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Abstract—Most existing studies on linear bandits focus on a
one-dimensional characterization of the overall system. While
being representative, this formulation may fail to model appli-
cations with high-dimensional but favorable structures, such as
the low-rank tensor representation for recommender systems. To
address this limitation, this work studies a general tensor bandits
model, where actions and system parameters are represented
by tensors as opposed to vectors, and we particularly focus on
the case that the unknown system tensor is low-rank. A novel
bandit algorithm, coined TOFU (Tensor Optimism in the Face of
Uncertainty), is developed. TOFU first leverages flexible tensor
regression techniques to estimate low-dimensional subspaces
associated with the system tensor. These estimates are then
utilized to convert the original problem to a new one with
norm constraints on its system parameters. Lastly, a norm-
constrained bandit subroutine is adopted by TOFU, which utilizes
these constraints to avoid exploring the entire high-dimensional
parameter space. Theoretical analyses show that TOFU improves
the best-known regret upper bound by a multiplicative factor that
grows exponentially in the system order. A novel performance
lower bound is also established, which further corroborates the
efficiency of TOFU.

I. INTRODUCTION

The multi-armed bandits (MAB) framework [1], [2] has
attracted growing interest in recent years as it can characterize
a broad range of applications requiring sequential decision-
making. An active research area in MAB is linear bandits [3],
[4], where the actions are characterized by feature vectors.
While being representative, this one-dimensional (i.e., vector-
ized) formulation may fail to capture practical applications
with high-dimensional but favorable structures. We use the rec-
ommender system model to illustrate this limitation. An online
shopping platform needs an effective advertising mechanism
for its products. However, instead of only deciding which item
to promote (as typically considered in standard linear bandits
studies), the marketer also needs to consider many other
factors. For example, the marketer may plan where to place
to promotion (e.g., on the sidebar or as a pop-up) and how
to highlight the promotion (e.g., emphasizing the discounts or
the product quality). The overall strategy with all these factors
will determine the effectiveness of this promotion.

Traditional recommendation strategies often leverage tensor
formulations to capture the joint decisions concerning many
associated factors [5]–[7]. However, as mentioned, existing

The work of CSs was supported in part by the US National Science Foun-
dation (NSF) under awards ECCS-2029978, ECCS-2143559, CNS-2002902,
the Virginia Commonwealth Cyber Initiative (CCI) smart cities project, and
the Bloomberg Data Science Ph.D. Fellowship. The work of NS was partially
supported by NSF IIS-1908070.

TABLE I
RELATED WORKS AND REGRET COMPARISONS

Algorithm Regret
Vectorized LinUCB [3] Õ(dN

√
T )

Matricized ESTT/ESTS [9] Õ(dd
N
2
erb

N
2
c√T )

Tensor Elim. [10]; modified to general actions Õ(dN−1r
√
T )

TOFU (Corollary 1) Õ(d2rN−2
√
T )

Lower bound (Theorem 2) Ω(rN
√
T )

The time horizon is T . The considered system tensor is order-N and of size
(d, d, · · · , d). It also has a multi-linear rank (r, r, · · · , r), where r ≤ d.

bandits strategies are largely restricted to vectorized systems.
Although vectorizing multi-dimensional systems can preserve
element-wise information, structural information is often lost.
Especially, as recognized in [5]–[7], tensors formulated to
characterize recommender systems often process the attractive
property of low-rankness which, however, no longer exists in
the vectorized systems and thus cannot be exploited.

In this work, we study a general problem of tensor bandits
for online decision-making, which extends the standard one-
dimensional setting of linear bandits to a multi-dimensional
and multi-linear one. In particular, each action is represented
by a tensor (as opposed to a vector), and the mean reward
of playing an action is the inner product between its feature
tensor and an unknown system tensor. Then, motivated by
various practical problems, a low-rank assumption is imposed
on the system tensor, and this work aims at leveraging the
low-rank knowledge to facilitate bandit learning. The main
contributions are summarized in the following.
• The studied tensor bandits framework is general in the

sense that it does not have restrictions on the system dimension
and the action structure, which contributes to the generaliza-
tion of linear bandits and extends the applicability of the MAB
study; see Appendix A for related works.
• A novel learning algorithm, TOFU (Tensor Optimism

in the Face of Uncertainty), is proposed for the challenging
problem of low-rank tensor bandits. TOFU adopts flexible
designs of tensor regressions to estimate low-dimensional
subspaces associated with the unknown system tensor. Then,
these estimates are utilized to convert the original problem
into a new one, where the low-rank property is transformed
into the knowledge of norm constraints on the system param-
eters. TOFU finally adopts the LowOFUL subroutine [8] to
incorporate these norm constraints in bandit learning to avoid
exploring the entire high-dimensional parameter space.
• Theoretical analyses demonstrate the effectiveness and

efficiency of TOFU with performance guarantees. In particular,
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the regret of TOFU improves the best-known regret upper
bound by a multiplicative factor of order O((d/r)dN/2e−2),
where N is the order of the considered system tensor, d is the
length of its modes, and r ≤ d denotes its multi-linear rank.
Note that this improvement becomes more significant in high-
dimensional problems, i.e., growing exponentially w.r.t. N . A
novel regret lower bound is further established, and TOFU is
shown to be sub-optimal only up to a factor of O((d/r)2),
which does not scale with N . The baselines and the main
results are summarized in Table I.

II. PROBLEM FORMULATION

A. Preliminaries on Tensors

An order-N tensor Y ∈ Rd1×d2×···×dN has
∏
n∈[N ] dn

elements and can be viewed as a hyper-rectangle with edges
(referred to as modes) of lengths (d1, d2, · · · , dN ) (see [11],
[12] for comprehensive reviews). The tensor elements are
identified to by their indices along each mode, e.g., Yi1,i2,··· ,iN
denotes the (i1, i2, · · · , iN )-th element of Y , while a block
is denoted by the index set of its contained elements, e.g.,
the block YI1,I2,··· ,IN represents the elements with indices
(i1, i2, · · · , iN ) ∈ I1 × I2 × · · · × IN . Moreover, fibers are
one-dimensional sections of a tensor (as rows and columns in
a matrix); thus an order-N tensor has N types of fibers.
Tensor operations. The inner product between tensor Y and
a same-shape tensor B ∈ Rd1×d2×···×dN is the sum of the
products of their elements:

〈B,Y〉 =
∑
i1∈[d1]

∑
i2∈[d2]

· · ·
∑

iN∈[dN ]

Bi1,i2,··· ,iNYi1,i2,··· ,iN .

The Frobenius norm is then defined as ‖Y‖F :=
√
〈Y,Y〉.

The mode-n (matrix) product Y ×n B between tensor Y
and matrix B ∈ Rd′n×dn outputs an order-N tensor of size
(d1, · · · , dn−1, d

′
n, dn+1, · · · , dN ) with elements:

(Y ×n B)i1,··· ,in−1,i′n,in+1,··· ,iN =
∑

in∈[dn]

Bi′n,inYi1,··· ,in,··· ,iN .

In addition, matricization is the process of reordering tensor
elements into a matrix. The mode-n matricization of tensor Y
is denoted as Mn(Y), whose columns are mode-n fibers of
tensor Y and dimensions are (dn,

∏
n′∈[N ]/{n} dn′). Similarly,

vectorization converts a tensor to a vector with all its elements,
which is denoted as vec(Y) for tensor Y .
Tucker decomposition. Similarly to matrices, tensor decom-
position is a useful tool to characterize the structure of tensors.
In this work, we mainly focus on the Tucker decomposition
illustrated as follows: for tensor Y , with rn denoting the rank
of its mode-n matricization, i.e., rn = rank(Mn(Y)), and Un
the corresponding left singular vectors ofMn(Y), there exists
a core tensor G ∈ Rr1×r2×···×rN such that

Y = G ×1 U1 ×2 U2 ×3 · · · ×N UN =: G ×n∈[N ] Un,

which can be denoted as Y = [[G;U1, · · · , UN ]], and the tuple
(r1, · · · , rN ) is called the multi-linear rank of tensor Y .
Additional notations. Typically, lowercase characters (e.g., x)
stand for scalars while vectors are denoted with bold lowercase

characters (e.g., x). Capital characters (e.g., X) are used
for matrices, and calligraphic capital characters (e.g., X ) for
tensors. In addition, ‖ · ‖2 denotes the Euclidean norm for
vectors and the spectral norm for matrices; for a vector y and
a matrix Γ, we denote ‖y‖Γ :=

√
y>Γy.

B. Tensor Bandits

This work considers the following multi-dimensional bandit
problem. At each time step t ∈ [T ], the player has access to an
action set At ⊆ Rd1×d2×···×dN , i.e., the elements are tensors
of size (d1, d2, · · · , dN ). She needs to select one action At
from the set At, and this action would bring her a reward of

rt = 〈At,X〉+ εt, (1)

where X ∈ Rd1×d2×···×dN is an unknown tensor of system
parameters and εt is an independent 1-sub-Gaussian noise. We
further denote µA := 〈A,X〉 as the expected reward of action
A and, without loss of generality, assume that ‖X‖F ≤ C for
C > 0 and max{‖A‖F : A ∈ ∪t∈[T ]At} ≤ 1.

The agent’s objective is to minimize her regret against the
per-step optimal actions A∗t := arg maxA∈At

〈A,X〉 [1]:

R(T ) :=
∑

t∈[T ]
(〈A∗t ,X〉 − 〈At,X〉).

C. The Low-rank Structure

It is possible to view the above problem as a
∏
n∈[N ] dn-

dimensional linear bandits problem by vectorizing the action
tensor At and the system tensor X , which can then be solved
by known algorithms [3], [4]. However, the high-dimensional
structures of this system are not preserved by vectorization.
Especially, one of the most commonly observed structures
in real-world applications (e.g., recommender systems [5]–[7]
and healthcare [13]–[16]) is the low-rankness. We give the
general multi-linear rank assumption of X as follows.

Assumption 1. The unknown system tensor X has a multi-
linear rank of (r1, r2, · · · , rN ) and can be decomposed as
X = [[G;U1, U2, · · · , UN ]].

To simplify the notations, in the following, it is assumed that
d1 = · · · = dN = d while r1 = · · · = rN = r. In practice, the
rank r is often much smaller than the mode length d, especially
for very large d. Hence, the following problem is at the center
of this work: can bandit algorithms be designed to exploit
the low-rank structure of the system tensor? Especially, the
key question is how much performance improvement we can
achieve, compared with the naive regret of Õ(dN

√
T ) [3] that

is obtained by directly vectorizing the actions and the system.
Note that the design and analysis can be extended to the

general case of d1 6= · · · 6= dN and r1 6= · · · 6= rN with minor
notation modifications. Also, without loss of generality, it is
assumed that N is of order O(1) (i.e., a constant) and N ≥ 3.

III. THE TOFU ALGORITHM

The TOFU algorithm (presented in Alg. 1) has two phases: A
and B. Phase A aims at estimating the unknown system tensor
X up to a certain precision, especially its low-dimensional sub-
spaces. With this estimate, the original bandit problem can be



Fig. 1. An illustration of the projection in Eqn. (4), the blocks with varying amounts of tails in Eqn. (5), and the vectorization in Eqn. (7), where an order-3
tensor (i.e., N = 3) is adopted as an example with d = 5 and r = 2. The projection is performed with the low-dimensional subspaces estimated in Phase
A (see Eqn. (4)) and the projected system tensor is shown to have blocks with zero to N tails. The value q(ρ) is the number of elements in the projected
blocks with less than ρ tails as specified in Eqn. (6), and here an input ρ = 3 is adopted which results in q(3) = d3 − (d − r)3. The norm constraint in
Eqn. (8) is on the other dN − q(ρ) elements, i.e., the projected blocks with at least ρ tails. This constraint is leveraged in Phase B to avoid exploring the
entire high-dimensional parameter space. Note that here with N = 3 and ρ = 3, the designed norm constraint is only on the block with three tails, while
with a larger N , the constraint will cover more blocks if still using ρ = 3 (as in Corollary 1), e.g., blocks with three and four tails for N = 4.

reformulated, such that the new problem has (approximately)
a small number of effective system parameters because the
other parameters have small norms. Then, in Phase B, an
OFU (optimism in the face of uncertainty)-style subroutine
is adopted to solve this norm-constrained problem.

A. Phase A: Estimating Low-dimensional Subspaces

Phase A adopts techniques in low-rank tensor regression
(also known as low-rank tensor factorization or completion
from linear measurements) [16]–[20]. Especially, it considers
the problem of estimating a low-rank tensor X by a collection
of data {(At, rt) : t ∈ [T1]} that are associated with X through
Eqn. (1), where T1 is the amount of collected data samples.

Using the bandits terminology, Phase A is designed to
last T1 steps, during which a dataset of T1 data samples is
collected. With such a dataset, an estimate of X , denoted as
X̂ , can be obtained via low-rank tensor regression techniques.
From another perspective, Phase A can be interpreted as using
forced explorations to estimate the system tensor X .

Clearly, the estimation quality is related to the collected
data, especially the selected arms and the noises. Also, dif-
ferent designs of low-rank tensor regression require different
data collection procedures. To provide a general discussion and
ease the presentation, we denote the adopted tensor regression
algorithm as TRalg(·) and consider the following assumption:

Assumption 2. The dataset DA = {(At, rt) : t ∈ [T1]} and
the tensor regression algorithm TRalg(·) are such that the
output X̂ ← TRalg(DA) satisfies ‖X̂ − X‖F ≤ η(T1) for a
problem-dependent function η(T1).

Under this assumption, regret bounds can be established to
depend on the generic function η(T1). Specific dataset config-
urations and tensor regression algorithms can be incorporated
to establish concrete forms of η(T1), which leads to the
corresponding problem-dependent regret bounds. Examples of
datasets and algorithms that satisfy Assumption 2 with a high
probability can be found in Examples 1 and 2 in Sec. IV with
η(T1) = Õ(

√
dN (dr + rN )/T1).

B. From Subspace Estimates to Norm Constraints
Intuitively, the estimated X̂ and its decomposition matrices

(Û1, Û2, · · · , ÛN ) from Phase A should help the task of bandit
learning. To achieve this goal, the following projection is
generalized from matrix bandits [8]. In particular, a new arm
B̂ can be constructed from the original arm A as follows:

B̂ = A×n∈[N ] [Ûn, Ûn,⊥]> ∈ Rd×d×···×d, (2)

where Ûn,⊥ is a set of orthogonal basis in the complementary
subspace of Ûn and [·, ·] denotes the concatenation of two
matrices. In other words, Eqn. (2) projects the actions to the
estimated low-dimensional subspaces and their complements.

After some algebraic manipulations, we can establish that

µA = 〈A,X〉 = 〈B̂, Ŷ〉 (3)

where Ŷ ∈ Rd×d×···×d is a projected system tensor defined as

Ŷ := X ×n∈[N ] [Ûn, Ûn,⊥]>

= G ×n∈[N ] ([Ûn, Ûn,⊥]>Un).
(4)

Thus, the original tensor bandits problem can be reformulated
with the action set B̂t := {B̂ = A ×n∈[N ] [Ûn, Ûn,⊥]> :

A ∈ At} and the system tensor Ŷ defined above. While this
problem still has dN elements and the system tensor Ŷ is still
unknown, it possesses norm constraints on elements in many
blocks of Ŷ . In other words, the above projection is capable of
turning the low-rank property into the knowledge of parameter
norms, which are specified in the following.

Especially, if Ûn is estimated precisely enough, we can
guarantee that ‖Û>n,⊥Un‖2 is relatively small. In particular,
under Assumption 2, it holds that ‖Û>n,⊥Un‖2 = Õ(η(T1))
(see Lemma 1). Then, with a closer look at the projected tensor
Ŷ , the following observation can be made: elements in many
blocks are close to zero. In particular, the block

Ŷ: r, : r, · · · , : r︸ ︷︷ ︸
N − k modes

,r + 1 :, , r + 1 :, · · · , r + 1 :︸ ︷︷ ︸
k modes

= G ×n∈[N−k] (Û>n Un)×n′∈[N−k+1:N ](Û
>
n′,⊥Un′)︸ ︷︷ ︸

with k tails

,
(5)



has a norm that scales with Õ((η(T1))k) (see Lemma 2),
where the notation : r denotes the set [r] while r + 1 :
represents the set [r + 1 : d] (thus the above block
denotes the rN−k(d − r)k tensor elements with indices
(i1, · · · , iN−k, iN−k+1, · · · iN ) ∈ [r]× · · · × [r]× [r+ 1, d]×
· · · × [r + 1, d]}). This property holds similarly for other
symmetrical blocks. As η(T1) typically decays with T1 (be-
cause the estimation quality should increase with more data
samples), the norm of the above block will become smaller as
the length of Phase A increases, which can be captured by a
norm constraint that will be described later.

To ease the exposition, we refer to the above block and its
symmetrical ones as blocks with k tails, meaning the indices
of their elements have k modes in the interval [r+ 1 : d] (i.e.,
the tail). An illustration of these blocks in an order-3 tensor is
provided in Fig. 1. Furthermore, the number of tensor elements
in blocks with less than k tails is denoted as

q(k) :=
∑k−1

i=0

(
N

i

)
rN−i(d− r)i, (6)

which is an important quantity in later designs and analyses.

Remark 1. Compared with previous works on matrix and
tensor bandits [8]–[10], [21], the essence of this work is the
observation that norm constraints commonly exist for blocks
with different numbers of tails. In particular, [10] directly
extends [8], [21] and only leverages the norm constraint on
the block with N tails. Instead, Section IV will illustrate that
the norm constraints on blocks with at least three tails can be
leveraged together under a suitable η(T1), which then leads to
the obtained performance improvement.

Algorithm 1 TOFU
Input: T ; rank r; dimension N and d; tensor regression alg.

TRalg; length of Phase A T1; confidence parameter δ; tails ρ
1: Sample At ∈ At following the arm selection rule required by
TRalg(·) and observe reward rt, for t ∈ [T1] . Phase A

2: Estimate X̂ = [[Ĝ; Û1, · · · , ÛN ]] with TRalg using DA =
{(At, rt) : t ∈ [T1]}, i.e., X̂ ← TRalg(DA)

3: Set C⊥, λ, λ⊥ as in Theorem 1 . Phase B
4: Initialize Λ(ρ) ← diag(λ, · · · , λ, λ⊥, · · · , λ⊥), where the first
q(ρ) elements are λ; ΨT1 ← {y ∈ Rd

N

: ‖y‖2 ≤ C}
5: for t = T1 + 1, · · · , T do
6: Set B̂t ← {Bt = At ×n∈[N ] [Ûn, Ûn,⊥]> : At ∈ At}
7: Get b̂t ← arg maxb̂t∈vec(B̂t) maxy∈Ψt−1〈b̂t,y〉
8: Pull arm At corresponding to b̂t and obtain reward rt
9: Update B̂t with rows {b>τ : τ ∈ (T1, t]}

10: Update rt with elements {rτ : τ ∈ (T1, t]}
11: Update Vt ← Λ(ρ) + B̂>t B̂t and ȳ ← V −1

t B̂>t rt

12: Update
√
βt ←

√
log( det(Vt)

det(Λ(ρ))δ2
) +
√
λC +

√
λ⊥C⊥

13: Update Ψt ← {ŷ ∈ Rd
N

: ‖ŷ − ȳ‖Vt ≤
√
βt}

14: end for

C. Phase B: Solving the Norm-constrained Linear Bandits

As illustrated above, after the projection, norm constraints
can be obtained on some blocks of tensor Ŷ . For flexibility,
we consider that Phase B aims to leverage such constraints

on blocks with at least ρ tails, which contain dN − q(ρ)
elements. The parameter ρ is an input with its value in [N ]
that requires careful designs to balance losses from two phases
and will be specified in Sec. IV (e.g., selected as ρ = 3
in Corollary 1). Equivalently, there exist norm constraints on
parts of the elements in the unknown vector

ŷ := vec(Ŷ) ∈ Rd
N

. (7)

If the vectorization of Ŷ is performed first on the block with
zero tail and then gradually on those with one and more tails
(see Fig. 1 for an example), we can compactly express the
norm constraint on blocks with at least ρ tails as

‖ŷq(ρ)+1:dN ‖2 ≤ C⊥, (8)

where the parameter C⊥ will be specified later in Theorem 1.
This condition can be interpreted as that there are approxi-
mately only q(ρ) effective parameters in ŷ while the other
parameters are nearly ignorable due to their constrained norm.

Then, a norm-constrained linear bandits problem with dN

parameters needs to be solved. In particular, the action set
is Φt := vec(B̂t) ⊆ RdN at step t, where vec(B̂t) :=
{vec(B̂) : B̂ ∈ B̂t)}, and the expected reward for action
b̂ ∈ Φt is 〈b̂, ŷ〉. Additionally, an important norm constraint
on ŷ, i.e., Eqn. (8), is available to the learner. Inspired by
[22], the LowOFUL algorithm is designed in [8] to tackle
such norm-constrained linear bandits. Especially, a weighted
regularization is performed to estimate the system parameter:
at time step t, the following estimate ȳ of ŷ is obtained as
ȳ ← arg miny ‖B̂ty − rt‖22 + ‖y‖2Λ(ρ) = V −1

t B̂>t rt, where
matrix B̂t ∈ Rt×dN is constructed with previous action vectors
{b̂τ : τ ∈ (T1, t]} as rows, vector rt ∈ Rt has elements
{rτ : τ ∈ (T1, t]}, matrix Λ(ρ) = diag(λ, · · · , λ, λ⊥, · · · , λ⊥)
(with λ as the first q(ρ) elements and λ⊥ as the others),
and Vt = Λ(ρ) + B̂>t B̂t. Then, an OFU-style arm-selection
subroutine is adopted (lines 5–14 of Alg. 1).
Remark 2. To better understand the projection performed in
Eqns. (2) and (4), an ideal scenario is considered where
the decomposition matrices (U1, · · · , UN ) are exactly known.
Then, the projected action B̂ and system parameter Ŷ both
match their “exact” versions B = A ×Nn=1 [Un, Un,⊥]> and
Y = G×n∈[N ]([Un, Un,⊥]>Un) = G×n∈[N ]([Ir,0r×(d−r)]

>).
Although Y has dN elements, there are only rN non-zero ones
in G. However, for Ŷ projected via the imperfect estimates
(Û1, · · · , ÛN ), we can only guarantee some blocks of elements
have small norms instead of being exact nulls as in Y .

IV. THEORETICAL ANALYSIS

In this section, we formally establish the theoretical guar-
antee of the TOFU algorithm. First, the following assumption
is adopted on the minimum singular value of the matricized
system tensor, which is commonly used in the study of matrix
bandits [8], [9], [21] and tensor bandits [23].

Assumption 3. It holds that minn∈[N ]{ωmin(Mn(X ))} ≥ ω
for some parameter ω > 0, where ωmin(·) returns the
minimum positive singular value of a matrix.



Then, the following regret upper bound can be established.

Theorem 1. Under Assumptions 1, 2 and 3, with probability
at least 1 − δ, using ρ ∈ [N ] as input and λ = C−2, λ⊥ =

T
q(ρ) log(1+T/λ) , C⊥ = 2N/2C(η(T1))ρω−ρ, if T1 is chosen
such that η(T1) ≤ ω, the regret of TOFU can be bounded as

R(T ) ≤ Õ
(
CT1 + dρ−1rN−ρ+1

√
T + C(η(T1))ρω−ρT

)
.

It is worth noting that this theorem applies to any tensor
regression technique satisfying Assumption 2 and any input
ρ, which demonstrates the flexibility of TOFU. Furthermore,
the above regret bound has three terms. The first term char-
acterizes the dataset collection in Phase A. The second term
represents the learning loss from the q(ρ) major elements in
Phase B. The third one is from the other dN − q(ρ) elements,
which are nearly ignorable but still contribute to the regret.

According to function η(T1), parameters ρ and T1 should
be carefully selected such that the overall regret in Theorem 1
is minimized. Two specific tensor regression techniques from
[23], [24] are considered to instantiate η(T1): the first one
is established with the selected arms having sub-Gaussian
elements, while the second selects random one-hot tensors as
arms. To avoid complicated expressions, confidence parame-
ters δ1, δ2, threshold parameters ι1, ι2 and scale parameters
c1, c2 are adopted in the following, whose values are indepen-
dent of T1 and can be found in the corresponding references.

Example 1 (Section 4.2 of [23]). If T1 > ι1, all elements ofAt
are i.i.d. drawn from 1/dN -sub-Gaussian distributions, and εt
is an independent standard Gaussian noise, with probability
at least 1 − δ1, an estimate X̂ = [[Ĝ;U1, · · · , UN ]] can be
obtained from the tensor regression algorithm proposed in [23]
such that ‖X̂ − X‖2F ≤ c1dN (dr + rN )/T1.

Example 2 (Corollary 2 of [24]). If T1 > ι2, At is a
random one-hot tensor, and εt is an independent 1-sub-
Gaussian noise, with probability at least 1 − δ2, an estimate
X̂ = [[Ĝ;U1, · · · , UN ]] can be obtained from the tensor
regression algorithm proposed in [24] such that ‖X̂ −X‖2F ≤
c2d

N (dr + rN )/T1.

In these examples, it can be seen that Assumption 2 holds
with a high probability for η(T1) = Õ(

√
dN (dr + rN )/T1).

Then, Theorem 1 leads to the following corollary.

Corollary 1. Under Assumptions 1 and 3, if the conditions
in Example 1 (resp. Example 2) can be satisfied in Phase A,
using the tensor regression algorithm from [23] (resp. [24]) as
TRalg(·), the parameters from Theorem 1 with input ρ = 3,
and the following length for Phase A (resp. with ι2, c2)

T1 = max
{
ι1, c1d

N (dr+rN )ω−2, c
3
5
1 d

3N
5 (dr+rN )

3
5ω−

6
5T

2
5

}
,

with probability at least 1−δ−δ1 (resp. 1−δ−δ2), the regret
of TOFU can be bounded as

R(T ) ≤ Õ
(
CT1 + d2rN−2

√
T
)

The above corollary adopts ρ = 3, i.e., the norm constraint
in Eqn. (8) is on blocks with at least three tails. This choice

is conscious with respect to the function η(T1) from Exam-
ples 1 and 2 as it lays aside as many parameters as possible
without letting them negatively impact the bandit learning. In
particular, with this choice, the length T1 can be optimized
as in Corollary 1 (which is of order O(T 2/5)) and thus the
dominating term (regarding the T -dependency) of the regret
in Corollary 1 is the last one of order Õ(d2rN−2

√
T ).

This obtained regret of order Õ(d2rN−2
√
T ) is compared

with several existing results in the following (see also Table I).
First, if directly adopting linear bandits algorithms such as Lin-
UCB [3] on the vectorized system, a regret of order Õ(dN

√
T )

would incur as the low-rank structure is not used. A second
approach is to matricize the system and adopt algorithms for
matrix bandits [8], [9], [21]. The state-of-the-art ESTT/ESTS
[9] can then achieve a regret of order Õ(dd

N
2 erb

N
2 c
√
T ) (see

Appendix E), which is still inefficient as matricization does
not preserve all the structure information. At last, for [10] on
tensor bandits, if we modify it to have general (instead of
one-hot) tensors as actions, a regret of order Õ(dN−1r

√
T )

occurs as it does not fully consider the high-dimensional
benefits (see Remark 1). Thus, compared with the best existing
regret of order Õ(dd

N
2 erb

N
2 c
√
T ), TOFU has an improvement

of a multiplicative factor of order Õ((d/r)d
N
2 e−2), which

grows exponentially in N . Hence, this benefit becomes more
significant in higher-order problems.

While TOFU improves existing results, we further compare
it against the following new regret lower bound.

Theorem 2. Assume rN ≤ 2T and for all t ∈ [T ], let At =
A := {A ∈ Rd×d×···×d : ‖A‖F ≤ 1} and εt be a sequence
of independent standard Gaussian noise. Then, for any policy,
there exists a system tensor X ∈ Rd×d×d×···×d with a multi-
linear rank (r, r, · · · , r) and ‖X‖2F = O(r2N/T ) such that
EX [R(T )] = Ω(rN

√
T ), where the expectation is taken with

respect the interaction of the policy and the system.

Compared with this lower bound, TOFU is sub-optimal
only up to an additional O((d/r)2) factor (which does not
scale with N ). We conjecture that a slightly tighter regret
lower bound of order Ω(drN−1

√
T ) can be established, which

reduces to that of Ω(dr
√
T ) in matrix bandits (N = 2) [21].

V. CONCLUSIONS

This work studied a general tensor bandits problem, where
high-dimensional tensors characterize action and system pa-
rameters. Motivated by practical applications, the system ten-
sor is modeled to be low-rank. To tackle this high-dimensional
but low-rank problem, a novel algorithm named TOFU was
proposed. TOFU adopts tensor regression techniques to esti-
mate low-dimensional subspaces associated with the system
tensor. The obtained estimates are then used to transform
the challenging problem of low-rank tensor bandits into an
equivalent but easier one of norm-constrained linear bandits.
The theoretical analysis provided a regret guarantee of TOFU,
which is shown to be exponentially more efficient than ex-
isting results. A novel performance lower bound was also
established, further demonstrating the superiority of TOFU.
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APPENDIX A
RELATED WORKS

Linear bandits. As one of the most well-studied MAB
settings, linear bandits adopt vectorized features to charac-
terize actions and system parameters. Many provably efficient
algorithms have been proposed for linear bandits and achieve
(nearly) minimax optimal regret, with LinUCB being the
representative design [3], [4]; see [1] for a comprehensive
review.
Matrix bandits. Several works extend the vectorized (one-
dimensional) features in linear bandits to two dimensions
[8], [9], [21], [25], i.e., matrices as features. With similar
motivations as this work, this line of research on “matrix
bandits” mostly focuses on leveraging the assumed low-rank
property of the system matrix, and the recent work [9] achieves
nearly order-optimal performance.
Tensor bandits. The concept of tensor bandits is first proposed
in [10], which generalizes the problem of linear bandits to
high dimensions, i.e, use tensors to characterize actions and
systems. However, in [10], the action tensors are restricted
to be one-hot. This work instead considers general action
tensors and thus covers more scenarios. Moreover, this work
has a different utilization of the estimated low-dimensional
subspaces compared with [10]; see details in Section III and
Remark 1. Lastly, instead of the Tucker decomposition adopted
in [10] and this work, a recent work [26] studies the tensor
bandits problem from the Canonical polyadic decomposition
(CPD) perspective, whose results are however not directly
comparable to this work due to different settings.

APPENDIX B
THE PROBLEM EQUIVALENCE: DERIVATION OF EQN. (3)

With

B̂ := A×n∈[N ] [Ûn, Ûn,⊥]>;

Ŷ := X ×n∈[N ] [Ûn, Ûn,⊥]>,

it holds that

〈B̂, Ŷ〉 =
〈
M(1)(B̂),M(1)(Ŷ)

〉
(a)
=
〈

[Û1, Û1,⊥]>M(1)(A)J>, [Û1, Û1,⊥]>M(1)(X )J>
〉

= tr
(
JM(1)(A)>[Û1, Û1,⊥][Û1, Û1,⊥]>M(1)(X )J>

)
= tr

(
JM(1)(A)>M(1)(X )J>

)
(b)
= 〈A ×Nn=2 [Ûn, Ûn,⊥]>,X ×Nn=2 [Ûn, Ûn,⊥]>〉
(c)
= 〈A ×Nn=3 [Ûn, Ûn,⊥]>,X ×Nn=3 [Ûn, Ûn,⊥]>〉
= · · ·
(d)
= 〈A,X〉

where

J := [ÛN , ÛN,⊥]> ⊗ [ÛN−1, ÛN−1,⊥]> ⊗ · · · ⊗ [Û2, Û2,⊥]>

with ⊗ representing the Kronecker product between ma-
trices. Equalities (a) and (b) use the property (see

[11]) that Z = H ×n∈[N ] Vn ⇔ M(n)(Z) =

VnM(n)(H)(VN ⊗ · · ·Vn+1 ⊗ Vn−1 ⊗ · · · ⊗ V1)
>. Equalities

(c) and (d) recursively follow similar arguments in the previous
steps. Then, following basic properties regarding tensor mode
product [11], it can be shown that

Ŷ := X ×n∈[N ] [Ûn, Ûn,⊥]> = G ×n∈[N ]

(
[Ûn, Ûn,⊥]>Un

)
,

which completes the derivation.

APPENDIX C
UPPER BOUND ANALYSIS: PROOF OF THEOREM 1

Lemma 1. Under Assumption 2, it holds that

‖Û>n,⊥Un‖F ≤
η(T1)

ωn
, ∀n ∈ [N ],

where ωn := ωmin(Mn(X )).

Proof. It holds that

‖X̂ − X‖F = ‖Mn(X̂ )−Mn(X )‖F
(a)
= ‖Mn(X̂ )− UnU>nMn(X )‖F
(b)

≥ ‖Û>n,⊥Mn(X̂ )− Û>n,⊥UnU>nMn(X )‖F
(c)
= ‖Û>n,⊥UnU>nMn(X )‖F
(d)

≥ ωmin(U>nMn(X ))‖Û>n,⊥Un‖F
= ωn‖Û>n,⊥Un‖F ,

where equality (a) is because Un contains the left singular
vectors of Mn(X ); inequality (b) is from the fact that for a
matrix U with orthonormal columns and an arbitrary compat-
ible matrix X , it holds that ‖X‖F ≥ ‖U>X‖F ; inequality (c)
uses the observation that Û>n,⊥Ûn is a null matrix; inequality
(d) is from the fact that for any compatible matrices X
and Y , ‖XY ‖F ≥ min{ωmin(X)‖Y ‖F , ωmin(Y )‖X‖F }. The
lemma is proved by plugging Assumption 2 into the above
inequality.

Lemma 2. Under Assumption 2, the norm of the following
block with k tails in Ŷ can be bounded as:∥∥∥∥Ŷ: r; : r, · · · , : r︸ ︷︷ ︸

N − k modes

,r + 1 :, r + 1, · · · , r + 1 :︸ ︷︷ ︸
k modes

∥∥∥∥
F

≤ C(η(T1))k

ωk
,

and this bound symmetrically holds for all
(
N
k

)
blocks with k

tails.

Proof. It holds that∥∥∥Ŷ:r,:r,··· ,:r,r+1:,r+1:,··· ,r+1:

∥∥∥
F

=
∥∥∥G ×n∈[N−k] (Û>n Un)×n′∈[N−k+1:N ] (Û>n′,⊥Un′)

∥∥∥
F

(a)

≤ ‖G‖F
∏

n∈[N−k]

∥∥∥(Û>n Un)
∥∥∥

2

∏
n′∈[N−k+1:N ]

∥∥∥(Û>n′,⊥Un′)
∥∥∥

2

(b)

≤ ‖G‖F · (η(T1))k

ωk
≤ C(η(T1)k

ωk
,



where inequality (a) repeatedly uses the fact that
for any arbitrary matrices X and Y , it holds that
‖XY ‖F ≤ min{‖X‖2‖Y ‖F , ‖X‖F ‖Y ‖2}; inequality
(b) utilizes Lemma 1, Assumption 3, and the fact that for two
compatible matrices U and V with orthonormal columns, it
holds that ‖V >U‖2 ≤ 1.

Lemma 3 (Corollary 1 of [8]). If Eqn. (8) holds, with

λ⊥ =
T

q(ρ) log(1 + T/λ)

the regret of LowOFUL (adopted in Phase B) for T steps is,
with probability at least 1− δ, bounded by

Õ
((
q(ρ) +

√
q(ρ)λC +

√
TC⊥

)
)
√
T
)
.

Proof. Detailed proofs can be found in [8].

Then, the proof of Theorem 1 is presented in the following.

Proof of Theorem 1. For Phase A with length T1, its regret
can be bounded as

RA(T ) ≤ 2CT1,

since the mean rewards are bounded between [−C,C] with
‖At‖F ≤ 1 and ‖X‖F ≤ C.

After Phase A, based on Lemma 2, we have that for all
k ∈ [N ], it holds that

‖ŷq(k)+1:q(k+1)‖2F ≤
(
N

k

)
C2(η(T1))2k

ω2k
,

Thus, with q(ρ) in Eqn. (6), it can be further shown that

‖ŷq(ρ)+1:dN ‖2F =
∑

k∈[ρ:N ]

‖ŷq(k)+1:q(k+1)‖2F

≤
∑

k∈[ρ:N ]

(
N

k

)
C2(η(T1))2k

ω2k

≤ 2N · C2(η(T1))2ρ

ω2ρ
,

where the last inequality uses the condition that η(T1) ≤ ω.
This inequality validates Eqn. (8) with the parameter C⊥ =
2N/2C(η(T1))ρω−ρ in Theorem 1.

Then, with the specified parameter, according to Lemma 3,
Phase B would lead to a regret bounded as

RB(T ) ≤ Õ
((
q(ρ) +

√
q(ρ)λC +

√
TC⊥

)√
T
)

= Õ

(
dρ−1rN−ρ+1

√
T +

C(η(T1))ρ

ωρ
T

)
,

where the last step uses the facts that q(ρ) =
O(2Ndρ−1rN−ρ+1) and N = O(1) (thus 2N = O(1)).
Thus, the overall regret guarantee can be obtained as

R(T ) = RA(T ) +RB(T )

≤ Õ
(
CT1 + dρ−1rN−ρ+1

√
T +

C(η(T1))ρ

ωρ
T

)
,

which concludes the proof.

APPENDIX D
UPPER BOUND ANALYSIS: PROOF OF COROLLARY 1

Proof. In the following, we prove the case for Example 1. The
proof for Example 2 can be similarly constructed. First, with
probability at least 1− δ − δ1, it simultaneously holds that

R(T ) ≤ Õ
(
CT1 + dρ−1rN−ρ+1

√
T +

C(η(T1))ρ

ωρ
T

)
and

‖X̂ − X‖2F ≤ η(T1) =

√
c1dN (dr + rN )

T1
.

Thus, if ρ = 3 as specified in Corollary 1, it holds that

R(T ) ≤ Õ

(
CT1 + d2rN−2

√
T +

Cc
3
2
1 d

3N
2 (dr + rN )

3
2

ω3T
3
2

1

T

)
.

With the following choice of

T1 = max

{
ι1,

c1d
N (dr + rN )

ω2
,
c

3
5
1 d

3N
5 (dr + rN )

3
5

ω
6
5

T
2
5

}
,

the threshold requirement in Example 1 can be satisfied (i.e.,
T1 ≥ ι1) and it can be verified that η(T1) ≤ ω. Thus, with
probability at least 1− δ − δ1, the regret can be bounded as

R(T ) ≤ Õ

(
CT1 + d2rN−2

√
T +

Cc
3
2
1 d

3N
2 (dr + rN )

3
2

ω3T
3
2

1

T

)
= Õ

(
CT1 + d2rN−2

√
T
)
,

where the selected value of T1 is adopted. The proof is then
concluded.

APPENDIX E
REGRET OF MATRICIZED ESTT/ESTS

ESTT/ESTS [9] deals with the matrix bandits problem
where the actions and system parameters are characterized
by matrices. In particular, when the system matrix is of size
(D1, D2) and rank R, a regret of Õ((D1 + D2)R

√
T ) can

be obtained. The straightforward way to matricize the order-
N system tensor considered in this work is along one mode,
e.g., asMn(X). This obtained system matrixMn(X) would
be of size (d, dN−1) and rank r, which results in a regret
of Õ(dN−1r

√
T ) with ESTT/ESTS. However, if we combine

dN/2e modes in the system tensor in one matrix dimension
(e.g., row), and the remaining bN/2c modes in the other matrix
dimension (e.g., column), a matrix of size (ddN/2e, dbN/2c)
can be obtained with rank rbN/2c. Using this matricization,
ESTT/ESTS can obtain a regret of Õ(ddN/2erbN/2c

√
T ),

which is much better than Õ(dN−1r
√
T ) and thus adopted

as the baseline result in the main paper.



APPENDIX F
LOWER BOUND ANALYSIS: PROOF OF THEOREM 2

Proof of Theorem 2. In the following, for i =
(i1, i2, · · · , iN ), we adopt the simplified notation that

Xi := Xi1,i2,··· ,iN .

With ∆ := 1
8
√

3

√
rN

T , we design G =

{G that satisfies Eqn. (9)} ⊆ Rr×r×···×r and
X = {X = G ×n∈[N ] Un : G ∈ G} ⊆ Rd×d×···×d,
where

Gi ∈ {±∆}, ∀i = (i1, · · · , iN ) ∈ [d]× · · · × [d] (9)

and

Un =

[
Ir

0(d−r)×r

]
∈ Rd×r, ∀n ∈ [N ].

It can be noted that each X ∈ X has a multi-linear rank at most
(r, r, · · · , r). For i = (i1, i2, · · · , iN ) ∈ [r] × [r] × · · · × [r],
we define

τi = T ∧min

t :
∑
τ∈[t]

A2
t;i ≥

T

rN

.
For a fixed X ∈ X, we have

EX [R(T )] = EX

∑
t∈[T ]

〈A∗ −At,X〉


= ∆EX

∑
t∈[T ]

∑
i∈[r]×···×[r]

(
1

r
N
2

−At;i · sign(Xi)
)

≥ ∆r
N
2

2
EX

∑
t∈[T ]

∑
i∈[r]×···×[r]

(
1

r
N
2

−At;i · sign(Xi)
)2


≥ ∆r
N
2

2

∑
i∈[r]×···×[r]

EX

∑
t∈[τi]

(
1

r
N
2

−At;i · sign(Xi)
)2
,

where the first inequality uses the fact that ‖At‖F ≤ 1.
Let G′ ∈ G be another tensor such that G′ = G except G′i =
−Gi with i = (i1, i2, · · · , iN ). Then, with X ′ = G′×n∈[N ]Un,
it also holds that X ′ = X except X ′i = −Xi. For x ∈ {±1},
we define

κi(x) =
∑
t∈[τi]

(
1

r
N
2

−At;i · x
)2

.

Let P and P′ be the distributions of κi(1) with respect to the
player interaction measure induced by X and X ′, respectively.
Then, it holds that

EX [κi(1)]
(a)

≥ EX ′ [κi(1)]−
(

4T

rN
+ 2

)√
1

2
D(P,P′)

(b)

≥ EX ′ [κi(1)]−
(

4T

rN
+ 2

)
∆

√√√√√EX

∑
t∈[τi]

A2
t;i



≥ EX ′ [κi(1)]−
(

4T

rN
+ 2

)
∆

√
T

rN
+ 1

(c)

≥ EX ′ [κi(1)]− 8
√

3T∆

rN

√
T

rN

where D(·, ·) is the relative entropy between two probability
measures. Inequality (a) uses the result in Exercise 14.4 of [1],
the Pinsker’s inequality, and the bound

κi(1) ≤ 2
∑
t∈[τi]

1

rN
+ 2

∑
t∈[τi]

A2
t;i ≤

4T

rN
+ 2,

where the definition of τi is used for the last inequality.
Inequality (b) is from the chain rule for the relative entropy
up to a stopping time in Exercise 15.7 of [1] as follows:

D(P,P′) ≤ 1

2
EX

∑
t∈[τi]

(〈At,X − X ′〉)
2


= 2∆2EX

∑
t∈[τi]

A2
t;i

.
Inequality (c) is from the assumption that rN ≤ 2T .

Then, it holds that

EX [κi(1)] + EX ′ [κi(−1)]

≥ EX ′ [κi(1) + κi(−1)]− 8
√

3T∆

rN

√
T

rN

= 2EX ′

 τi
rN

+
∑
t∈[τi]

A2
t;i

− 8
√

3T∆

rN

√
T

rN

≥ 2T

rN
− 8
√

3T∆

rN

√
T

rN

≥ T

rN
,

where the last inequality uses the definition of ∆.
The proof is completed using an averaging number argu-

ment on the following quantity:∑
X∈X

EX [R(T )] ≥ ∆r
N
2

2

∑
i∈[r]×···×[r]

∑
X∈X

EX [κi(sign(Xi))]

=
∆r

N
2

2

∑
i∈[r]×···×[r]

∑
X/Xi∈{±∆}rN−1

∑
Xi∈{±∆}

EX [κi(sign(Xi))]

≥ ∆r
N
2

2

∑
i∈[r]×···×[r]

∑
X/Xi∈{±∆}rN−1

T

rN

= 2r
N−2∆r

N
2 T.

Hence there exists G ∈ G and X = G ×n∈[N ] Un such that

EX [R(T )] ≥ ∆r
N
2 T

4
=
rN
√
T

32
√

3
,

which concludes the proof.



APPENDIX G
DISCUSSION AND FUTURE DIRECTIONS

Tighter upper and lower regret bounds. As mentioned at the
end of Section IV, it is conjectured that a slightly tighter regret
lower bound of order Ω(drN−1

√
T ) exists, which reduces

to Ω(dr
√
T ) for matrix bandits (N = 2) [21]. It would be

an interesting question to (dis)prove this conjecture, and we
hope the proof of the current Theorem 2 can be inspiring. On
the other hand, it remains a challenging problem to further
tighten the performance upper bound established in Theorem 1
and Corollary 1. Inspired by the recent success in matrix
bandits [9], one potential direction is to only estimate the
subspaces (Û1, · · · , ÛN ) in Phase A, because Ĝ is not used
in later learning. In particular, it would be sufficient to obtain
an estimate X̂ that approaches υX with υ as an unknown
constant. If corresponding techniques can be proposed in the
study of tensor estimation, the general framework of TOFU
can be smoothly adapted and sharper upper bounds can be
similarly obtained.
Structure action sets. This work mainly investigates the
problem with a low-rank tensor for system parameters. It
would be valuable to also consider structured tensors for
actions. Preliminary results for matrix bandits can be found
in [25], where low-rank action matrices are studied.
From Tucker to CPD. Besides the Tucker decomposition,
another well-known tensor decomposition is CPD. It would be
interesting to study the problem of tensor bandits with a low-
rank CPD, which might be able to eliminate the exponential
dependency on N . However, this direction is challenging as the
projections constructed in TOFU cannot be performed under
the CPD formulation, and requires further investigations.
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