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Abstract—The problem of mismatched guesswork considers
the additional cost incurred by using a guessing function which
is optimal for a distribution q when the random variable to be
guessed is actually distributed according to a different distribu-
tion p. This problem has been well-studied from an asymptotic
perspective, but there has been little work on quantifying the dif-
ference in guesswork between optimal and suboptimal strategies
for a finite number of symbols. In this non-asymptotic regime,
we consider a definition for mismatched guesswork which we
show is equivalent to a variant of the Kendall tau permutation
distance applied to optimal guessing functions for the mismatched
distributions. We use this formulation to bound the cost of
guesswork under mismatch given a bound on the total variation
distance between the two distributions.

I. INTRODUCTION

Let X be a random variable taking values in {1, . . . , n}
according to the distribution p. Suppose that we would like
to try and guess the realization of X by sequentially guessing
possible values according to a guessing function G, which is
some permutation on {1, . . . , n}, stopping when we correctly
guess the value of X . The guesswork associated with G
is E[G(X)]. This is the general setting of the theory of
guesswork [1], [2].

The goal of this work is to characterize the difference in
guesswork between the guessing function which is optimal
for the generating distribution p and that which is optimal for
a different distribution q. This problem is generally referred
to as guessing under mismatch. We define the expected cost
of guesswork under mismatch between p and q to be

δ(p, q) = min
Gq

E
X∼p

[Gq(X)−Gp(X)],

where Gp and Gq are optimal guessing functions for p and q
respectively. Our approach is non-asymptotic and our methods
are combinatorial: we study the cost of mismatch for a
fixed, finite value of n and we analyze guessing functions as
permutations. This viewpoint emphasizes the structure of the
space of probability distributions in the context of guesswork.
The main contributions of this work are (1) an equivalence
between the cost of mismatch and a variant of the Kendall
tau permutation distance [3], [4] and (2) a bound on the cost
of mismatch given a bound on the total variation distance
between the two distributions.

This work was supported by DARPA Grant HR00112120008.

A. Related Work

In line with the majority of the literature on guesswork,
the problem of guessing under mismatch has generally been
approached from an asymptotic perspective. The problems of
mismatched guesswork, universal guessing, guessing subject
to distortion, and other settings have been well-studied in
that asymptotic framework. We describe here only a selection
of this work, describing its goals and highlighting how our
problem setting and results differ.

Arikan and Merhav considered the problem of guessing to
within some distortion measure and propose asymptotically
optimal guessing schemes for such a measure [5]. Sundaresan
considered the problem of guessing over a distribution which
is a member of a known family. To this end, they defined
a notion of redundancy which quantifies the increase in the
moments of guesswork when using a suboptimal guessing
function [6]. Both of these works propose universal strategies
for certain families of sources, where “universal” means that
some quantity asymptotically approaches its natural limit,
e.g., the guesswork growth exponent for a particular moment
approaches its minimum over the family, or the normalized
redundancy approaches zero. Salamatian et al. consider the
asymptotic behavior of mismatched guesswork by means of
large deviation principles [7], a theory which has found
considerable applications in the context of guesswork [8]–[10].
They treat independent, identically distributed sources using
the framework of tilted distributions developed in [10], [11]
and derive an expression for limit of the average growth rate
of the moments of mismatched guesswork.

Our work distinguishes itself from the above in two key
ways. First and foremost, we are not interested in asymptotic
equivalences or limiting behavior. We view guessing functions
as permutations on a finite alphabet through a framework
which highlights applications of combinatorial techniques to
guesswork analysis. Second, the bounds and limits which are
given in, e.g., [5], [6] and [7] involve the difference in the
exponents of guesswork, whereas we consider the difference in
guesswork directly. Their bounds are not generally applicable
to our problem setting and cannot be directly compared.

The remainder of this paper is organized as follows. Sec-
tion II establishes our definitions. In Section III we express
the expected cost of guesswork under mismatch in terms of a
variation of the Kendall tau permutation distance. We then use
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this formulation of guesswork in Section IV to bound the cost
of mismatch in terms of the total variation distance between
the distributions in question. Section V offers concluding
remarks and notes potential directions for future work.

II. PRELIMINARIES

In this section, we review and establish definitions for guess-
work, permutations, and statistical metrics. All probability
distributions are over a finite space of cardinality n ∈ N,
which we denote by [n] = {1, 2, . . . , n}. We refer to bijections
from [n] to [n] as either permutations or guessing functions.
Explicitly, if G : [n] → [n] is a guessing function, then G(i)
is equal to the number of guesses used to guess element i. We
refer to Ep[G] = EX∼p[G(X)] as the guesswork of G under
p. The operator ◦ denotes function composition (we limit its
use to permutations).

A natural set of guessing functions to consider is that
consisting of those which minimize the guesswork.

Definition 1. The set of optimal guessing functions for the
distribution p is defined to be Gp = arg minG Ep[G]. 2

We denote by Gp an optimal guessing functions for p. If
|Gp| = 1, then we may unambiguously refer to the optimal
guessing function for p. A simple observation first made by
Massey [1] is that optimal guessing functions proceed in order
of decreasing probability, i.e., Gp(i) < Gp(j) if and only if
pi ≥ pj . It follows that there are multiple optimal guessing
functions for p if and only if p assigns the same probability
to more than one point.

One contribution of this paper is a connection between
guesswork and permutations via a metric. A classical metric
on permutations is the Kendall tau rank distance [3], which
is equal to the minimum number of adjacent transpositions
required to transform one permutation to another. An adjacent
transposition τ is a permutation which exchanges two consec-
utive elements, i.e., τ(j) = j + 1 and τ(j + 1) = j, where
1 ≤ j < n, and τ(i) = i for all i /∈ {j, j + 1}.

Definition 2. The Kendall tau distance between two permu-
tations σ1 and σ2 is defined to be

K(σ1, σ2) =
∑
(i,j):

σ1(i)<σ1(j)

1{σ2(i) > σ2(j)}. 2

We say that two permutations σ1 and σ2 differ by an adjacent
transposition if there exists an adjacent transposition τ such
that σ1 = τ◦σ2. The Kendall tau distance has been generalized
in many different ways to account for different notions of
distance based on the particular applications [4]. In Section III
we introduce a version which we show describes the difference
in guesswork between two guessing functions.

Our second main result connects the statistical distance
between two distributions and the difference in optimal guess-
work for those distributions. The statistical metric we consider
is the total variation distance, which is proportional to the L1

norm for distributions over finite spaces.

Definition 3. The total variation distance between two distri-
butions p and q over [n] is defined to be

dTV(p, q) =
1

2

n∑
i=1

|pi − qi|. 2

III. GUESSWORK AND A PERMUTATION DIVERGENCE

We begin by defining our notion of difference in guesswork.

Definition 4. Let G1 and G2 be guessing functions. The
expected cost of G2 over G1 with respect to the distribution
p is defined to be ∆p(G1, G2) = Ep[G2 −G1]. 2

Definition 5. The expected cost of guesswork under mismatch
between the distributions p and q is defined to be

δ(p, q) = min
Gq∈Gq

∆p(Gp, Gq),

where Gp is any optimal guessing function for p. 2

The expected cost of guesswork under mismatch is defined
by a minimum over Gq because it is not necessarily true that
Ep[Gq] = Ep[G′q] for all Gq, G′q ∈ Gq (see Appendix A).
However, the minimization in Definition 5 need not be taken
over Gp because, by definition, Ep[Gp] = Ep[G′p] for all
Gp, G

′
p ∈ Gp. By taking this minimum, Definition 5 gives the

“best-case” cost, but we emphasize that we do not formulate
the expected cost of guesswork under mismatch in terms of
particular guessing functions, but rather distributions. With
respect to expected guesswork, we are indifferent to the choice
among multiple optimal guessing functions.

We show that ∆p(G1, G2) is equivalent to a version of
the Kendall tau distance which weighs pairs of transposed
elements by the difference in their probabilities under p.

Definition 6. The probability-weighted Kendall tau signed
divergence between two permutations σ1 and σ2 with respect
to a distribution p is defined to be

Kp(σ1, σ2) =
∑
(i,j):

σ1(i)<σ1(j)

(pi − pj) · 1{σ2(i) > σ2(j)}. 2

Under this divergence, permutations which differ on elements
of similar probability are considered close. Informally, the
sign of the divergence is positive if, in total, the transposition
from σ1 to σ2 moves elements with higher probability to
later positions and elements with lower probability to earlier
positions. This notion is formalized in the equivalence shown
in Theorem 1. This quantity is not a metric, as it is signed and
asymmetric, but these properties are desirable in this setting.

A useful result on this divergence is that it satisfies a kind
of “triangle equality.” This holds for any choice of three
permutations, but we limit the setting of the following lemma
for simplicity. Only this weaker version is necessary to prove
Theorem 1, which itself implies the general result.

Lemma 1. Let σ1, σ2, and σ3 be permutations such that
σ2 and σ3 differ by an adjacent transposition. Then, for all
distributions p,

Kp(σ1, σ3) = Kp(σ1, σ2) +Kp(σ2, σ3). 2



PROOF: Let τ be the transposition such that σ3 = τ ◦ σ2 and
let x and y be the elements whose positions τ inverts, such
that σ2(x) = σ2(y) − 1 and σ3(y) = σ3(x) − 1. Then, since
σ2(z) = σ3(z) for all z /∈ {x, y}, we can write

Kp(σ1,σ3) =
∑
(i,j):

σ1(i)<σ1(j)

(pi − pj) · 1{σ3(i) > σ3(j)}

=
∑

(i,j)/∈{(x,y),(y,x)}:
σ1(i)<σ1(j)

(pi − pj) · 1{σ2(i) > σ2(j)}

+ (px − py) · 1{σ1(x) < σ1(y) ∧ σ3(x) > σ3(y)}
+ (py − px) · 1{σ1(y) < σ1(x) ∧ σ3(y) > σ3(x)},

where ∧ denotes the intersection of events. By assumption,
σ3(x) > σ3(y), so the term with a factor of (py−px) is always
zero, and we can write the term with a factor of (px − py) as

(px − py) · 1{σ1(x) < σ1(y) ∧ σ3(x) > σ3(y)} =

(px − py) · 1{σ1(x) < σ1(y)} =

(px − py) + (px − py) · 1{σ1(x) < σ1(y) ∧ σ2(x) > σ2(y)}
+ (py − px) · 1{σ1(y) < σ1(x) ∧ σ2(y) > σ2(x)}.

The second term of the final expression is always zero since
σ2(x) < σ2(y) by assumption. The third term is zero if
σ1(x) < σ1(y) but cancels the constant (px − py) otherwise.
Finally, it is easy to verify that Kp(σ2, σ3) = px − py .
Substituting,

Kp(σ1, σ3) =
∑
(i,j):

σ1(i)<σ1(j)

(pi − pj) · 1{σ2(i) > σ2(j)}

+Kp(σ2, σ3)

= Kp(σ1, σ2) +Kp(σ2, σ3). �

The main result of this section is that the expected cost of
guesswork under mismatch can be formulated in terms of the
probability-weighted Kendall tau signed divergence.

Theorem 1. If G1 and G2 are guessing functions and p is
a distribution, then the expected cost of G2 over G1 with
respect to p is equal to the probability-weighted Kendall tau
signed divergence between G1 and G2 with respect to p, i.e.,
∆p(G1, G2) = Kp(G1, G2). 2

PROOF: Let σ be the permutation which takes G1 to G2, i.e.,
G2 = σ ◦ G1. Since any permutation can be written as the
composition of a finite sequence of adjacent transpositions, for
some M ∈ N we can write σ = τM ◦τM−1 ◦ · · · ◦τ1, where τi
is an adjacent transposition for all i ∈ [M ]. This gives a finite
sequence of permutations G1 = σ0, σ1, . . . , σM = G2 such
that σi = τi ◦ σi−1. Let yi and xi be the original elements
which τi moves one position up and down respectively. In
particular, xi and yi are defined such that

σi(xi) = σi−1(yi) = σi−1(xi) + 1,

σi(yi) = σi−1(xi) = σi−1(yi)− 1,

σi(z) = σi−1(z), ∀z /∈ {xi, yi}.

We proceed by induction on M . If M = 1, then we can
write G2 = τ1◦G1. Since τ1 is an adjacent transposition which
inverts the positions of x1 and y1 as defined above,

∆p(G1, G2) =

n∑
k=1

pk · [G2(k)−G1(k)]

= px1 · [G2(x1)−G1(x1)]

+ py1 · [G2(y1)−G1(y1)]

= px1 − py1
=

∑
(i,j):

G1(i)<G1(j)

(pi − pj) · 1{G2(i) > G2(j)}

= Kp(G1, G2).

Suppose then that ∆p(G1, G2) = Kp(G1, G2) for all
guessing functions which differ by at most M adjacent
transpositions. Let G1 and G2 be two guessing functions
which differ by M + 1 adjacent transpositions, i.e., G2 =
τM+1 ◦ τM ◦ · · · ◦ τ1 ◦G1. Let σ = τM ◦ · · · ◦ τ1. By definition,

∆p(G1, G2) = Ep[G2 −G1]

= Ep[G2 − σ ◦G1] + Ep[σ ◦G1 −G1]

= ∆p(σ ◦G1, G2) + ∆p(G1, σ ◦G1).

The permutations G2 and σ ◦ G1 differ by a single adjacent
transposition and σ ◦ G1 and G1 differ by M adjacent
transpositions. Thus, by strong induction,

∆p(G1, G2) = Kp(σ ◦G1, G2) +Kp(G1, σ ◦G1).

Finally, Lemma 1 yields ∆p(G1, G2) = Kp(G1, G2). �

Note that this result requires that Kp(G1, G2) be signed and
asymmetric. We also have a stronger version of Lemma 1.

Corollary 1. Kp(σ1, σ3) = Kp(σ1, σ2) +Kp(σ2, σ3) for any
permutations σ1, σ2, and σ3 and for any distribution p. 2

PROOF: The desired result follows from Theorem 1 and
linearity of expectation. �

When considering distributions rather than particular guess-
ing functions, the following corollary is more applicable.

Corollary 2. For all distributions p and q, the expected cost
of guesswork under mismatch between p and q is given by

δ(p, q) = min
Gq∈Gq

Kp(Gp, Gq) =
∑
(i,j):
pi>pj

(pi− pj) ·1{qi < qj},

with Gp being any optimal guessing function for p. 2

PROOF: The first equality follows directly from Theorem 1.
The second equality follows from that fact that if Gp is an
optimal guessing function for p, then Gp(i) < Gp(j) implies
that pi ≥ pj . This inequality can be made strict, as pi−pj = 0
if pi = pj . Similarly, Gq(i) > Gq(j) implies that qi ≤ qj . This
inequality can also be made strict, since if G∗q is the guessing
function which achieves the minimum expected cost and if
qi = qj , then Gp(i) < Gp(j) implies that G∗q(i) < G∗q(j). �



IV. GUESSWORK AND A STATISTICAL DISTANCE

The goal of this section is to bound δ(p, q) given a bound
on dTV(p, q). This connection between guesswork under mis-
match and statistical distance is achieved through a combina-
torial argument concerning the summands of the form (pi−pj)
in the probability-weighted Kendall tau signed divergence.
Representing each of these terms by the corresponding pair
(i, j), we show how these pairs can be grouped into sets and
how to bound the sum over each set. To simplify notation, we
write k ∈ (i, j) to denote that either k = i or k = j.

Definition 7. A set M ⊂ [n] × [n] is a set of disjoint pairs
if i 6= j for all (i, j) ∈ M and if, for all k ∈ [n], there is at
most one element (i, j) ∈M such that k ∈ (i, j). 2

Example 1. These are five sets of disjoint pairs for n = 5.

M1 M2 M3 M4 M5

(2, 5) (1, 3) (2, 4) (3, 5) (1, 4)
(3, 4) (4, 5) (1, 5) (1, 2) (2, 3)

2

The following lemma formalizes how sets of disjoint pairs
can be used to bound part of the expected cost of guesswork
under mismatch given a bound on the total variation.

Lemma 2. Let M be a set of disjoint pairs and let p and q be
distributions such that pi ≥ pj and qi ≤ qj for all (i, j) ∈M .
If dTV(p, q) ≤ ε, then

∑
(i,j)∈M (pi − pj) ≤ 2ε. 2

PROOF: Suppose that
∑

(i,j)∈M (pi − pj) > 2ε. Then,

dTV(p, q) =
1

2

n∑
k=1

|pk − qk|

≥ 1

2

∑
(i,j)∈M

(|pi − qi|+ |qj − pj |) (1)

≥ 1

2

∑
(i,j)∈M

|pi − pj + qj − qi| (2)

≥ 1

2

∑
(i,j)∈M

(pi − pj) (3)

> ε,

where (1) follows by dropping non-negative terms, (2) follows
from the triangle inequality, and (3) follows from the assump-
tion that pi ≥ pj and qi ≤ qj for all (i, j) ∈M . �

Informally, Lemma 2 says that if Gq permutes a set of disjoint
pairs relative to Gp, then the sum over the terms (pi − pj)
corresponding to each permuted pair (i, j) can be bounded in
terms of the total variation between p and q.

Lemma 2 and some established results in combinatorics
directly lead to Theorem 2. For simplicity, the proof given
here only considers the case when the number of symbols n
is even. The proof for odd n involves some additional technical
details which are deferred to Appendix B.

Theorem 2. If p and q are distributions on [n] such that
dTV(p, q) ≤ ε, then δ(p, q) ≤ 2(n− 1)ε. 2

PROOF: By Corollary 2,

δ(p, q) =
∑
(i,j):
pi>pj

(pi − pj) · 1{qi < qj}. (4)

Without loss of generality, we may assume that the elements
of [n] are labeled such that pi ≥ pj for all i < j. Each term in
(4) can be associated with the pair (i, j), yielding

(
n
2

)
pairs.

If n is even, then we can construct a tournament design on
n, i.e., all

(
n
2

)
possible pairs of distinct elements of [n] can

be arranged into a n
2 × (n− 1) array such that every element

is contained in precisely one cell of each column [12, §51.1].
This is equivalent to constructing n − 1 sets of disjoint pairs
M1, . . . ,Mn−1 whose union covers all

(
n
2

)
possible pairs.

Given such a collection of sets, we can write

δ(p, q) ≤
∑
i<j

(pi − pj) (5)

=

n−1∑
r=1

∑
(i,j)∈Mr

(pi − pj). (6)

Equality is achieved in (5) when qi < qj for all i < j.
Combining this with the assumption that dTV(p, q) ≤ ε, we
can bound (6) using Lemma 2, which yields

δ(p, q) ≤
n−1∑
r=1

2ε = 2(n− 1)ε. �

The bound in Theorem 2 is not tight for all values of ε.
In particular, since δ(p, q) ≤ n − 1 trivially, the bound is
not meaningful for ε > 1/2. However, the following example
shows that there exist distributions p and q for which δ(p, q)
is arbitrarily close to 2(n− 1)ε for ε ≤ 1/n.

Example 2. Let p be the distribution given by

pi =


1/n+ γε i = 1,

1/n 1 < i < n,

1/n− γε i = n,

with 0 < γ < 1 and ε ≤ 1/n. Let q be a distribution such that
qi < qj for all i < j and dTV(p, q) ≤ ε. Such a distribution
q always exists since γ < 1; it will be very close to uniform
distribution, but without any two elements having exactly the
same probabilities. By Corollary 2,

δ(p, q) =
∑
(i,j):
pi>pj

(pi − pj) · 1{qi < qj}

=

n∑
i=2

(p1 − pi) +

n∑
j=2

(pj − pn)

= (n− 1)(p1 − pn)

= γ · 2(n− 1)ε.

Thus, this choice of p, q comes within a factor of γ (which
can be arbitrarily close to 1) of the bound in Theorem 2. 2

This example suggests that 2(n − 1)ε is the supremum,
rather than the maximum, of δ(p, q) over distributions on n



(a) (b)

Fig. 1. A visualization of the expected cost of guesswork under mismatch on the 3-dimensional probability simplex. Each point on the simplex corresponds
to a different distribution over 3 symbols. The corners correspond to distributions which assign all probability to a single symbol. The centroid corresponds
to the uniform distribution. (a) The maximum expected cost of guesswork under mismatch given that the mismatched distribution lies within a total variation
radius of ε = 0.2. (b) The maximum number of adjacent transpositions between the optimal guessing function for the distribution at each point and the
optimal guessing functions for points within a total variation radius of ε = 0.2.

symbols such that dTV(p, q) ≤ ε in the regime ε ≤ 1/n. The
technique used for Theorem 2 does not give a strict inequality,
however, since it does not take into account that there are
multiple optimal guessing functions for distributions which
assign the same probability to multiple points. In particular,
if we consider the distributions given in Example 2 and let
γ = 1, then the uniform distribution satisfies the total variation
bound. However, since any guessing function is optimal for the
uniform distribution, it follows that δ(p, q) = 0 if q is uniform.
Furthermore, if γ = 1, then there does not exist a q within ε
total variation of p such that qi < qj for all i < j, and hence,
there does not exist any q within ε total variation of p such
that δ(p, q) = 2(n− 1)ε.

To visualize this phenomenon and conceptualize how the
cost of guesswork under mismatch within a fixed total vari-
ation radius varies, consider Figure 1, which illustrates the
behavior for n = 3. In Figure 1a, we plot the maximum
achievable expected cost under mismatch within a radius of
ε = 0.2 around each point on the simplex. Every such point
corresponds to a unique distribution on [n], and that point is
taken to be the center around which we consider distributions
for mismatch within the radius of ε. In Figure 1b, we plot
the maximum number of adjacent transpositions achievable
between optimal guessing functions for the distributions within
the same radius. In three dimensions, the projection of the L1

ball onto the simplex is a regular hexagon, which gives rise
to the geometric patterns visible in Fig. 1.

The distribution p given in Example 2 corresponds to the
most red points in Fig. 1a. It is easy to see that, for n = 3,
there are sharp jumps in the maximum achievable expected
cost under mismatch as the maximum achievable number of
adjacent transpositions increases. A cost of 2ε is the maximum

achievable with 1 transposition, while 3ε is the maximum with
2, and 4ε with 3. Although this phenomenon does appear to
some degree in higher dimensions, it is not necessarily true
that the maximum achievable expected cost under mismatch
is strictly increasing in the maximum number of achievable
adjacent transpositions. In Example 2, for instance, only 2n−3
adjacent transpositions are needed to achieve an expected cost
which is arbitrarily close to the maximum, while n(n− 1)/2
adjacent transpositions are possible.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed the cost of guesswork under
mismatch from a non-asymptotic perspective. We showed that
the total variation distance exactly captures the maximum
possible expected cost under mismatch between two distri-
butions if the number of symbols is considered constant.
The connections developed between permutation metrics and
guesswork highlight the combinatorial aspects of the problem
and readily suggest possible extensions.

We notably only investigated the first moment of guesswork,
which facilitated the connection with the Kendall tau distance.
A natural next step would be to consider higher moments
and formulate a more general framework for combinatorial
analysis. Similarly, it would be interesting to consider how
different statistical metrics or simplex geometries, such as
those discussed in [13], can be related to guesswork under
mismatch.
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APPENDIX A
AN EXAMPLE CONCERNING DEFINITION 5

Example 3. Let n = 4 and p, q be distributions given by:

1 2 3 4
p 0.40 0.30 0.20 0.10
q 0.60 0.20 0.10 0.10

The distribution p has a unique optimal guessing function:

1 2 3 4
Gp 1 2 3 4

The distribution q has two optimal guessing functions:

1 2 3 4
Gq 1 2 3 4
G′q 1 2 4 3

In this case, ∆p(Gp, Gq) = 0 and ∆p(Gp, G
′
q) = 0.1. Hence,

δ(p, q) = 0, due to the minimum in Definition 5. 2

APPENDIX B
PROOF OF THEOREM 2 FOR ODD n

The setup for handling distributions over an odd number of
symbols is largely the same as for an even number, except
for the fact that we instead constructing an odd tournament
design, yielding an (n− 1)/2×n array of disjoint pairs. This
would only give a bound of 2nε if we were to apply Lemma 2.

The necessary additional detail is that, if n is odd, for any
set of disjoint pairs there must exist at least one element of
[n] which does not appear in any pair. In this setting, we can
consider pairs of sets which leave out different symbols.

Definition 8. Let n be odd and let M1 and M2 be sets of
disjoint pairs such that |M1| = |M2| = (n − 1)/2 and there
exist distinct, unique elements k1, k2 ∈ [n] such that k1 /∈ m1

for all m1 ∈ M1 and k2 /∈ m2 for all m2 ∈ M2. The pair
(k1, k2) is defined to be the bridge pair for M1 and M2. 2

Example 4. For the sets listed in Example 1, the pair (2, 5)
is the bridge pair for M2 and M5, while (3, 4) is the bridge
pair for M3 and M4. Indeed, the sets are labeled such that
(i, j) is the bridge pair for Mi and Mj . 2

Note that it does not make sense to consider Definition 8 when
n is even, if the sets in question are not of maximal size, or if
the sets in question do not leave out distinct elements. When
a bridge pair does exist, however, it is by definition unique.

The following lemma is an analogue of Lemma 2 which
accounts for bridge pairs.

Lemma 3. Let n be odd and let M1 and M2 be sets of disjoint
pairs for which there exists a bridge pair (k1, k2). Let M =
M1 ∪M2 ∪ {(k1, k2)}. Let p and q be distributions such that
pi ≥ pj and qi ≤ qj for all (i, j) ∈M . If dTV(p, q) ≤ ε, then∑

(i,j)∈M (pi − pj) ≤ 4ε. 2

PROOF: Suppose that
∑

(i,j)∈M (pi − pj) > 4ε. Then,

4 dTV(p, q) =

n∑
i=1

|pi − qi|+
n∑
i=1

|pi − qi|

≥
∑

(i,j)∈M1

|pi − pj + qj − qi|

+
∑

(i,j)∈M2

|pi − pj + qj − qi|

+ |pk1 − pk2 + qk2 − qk1 |

(7)

≥
∑

(i,j)∈M

(pi − pj) (8)

> 4ε,

where (7) follows from the triangle inequality and the fact that,
by the definition of a bridge pair, each element of [n] appears
twice amongst all the pairs in M , while (8) follows from the
assumption that pi ≥ pj and qi ≤ qj for all (i, j) ∈M . �

To prove Theorem 2 for odd n, we use a similar construction
of sets of disjoint pairs based on a tournament design. For
odd n, we can treat one of the sets of disjoint pairs as a set
of bridge pairs and save the extra factor of n which arises in
an odd tournament design by applying Lemma 3 in place of
Lemma 2.

PROOF (OF THEOREM 2, CONT.): Recall that we may as-
sume without loss of generality that pi ≥ pj for all i < j.
If n is odd, then we can construct an odd tournament design,
i.e., all

(
n
2

)
possible pairs can be arranged into an n−1

2 × n
array such that every element is contained in at most one cell
of each column and there is exactly one element missing from
each column [12, §51.1]. This is equivalent to constructing
n sets of disjoint pairs M1, . . . ,Mn such that there exists a
distinct bridge pair between any two of them.

In particular, if we label the sets M1, . . . ,Mn according to
the elements which are missing from each set, then each pair
(i, j) ∈M1 is a bridge pair for Mi and Mj . It is also follows
from the properties of the odd tournament design that no two
elements of M1 will be bridge pairs for the same sets. Let
Mi,j = Mi ∪Mj ∪ {(i, j)}. Then,

δ(p, q) ≤
∑
i<j

(pi − pj) (9)

=
∑

(i,j)∈M1

∑
(k,l)∈M(i,j)

(pk − pl) (10)

≤
∑

(i,j)∈M1

4ε (11)

= 2(n− 1)ε,

where (10) follows from the bridge pair construction and (11)
follows from Lemma 3, using the fact that equality in (9) is
achieved when qi < qj for all i < j. �
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