. 2, we display the number of minimum-weight

codewords in RM codes and pre-transformed RM codes on the

logarithm domain. The example has code rate R = 0.5, and

the average number of minimum-weight codewords is approx-

imately 23r in the order sense. In contrast, the number before

pre-transformation is 2Θ(m2). In other words, the logarithm

scaling of minimum-weight codewords drops from quadratic

growth to linear growth after pre-transformation. The result

proves that pre-transformation can reduce minimum-weight

codewords significantly, even in the order sense. This also

partly explains the gain of PAC codes (a special case of pre-

transformed RM codes) over RM codes.
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Fig. 2. Logarithm scaling of the number of minimum-weight codewords in
RM codes and pre-transformed RM codes.

D. Low-weight codewords of pre-transformed RM codes

In this section, we analyze low-weight codewords with

Hamming weight within a constant multiple of minimum

distance. We provide asymptotic analysis on the number

of codewords in per-transformed RM(m, r) with Hamming

weight no larger than 2m−r+k, where k is a positive integer.

According to (1), we only need to consider row vectors with

weight no larger than 2m−r+k, or equivalently, monomials

with degree at least r − k. For monomials with degree r − q,

where 0 ≤ q < k, their corresponding row vectors have weight

2m−r+q < 2m−r+k, thus they induce codewords with weight

from 2m−r+q to 2m−r+k. Let

A(m,xir−q−1 · · ·xi0 , 2
m−r−k)

=

2m−r+k

∑

d′=2m−r+q

N(m,xir−q−1 · · ·xi0 , d
′), (10)

A(m,xir−q−1 · · ·xi0 , 2
m−r−k) is the number of codewords

induced by xir−q−1 · · ·xi0 with weight no larger than 2m−r+k.

For monomials with degree r − k, their corresponding row

vectors have weight exactly 2m−r+k, thus we only need to

consider the number of weight-2m−r+k codewords induced

by xir−k−1
· · ·xi0 . Therefore, we have

E(A(2m−r+k, T ))

=
k−1
∑

q=0

∑

0≤i0<...<ir−q−1≤m−1

A(m,xir−q−1 · · ·xi0 , 2
m−r+k)

+
∑

0≤i0<...<ir−k−1≤m−1

N(m,xir−k−1
· · ·xi0 , 2

m−r+k).

(11)

Next, we analyze N(m,xir−k−1
· · ·xi0 , 2

m−r+k) and

A(m,xir−q−1 · · ·xi0 , 2
m−r+k), where 0 ≤ q < k, and then

provide asymptotic analysis on E(A(2m−r+k, T )).

Theorem 3. Let k be a positive integer,

logN(m,xir−k−1
· · ·xi0 , 2

m−r+k) ≤





















0 ir−k−1 ≥ r + 3, and

r sufficiently large;

(2k+2 − 2)r +O(1) ir−k−1 = r + 2;

(2k+2 − 1)r ir−k−1 ≤ r + 1.

(12)

Assume m− r ≥ 2, r
m

> γ, where γ > 0 is a constant.

Let 0 ≤ q < k,

logA(m,xir−q−1 · · ·xi0 , 2
m−r+k) ≤











0 ir−q−1 ≥ r + 3, and

r sufficiently large;

(2k+2 − 1)r + log r +O(1) ir−q−1 ≤ r + 2.

(13)

Therefore, we have

(2k+2 − 1)(r − k) ≤ logE
(

A(2m−r+k, T )
)

≤ (2k+2 − 1)r +O(log r). (14)

Proof. The proof is in Appendix D. The method is similar

to that in Theorem 2, but due to the sum terms in the

recursive formula [10, Theorem 2], the analysis is more

complicated. In particular, we derive the upper bound on

A(m,xir−q−1 · · ·xi0 , 2
m−r+k) when ir−q−1 ≤ r + 2 through

induction.

In Fig. 3, we display the number of codewords with

Hamming weight 2dmin in RM codes and pre-transformed

RM codes on the logarithm domain. The example has code

rate R = 0.5, and the average number of codewords is

approximately 2(2
k+2−1)r in the order sense. Similarly, the log-

arithm scaling of the weight-2dmin codewords grows linearly

with m under pre-transformation, as opposed to quadratically

without pre-transformation. Our approximation is accurate

asymptotically, and there is a gap between the true number

and approximation when m is small. Note that calculating

the accurate number of weight-2dmin codewords becomes

intractable when m is large.
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Fig. 3. Logarithm scaling of the number of codewords with Hamming weight
2dmin in RM codes and pre-transformed RM codes.

E. Minimum-weight codewords of pre-transformed polar

codes

In this section, we extend our analysis from RM codes to

polar codes. We prove that the average number of minimum-

weight codewords of pre-transformed polar codes does not

increase after pre-transformation. Unlike RM codes, polar

codes do not have a universal sub-channel selection rule.

Therefore, their corresponding asymptotic results cannot be

obtained as in RM codes. Fortunately, the conclusions in this

section are non-asymptotic and apply to arbitrary code lengths.

Let C(I) be a decreasing polar code, define

r = min{r | C(I) ⊆ RM(m, r)}, (15)

i.e., the largest degree of monomials in I is r and the minimum

distance is 2m−r. According to [11, Proposition 7], the number

of minimum-weight codewords of C(I) is

N(2m−r) =
∑

xi
r−1

···xi0∈I

2

r−1
∑

s=0

is−s+1

. (16)

Similarly, we call 2

r−1
∑

s=0

is−s+1

the number of minimum-weight

codewords induced by xir−1
· · ·xi0 in original polar codes.

Let i∗ be the smallest index in information bits which can be

represented by a monomial with degree r, i.e.

i∗ = min{Ixi
r−1

···xi0
|xir−1

· · ·xi0 ∈ I}. (17)

Next, we prove that pre-transformation does not increase the

average number of minimum-weight codewords.

Theorem 4. If C(I) is a decreasing polar code, r, i∗ are

defined in (15), (17), we have

E(N(2m−r, T )) ≤ N(2m−r). (18)

Let the monomial representation of the i∗-th row vector be

xi∗
r−1

· · ·xi∗
0
. If r ≤ 1, (18) must hold as an equality.

If r > 1, (18) holds as an equality if and only if the following

two conditions satisfy:

(∗) i∗r−1 ≤ r + 1.

(∗∗) If If > i∗ and deg(f) ≤ r, then f ∈ I.

Proof. The proof is in Appendix E. In fact, the number of

minimum-weight codewords induced by every xir−1
· · ·xi0 ∈

I decreases after pre-transformation.

Remark 5. In fact, the number of minimum-weight code-

words induced by every xir−1
· · ·xi0 ∈ I decreases after

pre-transformation, but the amount of reduction differs. Ac-

cording to (16), the minimum-weight codewords in original

polar codes are mainly induced by xir−1
· · ·xi0 with large

∑r−1
s=0(is − s). Since is − s ≤ ir−1 − (r − 1), 0 ≤ s ≤

r − 1, these monomials also have large ir−1. As explained

in Theorem 2, these codewords are reduced due to pre-

transformation, which explains why pre-transformation can

improve the weight spectrum. Therefore, more xir−1
· · ·xi0

with large ir−1 as information bits results in more significant

improvement in the weight spectrum. The results prove that

pre-transformation can be beneficial for polar codes too.



IV. CONCLUSION

In this paper, we provide asymptotic analysis on the number

of low-weight codewords of the original and pre-transformed

RM codes respectively, and prove that pre-transformation can

reduce the low-weight codewords significantly. For decreas-

ing polar codes, we prove that pre-transformation does not

increase the average number of minimum-weight codewords.

The numerical results validate the theoretical analysis and

confirm the benefit of pre-transformation.
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APPENDIX A

Codewords in polar codes can be regarded as polynomials.

Let f, g be two codewords in RM(m, r), define d(f, g) be the

Hamming distance between f and g. Define poly(d) = {f ∈
RM(m, r) : ω(f) ≤ d}, i.e., polynomials in RM(m, r) with

weight no larger than d. Define the degree of a polynomial f to

be the maximal degree of monomials in f , denoted by deg(f).
Let f be a polynomial and y ∈ F

m
2 . Define the derivative of

f in direction y by

∆yf(x) = f(x+ y) + f(x), (19)

we have deg(∆yf) ≤ deg(f) − 1. For example, let m = 2,

f(x) = x0 + x0x1, y = (1, 0). Then

∆yf(x) = f(x+ y) + f(x)

=(x0 + 1) + (x0 + 1)x1 + x0 + x0x1 = x1 + 1. (20)

Here, deg(∆yf) = 1 = deg(f) − 1. Define the k-iterated

derivative of f in direction Y = (y1, . . . , yk) ∈ (Fm
2 )k by

∆Y f(x) = ∆y1∆y2 · · ·∆yk
f(x). (21)

Since deg(∆yf) ≤ deg(f)− 1, deg(∆Y f) ≤ deg(f)− k.

Let S ⊆ RM(m, r) be a subset of polynomials, we call a

subset of polynomials B is a δ-net for S if ∀f ∈ S, there

exists g ∈ B such that d(f, g) ≤ δ.

Lemma 2. [17, Corollary 3.1] Let t be an integer, define

Ar−k−1,t = {Maj(∆Y1f, . . . ,∆Yt
f) :

Y1, . . . , Yt ∈ (Fm
2 )

r−k−1
, f ∈ RM(m, r)},

where Maj is the majority function defined in [17].

Then Ar−k−1,t is a δ-net for poly(2m−r+k), where t =
⌈17 log(2m/δ)⌉.

Proof of Theorem 1. Denote h = m − r + k. To prove the

lower bound, assume g(x0, ..., xh−1) be an arbitrary polyno-

mial with degree k + 1. Define

f(x0, . . . , xm−1) = (g(x0, . . . , xh−1) + xh)xh+1 . . . xm−1.

It is clear that f ∈ RM(m, r) and w(f) = 2h. The number

of polynomials with h variables and degree k+1 is 2(
h

k+1) =
2Θ(mk+1), which implies the lower bound.

To prove the upper bound, let δ = 2m−r−2, define adj(f) =
{g ∈ Ar−k−1,t : d(f, g) ≤ δ}, where t = 17(r + 2).
By Lemma 2, Ar−k−1,t is a δ-net for poly(2h), thus ∀f ∈
poly(2h), adj(f) 6= ∅. Next, we prove for any two differernt

f1, f2 ∈ poly(2h), adj(f1)
⋂

adj(f2) = ∅, otherwise there

exist g ∈ Ar−k−1,t, such that d(f1, g) ≤ δ and d(f2, g) ≤ δ.

By triangle inequality, d(f1, f2) ≤ 2m−r−1 < dmin = 2m−r,

which is a contradiction. Notice that deg(∆Y f) ≤ k + 1,

∀ Y ∈ (Fm
2 )

r−k−1
, f ∈ RM(m, r), we have

A(2h) ≤
∑

f∈poly(2h)

| adj(f)| = |
⋃

f∈poly(2h)

adj(f)|

≤ |Ar−k−1,t| ≤ 2
t

k+1
∑

s=0

(

m
s

)

= 2Θ(mk+2). (22)

APPENDIX B

Proof of Lemma 1. We prove Lemma 1 via induction on m.

Firstly, if m = 1, Lemma 1 can be proved directly. For the

induction step m− 1 → m, we consider two cases according

to ir−1:

1) ir−1 = m− 1, i.e., xir−1 · · ·xi0 is in the top half of FN .

The number of information bits in the top half and whose

indices are greater than Ixir−1
···xi0

is equal to the number

of information bits whose indices are greater than Ixir−2
···xi0

in RM(m − 1, r − 1), which is
r−2
∑

s=0

s+1
∑

t=0

(

is
t

)

by inductive

hypothesis. The number of information bits in the lower half

is
r
∑

t=0

(

m− 1
t

)

=
r
∑

t=0

(

ir−1

t

)

, thus the total number of

information bits whose indices are greater than Ixir−1
···xi0

is

equal to
r−1
∑

s=0

s+1
∑

t=0

(

is
t

)

. According to [10, Theorem 1],

logP (m,xir−1 · · ·xi0 , 2
m−r)

= logP (m− 1, xir−2 · · ·xi0 , 2
m−r) + 2m−r − 2m−1

= logP (m− 1, xir−2 · · ·xi0 , 2
m−r) + 2ir−1−(r−1) − 2ir−1

=

r−1
∑

s=0

(

2is−s − 2is
)

. (23)

The last equality is due to inductive hypothesis.

2) ir−1 < m − 1, i.e., xir−1 · · ·xi0 is in the lower half of

FN . The number of information bits whose indices are greater

than Ixir−1
···xi0

is equal to the number of information bits

whose indices are greater than Ixir−1
···xi0

in RM(m − 1, r),

which is
r−1
∑

s=0

s+1
∑

t=0

(

is
t

)

by inductive hypothesis. According to

[10, Theorem 1],

logP (m,xir−1 · · ·xi0 , 2
m−r)

= logP (m− 1, xir−1 · · ·xi0 , 2
m−1−r)

=
r−1
∑

s=0

(

2is−s − 2is
)

.

The last equality is due to inductive hypothesis.

APPENDIX C

Proof of Theorem 2. Firstly, we analyze N (is, s) with respect

to s, in fact, if s ≥ 1, is−s ≥ 3, N (is, s) ≤ 0 for sufficiently

large is.

case 1: s = 0, N (i0, 0) = 1 + i0.

case 2: s = 1, N (i1, 1) = −2i1−1+1+ i1+

(

i1
2

)

, and we

have N (i1, 1) ≤ 0 if i1 ≥ 5.

case 3: 2 ≤ s ≤ ⌈ is
2 ⌉ − 2,

N (is, s) ≤ 2is−2 − 2is +

⌈ is
2 ⌉−1
∑

t=0

(

is
t

)

≤ −3

4
2is +

1

2
2is = −1

4
2is ≤ 0. (24)

case 4: ⌈ is
2 ⌉ − 2 ≤ s ≤ is − log(is + 16

√
2is),



N (is, s) = 2is−s −
is−s−2
∑

t=0

(

is
t

)

≤ 2is−s −
(

is
is − s− 2

)

(a)

≤ 2is−s − 2ish(
is−s−2

is
)

√
2is

(b)

≤ 2is−s − 22(is−s−2)

√
2is

=(1− 2is−s

16
√
2is

)2is−s ≤ (1− is + 16
√
2is

16
√
2is

)2is−s

≤− i
3
2
s

16
√
2
− is ≤ − i

3
2
s

16
√
2
≤ 0, (25)

where (a) is from [20, problem 5.8], (b) is due to is−s−2
is

≤ 1
2

when s ≥ ⌈ is
2 ⌉ − 2 and h(x) ≥ 2x, 0 < x ≤ 1

2 .

case 5: is − log(is + 16
√
2is) ≤ s ≤ is − 4,

N (is, s) ≤ is + 16
√
2is −

2
∑

t=0

(

is
t

)

= 16
√
2is − 1− is(is − 1)

2

(c)

≤ 0, (26)

(c) holds when is ≥ 14.

case 6: s = is − 3, N (is, is − 3) = 7 − is
(d)

≤ 0, (d) holds

when is ≥ 7.

case 7: is − 2 ≤ s ≤ is, N (is, s) ≤ 3.

We conclude that N (is, s) ≤ 0 if is ≥ 14, is − s ≥ 3,

s ≥ 1 from the discussion above. When is ≤ 13, s ≥ 1,

through compute search, we have N (is, s) ≤ 3. Therefore,

N (is, s) ≤ 3, if s ≥ 1. (27)

Next, we analyze logN(m,xir−1 · · ·xi0 , 2
m−r) =

r−1
∑

s=0
N (is, s) with respect tof ir−1.

1) ir−1 ≤ r + 1, we have is − s ≤ ir−1 − (r − 1) ≤ 2, by

case 7,

logN(m,xir−1 · · ·xi0 , 2
m−r) ≤ 3r. (28)

2) ir−1 = r + 2, we have i0 ≤ ir−1 − (r − 1) ≤ 3, thus

N (i0, 0) = 1 + i0 ≤ 4, by (27),

logN(m,xir−1 · · ·xi0 , 2
m−r)

=N (r + 2, r − 1) +

r−2
∑

s=1

N (is, s) +N (i0, 0)

≤7− (r + 2) + 3(r − 2) + 4

=2r + 3. (29)

3) ir−1 ≥ r+3, according to case 3-5, when r is sufficiently

large, we have

N (ir−1, r − 1) ≤ − i
3
2
r−1

16
√
2
≤ − r

3
2

16
√
2
. (30)

Since i0 ≤ i1 − 1,

N (i1, 1) +N (i0, 0) = −2i1−1 + 2 + i1 + i0 +

(

i1
2

)

≤− 2i1−1 + 1 + 2i1 +

(

i1
2

)

≤ 7, (31)

we prove the last inequality through computer search. Thus

logN(m,xir−1 · · ·xi0 , 2
m−r)

≤− r
3
2

16
√
2
+ 3(r − 3) + 7

(e)

≤ −r
3
2

32
≤ 0, (32)

(e) holds when r is sufficiently large. Thus (6) is proved from

(28) (29) (32).

Now we are ready to prove (7). On the one hand,

xr+1 · · ·x2 ∈ RM(m, r) when m− r ≥ 2, therefore

logE(N(2m−r, T )) ≥ logN(m,xr+1 · · ·x2, 2
m−r) = 3r.

(33)

On the other hand,
∑

ir−1≤r+1

N(m,xir−1 · · ·xi0 , 2
m−r)

≤ |{xir−1 · · ·xi0 , ir−1 ≤ r + 1}|23r =
(

r + 2
2

)

23r. (34)

∑

ir−1=r+2

N(m,xir−1 · · ·xi0 , 2
m−r) (35)

≤ |{xir−1 · · ·xi0 , ir−1 = r + 2}|22r+3 =

(

r + 2
3

)

22r+3.

∑

ir−1≥r+3

N(m,xir−1 · · ·xi0 , 2
m−r)

(f)

≤ |{{xir−1 · · ·xi0 , ir−1 ≥ r + 3}|2− r
3
2

32 ≤ 2m− r
3
2

32

≤ 2
r
γ
− r

3
2

32

(g)
< 1, (36)

where (f) holds if (32) holds, (g) holds if r ≥
(

32
γ

)2

. Divide

the sum terms in (3) into three parts according to ir−1, by

(34)-(36),

E(N(2m−r, T ))

≤
(

r + 2
2

)

23r +

(

r + 2
3

)

22r+3 + 1

=

(

r + 2
2

)

23r(1 + o(1)), (37)

logE(N(2m−r, T )) ≤ 3r + log

(

r + 2
2

)

+ o(1). (38)

Combine (33) and (38), we complete the proof of (7).

APPENDIX D

Proof outline:

Firstly, we prove (12) by Step 1-2, the proof of (12) is

similar to that of (6), and is omitted due to space limitation.

Step 1, let

Nk(is, s) = 2is−s − 2is +

s+k+1
∑

t=0

(

is
t

)

= 2is−s −
is−s−k−2
∑

t=0

(

is
t

)

, (39)



we prove Nk(is, s) ≤ 0 if s ≥ 1, is − s ≥ k + 3.

Step 2, similar to (5), we have

logN(m,xir−k−1
· · ·xi0 , 2

m−r+k) =

r−k−1
∑

s=0

Nk(is, s), (40)

and we analyze logN(m,xir−k−1
· · ·xi0 , 2

m−r+k) with re-

spect to ir−k−1.

Next, we prove (13) by Step 3-5.

Step 3, let

Nk,q(is, s)
def
=

max
2is−s≤d′≤2is−s+k−q

(2is − d′)(h(
2is−s+k−q − d′

2(2is − d′)
)− 1)

+

q+s+1
∑

t=0

(

is
t

)

+ is − s+ k − q, (41)

where s ≥ k − q + 1, by (45) and (46), we prove

logA(m,xir−q−1 · · ·xi0 , 2
m−r+k)

≤m+

k−q
∑

s=0

(

q+s+1
∑

t=0

(

is
t

)

+ is

)

+

r−q−1
∑

s=k−q+1

Nk,q(is, s) (42)

via induction on m.

Step 4, we prove Nk,s(is, s) ≤ 0 when is − s
is large. Therefore, if ir−q−1 ≥ r + 3, we have

logA(m,xir−q−1 · · ·xi0 , 2
m−r+k) ≤ 0.

The proof of Step 3-4 is omitted due to space limitation.

Step 5, when ir−q−1 ≤ r + 2, we prove

logA(m,xir−q−1 · · ·xi0 , 2
m−r+k)

≤(2k+2 − 1)r + log r +O(1)

via induction.

Finally, we prove (14) by Step 6.

Step 6, based on Step 4-5, we have

E(A(2m−r+k, T ))

≈
k−1
∑

q=0

∑

ir−q−1≤r+2

A(m,xir−q−1 · · ·xi0 , 2
m−r+k)

+
∑

ir−k−1≤r+2

N(m,xir−k−1
· · ·xi0 , 2

m−r+k). (43)

Combine (12) and (13), we complete the proof of (14).

Proof of Theorem 3. ∀ 0 ≤ q < k,

N(m,xir−q−1 · · ·xi0 , d) is the number of weight-d codewords

induced by xir−q−1 · · ·xi0 in RM(m, r), we have

logN(m,xir−q−1 · · ·xi0 , d)

= logP (m,xir−q−1 · · ·xi0 , d) +

r−q−1
∑

s=0

s+q+1
∑

t=0

(

is
t

)

. (44)

According to [10, Theorem 2], if ir−q−1 = m− 1,

N(m,xir−q−1 · · ·xi0 , d)

=

d
∑

d′ = 2m−r+q

d − d′is even

(

N(m− 1, xir−q−2 · · ·xi0 , d
′)∗

2

(

d′−
m−r−2
∑

t=0

(

m− 1
t

)

)

∗
(

2m−1 − d′

d−d′

2

)

)

. (45)

If ir−q−1 < m− 1,

N(m,xir−q−1 · · ·xi0 , d) = N(m− 1, xir−q−1 · · ·xi0 ,
d

2
).

(46)

We are going to prove logA(m,xir−q−1 · · ·xi0 , 2
m−r+k) ≤

(2k+2 − 1)r + log r +O(1) when ir−q−1 ≤ r + 2.

Let ir−q−1 = r − q − 1 + ℓ, where 0 ≤ ℓ ≤ q + 3, apply

(46) m− r + q − ℓ times repeatedly, we have

N(m,xir−q−1 · · ·xi0 , d)

=N(r − q + ℓ, xir−q−1 · · ·xi0 ,
d

2m−r+q−ℓ
), (47)

where 2m−r+q ≤ d ≤ 2m−r+k. (47) must be zero unless
d

2m−r+q−ℓ = 2ℓ+2v, where v is a non-negtive integer, therefore

N(m,xir−q−1 · · ·xi0 , d) =










N(r − q + ℓ, xir−q−1 · · ·xi0 , 2
ℓ + 2v)

d = (2ℓ + 2v)2m−r+q−ℓ, v ≥ 0;

0 otherwise.

(48)

Next, let C0 = 1, Cv = 2v−1, v ≥ 1, we are going to prove

that if ir−q−1 = r − q − 1 + ℓ, 0 ≤ ℓ ≤ q + 1,

N(r − q + ℓ, xir−q−1 · · ·xi0 , 2
ℓ + 2v)

≤Cv(r − q + ℓ)2(2
ℓ+2v)(r−q+ℓ) (49)

via induction on ℓ, v and r − q, the degree of the monomial

xir−q−1 · · ·xi0 .

When ℓ = 0, we prove (49) holds via induction on v and

r − q. When ℓ ≥ 1, in addition to induction on v and r − q,

we also use the inductive hypothesis that (49) holds from 0 to

ℓ− 1, ∀ v ≥ 0, r − q ≥ 0.

If v = 0, by (40),

logN(r − q + ℓ, xir−q−1 · · ·xi0 , 2
ℓ) =

r−q−1
∑

s=0

Nq(is, s)

=

r−q−1
∑

s=0

(

2is−s −
is−s−q−2
∑

t=0

(

is
t

)

)

≤ 2ℓ(r − q), (50)

where the last inequality is due to is − s ≤ ir−q−1 − (r− q−
1) = ℓ. Therefore,

N(r − q + ℓ, xir−q−1 · · ·xi0 , 2
ℓ) ≤ C0(r − q + ℓ)22

ℓ(r−q+ℓ).
(51)



For the induction step v − 1 → v, denote r − q = n for

convience, we complete the induction step via induction on n.

When n = 0, v ≥ 1, no codeword has Hamming weight

2ℓ + 2v which is larger than the code length 2ℓ, thus

N(ℓ,1, 2ℓ + 2v) = 0 ≤ Cvℓ2
(2ℓ+2v)ℓ, (52)

where 1 represents the monomial with degree 0.

For the induction step n− 1 → n, by (45),

N(n+ ℓ, xin−1 · · ·xi0 , 2
ℓ + 2v)

=

v
∑

µ=0

(

N(n− 1 + ℓ, xin−2 · · ·xi0 , 2
ℓ + 2µ)∗

2

(

2ℓ+2µ−

ℓ−q−2
∑

t=0

(

n− 1 + ℓ
t

)

)

∗
(

2n−1+ℓ − (2ℓ + 2µ)
v − µ

)

)

(53)

(h)

≤
v
∑

µ=0

(

N(n− 1 + ℓ, xin−2 · · ·xi0 , 2
ℓ + 2µ)∗

22
ℓ+2µ+(v−µ)(n+ℓ)

)

, (54)

where (h) is from

(

2n−1+ℓ − (2ℓ + 2µ)
v − µ

)

≤ 2(v−µ)(n+ℓ), and

ℓ−q−2
∑

t=0

(

n− 1 + ℓ
t

)

= 0 since ℓ ≤ q + 1.

If in−2 = n− 2 + ℓ, by inductive hypothesis on n− 1,

N(n− 1 + ℓ, xin−2 · · ·xi0 , 2
ℓ + 2µ)

≤Cµ(n− 1 + ℓ)2(2
ℓ+2µ)(n−1+ℓ). (55)

If in−2 = n−2+ℓ, ℓ < ℓ, apply (46) ℓ−ℓ times repeatedly,

N(n− 1 + ℓ, xin−2 · · ·xi0 , 2
ℓ + 2µ)

=N(n− 1 + ℓ, xin−2 · · ·xi0 , 2
ℓ + 2

µ

2ℓ−ℓ
). (56)

If µ

2ℓ−ℓ
is an integer, by inductive hypothesis on ℓ,

N(n− 1 + ℓ, xin−2 · · ·xi0 , 2
ℓ + 2

µ

2ℓ−ℓ
)

≤C µ

2ℓ−ℓ

(n− 1 + ℓ)2
(2ℓ+2 µ

2ℓ−ℓ
)(n−1+ℓ)

≤Cµ(n− 1 + ℓ)2(2
ℓ+2µ)(n−1+ℓ), (57)

otherwise

N(n− 1 + ℓ, xin−2 · · ·xi0 , 2
ℓ + 2

µ

2ℓ−ℓ
) = 0. (58)

Combine (55)-(58), we have

N(n− 1 + ℓ, xin−2 · · ·xi0 , 2
ℓ + 2µ)

≤Cµ(n− 1 + ℓ)2(2
ℓ+2µ)(n−1+ℓ). (59)

Continue the proof in (54), we have

N(n+ ℓ, xin−1 · · ·xi0 , 2
ℓ + 2v)

≤
v−1
∑

µ=0

Cµ(n− 1 + ℓ)2(2
ℓ+v+µ)(n+ℓ)

+ Cv(n− 1 + ℓ)2(2
ℓ+2v)(n+ℓ)

=

(

v−1
∑

µ=0

Cµ

n− 1 + ℓ

2(v−µ)(n+ℓ)
+ Cv(n− 1 + ℓ)

)

2(2
ℓ+2v)(n+ℓ)

≤
(

v−1
∑

µ=0

Cµ

n+ ℓ

2n+ℓ
+ Cv(n− 1 + ℓ)

)

2(2
ℓ+2v)(n+ℓ)

≤
(

v−1
∑

µ=0

Cµ + Cv(n− 1 + ℓ)

)

2(2
ℓ+2v)(n+ℓ)

=

(

1 +

v−1
∑

µ=1

2µ−1 + 2v−1(n− 1 + ℓ)

)

2(2
ℓ+2v)(n+ℓ)

=Cv(n+ ℓ)2(2
ℓ+2v)(n+ℓ), (60)

the induction step n − 1 → n holds, thus we complete the

proof of (49).

Therefore, when ir−q−1 = r − q − 1 + ℓ, ℓ ≤ q + 1,

A(m,xir−q−1 · · ·xi0 , 2
m−r+k)

=

2m−r+k

∑

d=2m−r+q

N(m,xir−q−1 · · ·xi0 , d)

(i)
=

2k−q+ℓ−1−⌈2ℓ−1⌉
∑

v=0

N(r − q + ℓ, xir−q−1 · · ·xi0 , 2
ℓ + 2v)

≤
2k−q+ℓ−1−⌈2ℓ−1⌉

∑

v=0

Cv(r − q + ℓ)2(2
ℓ+2v)(r−q+ℓ) (61)

(j)

≤(2k−q+ℓ−1 − ⌈2ℓ−1⌉+ 1)∗
C2k−q+ℓ−1 (r − q + ℓ)22

k−q+ℓ(r−q+ℓ) (62)

(k)

≤2k+2C2k+2(r + 3)2(2
k+2−1)(r+3), (63)

where (i) is due to (48). In (j), since the sum terms in (61)

are increasing with respect to v, ∀ v ≤ 2k−q+ℓ−1 − ⌈2ℓ−1⌉,

Cv(r − q + ℓ)2(2
ℓ+2v)(r−q+ℓ)

≤C2k−q+ℓ−1−⌈2ℓ−1⌉(r − q + ℓ)22
k−q+ℓ+2ℓ−2⌈2ℓ−1⌉(r−q+ℓ)

≤C2k−q+ℓ−1 (r − q + ℓ)22
k−q+ℓ(r−q+ℓ). (64)

(k) is due to ℓ ≤ q + 1, and we take (63) as an upper bound

on (62) independent of ℓ for the convenience of the following

analysis.

If ir−q−1 = r− q− 1+ ℓ, q+2 ≤ ℓ ≤ q+3, similar results

can be proved via induction, due to space limitation, we only

provide inductive hypothesis when q+2 ≤ ℓ ≤ q+3 without

proof.



If ℓ = q + 2, ir−q−1 = r + 1,

N(r + 2, xir−q−1 · · ·xi0 , 2
q+2 + 2v)

≤Cv(r + 2)2(2
q+2+2v−1)(r+2). (65)

The only difference between the proof of (65) and (49) is that

in (53),
ℓ−q−2
∑

t=0

(

n− 1 + ℓ
t

)

= 1 when ℓ = q + 2.

Similar to (63), we have

A(m,xir−q−1 · · ·xi0 , 2
m−r+k)

≤2k+1C2k+1−2q+1(r + 2)2(2
k+2−1)(r+2)

≤2k+2C2k+2(r + 3)2(2
k+2−1)(r+3). (66)

If ℓ = q + 3, ir−q−1 = r + 2,

N(r + 3, xir−q−1 · · ·xi0 , 2
q+3 + 2v)

≤Cv(r + 3)2(2
q+2+v−1)(r+3). (67)

The only difference between the proof of (67) and (49) is that

in (53),
ℓ−q−2
∑

t=0

(

n− 1 + ℓ
t

)

= n+ q + 3 when ℓ = q + 3.

Similar to (63), we have

A(m,xir−q−1 · · ·xi0 , 2
m−r+k)

≤2k+2C2k+2−2q+2(r + 3)2(2
k+2−1)(r+3)

≤2k+2C2k+2(r + 3)2(2
k+2−1)(r+3). (68)

Combine (63) (66) (68), if ir−q−1 ≤ r + 2,

logA(m,xir−q−1 · · ·xi0 , 2
m−r+k)

≤(2k+2 − 1)r + log r +O(1). (69)

Now we are ready to prove (14). On the one hand,

xr+1 · · ·xk+2 ∈ RM(m, r) when m− r ≥ 2, by (40),

logE(A(2m−r+k, T )) ≥ logN(m,xr+1 · · ·xk+2, 2
m−r+k)

= (2k+2 − 1)(r − k). (70)

On the other hand, by (12) and (13), similar to (36),
∑k−1

q=0

∑

ir−q−1≥r+3 A(m,xir−q−1 · · ·xi0 , 2
m−r+k) and

∑

ir−k−1≥r+3 N(m,xir−k−1
· · ·xi0 , 2

m−r+k) are negligible,

E(A(2m−r+k, T ))

≤
k−1
∑

q=0

∑

ir−q−1≤r+2

A(m,xir−q−1 · · ·xi0 , 2
m−r+k)

+
∑

ir−k−1≤r+2

N(m,xir−k−1
· · ·xi0 , 2

m−r+k) +O(1)

≤
k−1
∑

q=0

(

r + 3
q + 3

)

2k+2C2k+2(r + 3)2(2
k+2−1)(r+3)

+

(

r + 3
k + 3

)

2(2
k+2−1)(r−k) +O(1). (71)

Combine (70) and (71), we have

(2k+2 − 1)(r − k) ≤ logE
(

A(2m−r+k, T )
)

≤ (2k+2 − 1)r +O(log r). (72)

APPENDIX E

Proof of Theorem 4. Firstly, we prove

N (is, s) = 2is−s − 2is +

s+1
∑

t=0

(

is
t

)

≤ is − s+ 1. (73)

1) If s = 0 or is − s ≤ 2, (73) holds as an equality.

2) If s ≥ 1 and is − s ≥ 3, by (27),

N (is, s) ≤ 3 < is − s+ 1. (74)

Therefore, if s ≥ 1 and is − s ≥ 3,

2is−s − 2is +
s+1
∑

t=0

(

is
t

)

< is − s+ 1. (75)

Now we are ready to prove (18),

E(N(2m−r, T ))

=
∑

xi
r−1

···xi0∈I

2

r−1
∑

s=0

(2is−s−2is)+|{If>Ixi
r−1

···xi0
|f∈I}|

≤
∑

xi
r−1

···xi0∈I

2

r−1
∑

s=0

(2is−s−2is)+|{If>Ixi
r−1

···xi0
|deg(f)≤r}|

=
∑

xi
r−1

···xi0∈I

2

r−1
∑

s=0

(

2is−s−2is+
s+1
∑

t=0

(

is
t

))

≤
∑

xi
r−1

···xi0∈I

2

r−1
∑

s=0

(is−s+1)

=N(2m−r), (76)

where the first inequality holds since r is the largest degree

of monomials in I.

When r ≤ 1, the above two inequalities must be equalities,

thus (18) holds as an equality.

When r > 1,

r−1
∑

s=0

(is − s+ 1) =
r−1
∑

s=0

(

2is−s − 2is +
s+1
∑

t=0

(

is
t

)

)

if and only if ir−1 ≤ r+1, we conclude that (18) holds as an

equality if and only if ∀ xir−1
· · ·xi0 ∈ I

(∗′) ir−1 ≤ r + 1.

(∗∗′) If If > Ixi
r−1

···xi0
and deg(f) ≤ r, then f ∈ I.

Apparently, (∗′) is equivalent to (∗), and (∗∗′) is equivalent

to (∗∗), thus the proof is completed.
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