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Abstract—The state-of-the-art coding schemes for topological
interference management (TIM) problems are usually hand-
crafted for specific families of network topologies, relying criti-
cally on experts’ domain knowledge. This inevitably restricts the
potential wider applications to wireless communication systems,
due to the limited generalizability. This work makes the first
attempt to advocate a novel intelligent coding approach to
mimic topological interference alignment (IA) via local graph
coloring algorithms, leveraging the new advances of graph neural
networks (GNNs) and reinforcement learning (RL). The proposed
LCG framework is then generalized to discover new IA coding
schemes, including one-to-one vector IA and subspace IA. The
extensive experiments demonstrate the excellent generalizability
and transferability of the proposed approach, where the param-
eterized GNNs trained by small size TIM instances are able to
work well on new unseen network topologies with larger size.

I. INTRODUCTION

Topological interference management (TIM) is one of the
most promising techniques for wireless networks with much
relaxed requirement of channel state information (CSI) at the
transmitters. As introduced in [1], TIM examines the degrees
of freedom (DoF) of partially connected one-hop wireless net-
works with the only available CSI at the transmitters being the
network topology. Over the past few years, TIM has received
extensive attention, resulting in a growing number of follow-up
works, including TIM with alternating topology [2], [3], multi-
level TIM [4], [5], TIM with cooperation [6], [7], dynamic
TIM [8], [9], and many others (e.g., [10]–[21]). It is worth
noting that interference alignment, as a simple yet elegant
linear coding technique, has been proven to have theoretical
potential to improve over the conventional orthogonal access
approaches, such as TDMA, frequency reuse, and CDMA [1].

However, state-of-the-art coding techniques for TIM inspect
specific network topologies individually and design coding
schemes in a handcrafted manner. This relies critically on
experts’ domain knowledge, which may be time-consuming,
ungeneralizable, and unscalable, restricting the wide applica-
tions to wireless system designs. As machine learning has
been increasingly involved in wireless system design, one may
wonder if learning can be leveraged to design and discover
new coding techniques. Some initial attempts have been made
in the literature (e.g., [22]–[29]), where deep neural networks
have been employed to design new neural decoders. Neverthe-
less, it is still unclear whether or not machine learning could

be applied to coding on graphs, where the graph structures
impose challenges on learning to code.

In this paper, we make a first attempt to push forward this
line of research, taking the TIM problem as an example to
propose a novel intelligent coding framework for learning-to-
code on graphs (LCG). The proposed LCG framework takes
interference alignment (IA) as the template, translating beam-
forming vector design of IA into dedicated vector generation
followed by vector assignment according to IA conditions.
The key ingredient of LCG is an intelligent combinatorial op-
timization algorithm, which leverages reinforcement learning
(RL) for vector assignment and Graph Neural Network (GNN)
for graph representation learning on conflict graphs. As shown
in Figure 1, for TIM instances, the directed message conflict
graphs are first constructed from network topologies, followed
by a learning-to-defer approach to assigning vectors to the
conflict graph in an iterative manner with state transition until
certain IA conditions are satisfied. Such a vector assignment
strategy will be translated to topological IA for beamforming.

To be specific, we consider four types of IA: one-to-one
scalar IA (OSIA), one-to-one vector IA (OVIA), subspace
scalar IA (SSIA), and subspace vector IA (SVIA). For one-
to-one IA, we relate OSIA and OVIA to local graph coloring
[30] and fractional local graph coloring, respectively (see Sec.
III-A1, III-A2), in such a way that LCG with a learning-
to-defer approach can mimic graph coloring algorithms to
learn a valid local coloring strategy for assigning beamforming
vectors (cf. colors) to messages, achieving one-to-one IA. The
beamforming vectors can be generated by maximum distance
separable (MDS) codes.

However, when it comes to subspace IA, specialized vector
generation is required as MDS codes with linear independence
is insufficient to satisfy subspace IA conditions, and vector
assignment via graph coloring is inadequate to specify the
overlap of subspace for partial IA. To overcome these issues,
we generate beamforming vectors in an implicit way to
distinguish different subspace and propose a new approach
called Matrix Rank Reduction for vector assignment, which is
specifically tailored to meet the conditions of subspace IA (see
Sec. III-B). In doing so, the learn-to-defer approach for local
coloring can be effectively extended to learn a valid strategy
for directly assigning beamforming matrices to messages,
achieving the desired subspace alignment.
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Fig. 1. (a) The framework of the proposed Learning to Code on Graphs (LCG), where vector assignment for one-to-one IA is done by local coloring on
conflict graph using a learning-to-defer approach. (b) The iterative procedure of learning to defer for local coloring.

To evaluate the effectiveness of the proposed LCG frame-
work, we conduct extensive experiments on various TIM
instances with random network topologies. Experimental re-
sults show that the proposed graph coloring method is more
time-efficient and effective than traditional methods including
smallest-last greedy method [31] with interchange [32] and
TabuCol [33] on coloring problems. We also tested our models
on various types of IA tasks and the results confirmed that our
proposed method can be used to automatically discover those
IA coding schemes, and theoretically superior IA methods can
indeed achieve higher DoF. We finally experimentally demon-
strate the strong transferability of our model. It is evidenced
that the trained model with small-size random graphs can be
generalized to unseen graph types with larger sizes without
loss of performance.

The rest of this paper is organized as follows. Section II
provides the statement of the TIM problem and describes
four types of IA coding schemes. The translations to vector
assignment via local coloring for one-to-one IA and via matrix
rank reduction for subspace IA are considered in Section III.
Section IV is dedicated to our proposed LCG framework for
local coloring and matrix rank reduction, followed by detailed
experimental setups and evalution results in Section V. Finally
we conclude the paper in Section VI.

II. PROBLEM STATEMENT

A. Topological Interference Management

The TIM problem considers a partially connected interfer-
ence network that has M sources, labeled as S1, S2, . . . , SM ,
and N destinations, labeled as D1, D2, . . . , DN , with each
equipped one single antenna. The topology matrix T is a
N×M matrix with elements tji = 1 if there exists a non-zero
channel from Source i to Destination j and tji = 0 otherwise.
At time instant t, Destination Dj receives signal:

Yj(t) =

M∑
i=1

tjihjiXi(t) + Zj(t), (1)

where Xi(t) is the symbol transmitted by Source Si. All
transmitted signals are subject to a power constraint P . hij
is the constant channel coefficient between Source Si and
Destination Dj , Zj(t) is the additive white Gaussian noise

(AWGN) at Destination Dj , and Yj(t) is the symbol received
by Destination Dj . All symbols are complex-valued. The
topology matrix T is known by all sources and destinations.
Throughout this paper, we focus on the multiple unicast
setting, where each source is paired with a unique destination
with one desired message delivered.

(a) Network topology graph. (b) Message conflict graph.

Fig. 2. (a) A 5-node TIM instance topology graph, where the black edges
indicate paired sources and destinations with desired messages and the red
dotted edges are interfering signals, and (b) the corresponding message conflict
graph with desired messages (i.e., source-destination pairs) being vertices and
the directed edges indicate interference from sources to destinations.

We introduce two graph definitions for TIM representation.
Definition 1: Given the TIM problem with M sources and

N destinations, topology matrix T , and message setM, define
the following two graphs:

1) Network Topology Graph: An undirected bipartite graph
with sources on one side, destinations on the other, and
an edge between Si and Dj whenever tji = 1.

2) Message Conflict Graph: An directed graph where each
message Wji ∈ M is a vertex, and a directed edge
(Wji,Wj′i′) exists if and only if Dj′ is interfered by Si,
i.e., tij′ = 1, where M is the set of desired messages.

An example is shown in Figure 2. Note that a connection
between a source S and a destination D could be one of
two cases: demanded link and interfering link. The link is
demanded if there exists a desired message from S to D
(black solid lines in Figure 2a) and interfering otherwise (red
dotted lines in Figure 2a). A similar undirected version of
message conflict graph was defined in [12], which ignores
some information of conflicting source.

One of the major objectives of the TIM problem is to
maximize the symmetric degrees-of-freedom (DoFs), dsym,
which refer to the minimal pre-log value of the achievable



rate over all demanded messagesM. For rigorous definitions,
please refer to [1] for details.

B. Interference Alignment Perspective

The majority of TIM solutions are linear coding schemes,
which can be roughly divided into two categories: scalar and
vector linear coding. The scalar coding scheme transmits one
symbol for each message over K channel uses, yielding DoF
of d = 1

K . In contrast, the vector coding scheme divides the
message into b independent scalar streams, with each stream
carrying one symbol. These symbols are then transmitted along
the corresponding column vectors of the pre-coding matrix
V ∈ CK×b, also known as the beamforming vectors, over
K channel uses, yielding DoF of d = b

K . The vector coding
enables simultaneous transmission of multiple symbols, mak-
ing full use of the spatial-time dimension of the channel, thus
improving spectral efficiency of the communication system.

Among many linear coding schemes for TIM, interference
alignment (IA) is one of the most promising approaches. IA
aims to align signals from interfering transmitters as much
as possible, while maintaining the signal from the desired
transmitter separated. Based on how interfering messages are
aligned, IA can be categorized into two classes: one-to-one
IA and subspace IA. One-to-one IA is such that interferences
are perfectly aligned in a one-to-one manner, where the beam-
forming vectors of aligned interfering symbols are identical.

Subspace IA, on the other hand, is to align interferences in a
subspace with reduced dimensions. In this case, the interfering
symbols are not required to perfectly align one another on a
one-to-one basis, but one interfering symbol can align itself
in the subspace spanned jointly by the beamforming vectors
of other interfering symbols.

By combining the two classification criteria, we obtain four
types of IA coding schemes: one-to-one scalar IA, one-to-one
vector IA, subspace scalar IA, and subspace vector IA.

1) One-to-One Scalar Interference Alignment (OSIA):
Each source transmits a single symbol1 with a corresponding
beamforming vector in such a way that each interfering
signal is perfectly aligned with another interfering one in the
receiver’s signal space, leaving one-dimensional interference-
free subspace for each desired signal. From the receiver’s
viewpoint, each interfering transmitter sends a signal that
is specifically designed to align with one dimension of the
receiver’s signal space, while the desired transmitter sends a
signal that is independent of all the interfering signals. By
aligning interfering signals within a reduced subspace of the
receiver’s signal space, OSIA can improve the achievable DoF
over orthogonal access.

For instance, in Figure 2a, suppose each source sends one
symbol via a beamforming vector. At D4, the interference
from S1 and S3 can be aligned by employing the same
beamforming vector, which is linearly independent of that of
the desired signal from S4.

1The terminologies of symbol and message are used interchangeably for
ease of presentation when referring to the scalar case.

In the message conflict graph, OSIA can be interpreted as
follows. The message W44 sees two incoming edges from
W11 and W33. If both messages W11 and W33 live in a
subspace that does not contain W44, then the desired message
is separable from the interfering ones.

Therefore, the coding scheme design for scalar IA can
be conducted by first generating a K-dimensional subspace
spanned by linearly independent vectors {vk}Kk=1, and then
assigning one vector from this subspace to each node (i.e.,
message) in the message conflict graph. To meet OSIA, the
vector assignment should meet the following two conditions

C1) Connected messages (nodes) should be assigned linearly
independent vectors, regardless of the direction of edges.

C2) Messages (nodes) pointing to the same message (node)
should be assigned as few different vectors as possible.

In the example of Figure 2b, we can generate a 2-dim
subspace spanned by v1 = [1 0]T and v2 = [0 1]T . Then,
the vector assignment to the messages W11, W22, W33, W44,
and W55 will be v1, v2, v1, v1+v2, and v2, respectively. Note
here that, any pair of connected nodes, e.g. W44 and W55, are
assigned linearly independent vectors, and the messages (e.g.,
W11 and W33) pointing to the same message W44 are assigned
the same vector for alignment.

From the perspective of IA, the TIM coding turns out to be
a vector assignment problem on message conflict graphs with
a minimal vector subspace, whose dimensionality corresponds
to the inverse of symmetric DoF, i.e., 1

dsym
.

2) One-to-One Vector Interference Alignment (OVIA): Each
source is allowed to transmit multiple symbols via several
beamforming vectors, whereas the interfering signals are still
aligned in a one-to-one manner. Different from the scalar
case where the signals from different transmitters are either
perfectly aligned or linearly independent, the vector case al-
lows for partial alignment of interfering signals from different
transmitters. This enhances the flexibility of the design of
interference alignment, leading to increased symmetric DoF
compared to OSIA in some scenarios [34].

As an example, Figure 3a depicts a TIM instance, where
the use of OSIA results in a symmetric DoF of 1/3, which is
equivalent to what can be achieved with orthogonal access
such as time-division multiple access (TDMA). However,
using the OVIA scheme, as demonstrated subsequently, we
can increase the achievable symmetric DoF to 2/5.

In the message conflict graph, the message W55 sees two in-
coming edges from W11 and W44. The message W22 sees two
incoming edges from W11 and W33. If messages W11, W44

live in the subspace that does not contain W55, and messages
W11, W33 live in the subspace that does not contain W22 then
the desired message W55 and W22 could be separable from
the interfering ones.

Hence, the coding scheme design for vector IA involves
generating a K-dimensional subspace spanned by linearly
independent vectors {vk}Kk=1 and assigning these vectors
to nodes (i.e., messages) in the message conflict graph. It
is worth noting that each node can be assigned multiple



(a) Network topology graph. (b) Message conflict graph. (c) A one-to-one vector IA solution.

Fig. 3. (a) A 5-node TIM instance topology graph, (b) the corresponding message conflict graph, and (c) a one-to-one vector IA solution.

(a) Network topology graph. (b) Message conflict graph. (c) A subspace scalar IA solution.

Fig. 4. (a) A 4-node TIM instance topology graph, (b) the corresponding message conflict graph, and (c) a subspace scalar IA solution.

vectors. The vector assignment should follow the same con-
ditions, C1 and C2, as scalar IA. Specifically, the OVIA
coding scheme can be obtained as follows. By randomly
generating 5 vectors {v1,v2, . . . ,v5}, each of size 5 × 1,
that are in general linearly independent, over a sufficiently
large field, we obtain the solution shown in Figure 3c for
the example depicted in Figure 3a. Each message is split
into two symbols, each of which is transmitted by some
beamforming vector v. As a result, at the receiver side, the
interfering signals occupy at most 3-dimensional subspace,
e.g., dim([v1,v2], [v1,v5]) = dim([v1,v2], [v1,v4]) = 3,
effectively avoiding all interference and leaving at least a 2-
dimensional interference-free subspace for the desired signal.
This yields dsym = 2

5 achievable.

3) Subspace Scalar Interference Alignment (SSIA): Going
beyond one-to-one IA, SSIA aims to align the interference
from multiple interfering transmitters to a subspace of the
receiver’s signal space, while preserving a one-dimensional
interference-free subspace that is separated from the inter-
ference subspace, for the desired signal. In the SSIA, the
signals from different interfering transmitters are not required
to perfectly align one another, but rather interfering signals
are restricted within a subspace with reduced dimensions.
That is, one interfering signal may not perfectly align with
another one, but falls in a subspace spanned by some other
interfering signals. This allows the receiver to isolate the
interfering signals in that subspace and remove them from
the desired signal. Meanwhile, the desired transmitter sends
a signal that is independent of the interference subspace,
occupying a different interference-free subspace.

In certain scenarios, SSIA can increase the symmetric DoF
of TIM over OSIA. By aligning the interfering signals to a
subspace of the receiver’s signal space, SSIA can effectively
suppress interference from multiple sources, allowing for the
simultaneous transmission of more independent data streams.

Figure 4 presents an illustrative example in the context of
TIM problems, where both OSIA and OVIA fail to achieve
the symmetric DoF beyond 1

4 , while SSIA demonstrates the
capability to achieve the symmetric DoF of 1

3 . Specifically,
the messages W11, W22, and W33 all point to (interfere with)
W44, therefore they need to be aligned as much as possible.
At the same time, these three messages form a directed cycle,
indicating that they also need to be distinguished from each
other pairwise. In this case, one of the messages, for example
W33, can be aligned with the subspace spanned by W11 and
W22, while ensuring that they are linearly independent from
each other. Meanwhile, the subspace spanned by W11, W22,
and W33 must do not contain W44, which allows for the
separation of all desired messages from the interfering ones.

If we define the set of all nodes pointing to a node i in the
graph as the in-neighborhood of node i, denoted as N+(i),
then the vector assignment should follow the following two
conditions to meet subspace IA:
C3) Vectors assigned to each message (node) should not

belong to the subspace spanned by the vectors assigned
to its in-neighborhood.

C4) Vectors assigned to in-neighborhood of each node should
occupy as small dimensional subspace as possible.

In the example of Figure 4c, we can generate a 3-dim
subspace spanned by three linearly independent vectors v1 =
[1 0 0]T , v2 = [0 1 0]T and v3 = [0 0 1]T . Then,
we assign beamforming vectors v1, v2, v1 + v2, and v3

to the messages W11, W22, W33, and W44, respectively.
Note here that, the dimension of the interference subspace
spanned by the vectors assigned to the in-neighborhood of
W44 is 2, i.e., dim(span(v1,v2,v1 + v2) = 2, leaving 1-
dim interference-free subspace to W44. Meanwhile, W11, W22,
W33 are pairwise separable, as any two of their beamforming
vectors v1, v2, and v1 + v2 are linearly independent. This
yields an achievable symmtric DoF of 1

3 , which is also optimal.



4) Subspace Vector Interference Alignment (SVIA): When
multiple symbols are transmitted from each source with a
precoding matrix, SVIA seeks to align the interference from
multiple interfering transmitters to a specific subspace within
the receiver’s signal space, while ensuring that a subspace
orthogonal or independent of the interference subspace is
preserved for the desired signals.

Specifically, let b symbols be sent from each source with a
K × b precoding matrix. Similarly to SSIA, SVIA does not
require b K× 1 column vectors of the precoding matrix to be
perfectly aligned with those from other sources in a one-to-one
manner, but rather the subspace spanned by the column vectors
is considered such that the interfering signals are forced to
live in a subspace with reduced dimensionality. As the only
difference between SSIA and SVIA is the number of symbols
each user could send, SVIA can be simply implemented
by repeating SSIA multiple times with carefully designed
beamforming vectors.

III. INTERFERENCE ALIGNMENT VIA VECTOR
ASSIGNMENT

From the aforementioned IA coding schemes, it appears
various IA coding can be implemented by properly generating
beamforming vectors and assigning them to different messages
with certain conditions C1-C4 satisfied. In what follows, we
consider the vector assignment strategies for both one-to-one
and subspace IA.

A. One-to-One IA via Local Coloring

The main challenges of translating OSIA and OVIA into
vector assignments consist of (1) the generation of linearly
independent vectors that span a minimal vector subspace, and
(2) the assignment of these vectors and their combinations to
nodes in the message conflict graph. If we interpret linearly
independent vectors as different colors, then vector assignment
can be alternatively done by color assignment, where the
latter can be efficiently done via off-the-shelf graph coloring
algorithms in the literature, e.g., [31]–[33].

In particular, we employ the techniques of graph local
coloring and graph fractional local coloring to realize vector
assignment for OSIA and OVIA, respectively.

1) Vector Assignment via Local Coloring: Vertex coloring
aims to color the vertices of an undirected graph G such that
no two connected vertices are assigned the same color. This
agrees with C1 of IA. The chromatic number χ(G) of G is
the smallest number of colors needed.

Local vertex coloring is a special variant of vertex coloring
on directed graphs, which was first introduced in [35]. It aims
to color a directed graph Gd = (V, E) with a vertex set V
and an edge set E , while minimizing the number of colors
used in each local in-neighborhood. This agrees with C2 of
IA. The local chromatic number χL(Gd) of Gd is the smallest
number of colors that appeared in the closed in-neighborhood
of any vertex, over all valid vertex coloring on the underlying
undirected graph. The closed in-neighborhood N+

c (i) of a
vertex i is the union of the vertex i and its in-neighborhood,

i.e., j ∈ N+
c (i) iff j = i or (j, i) ∈ E . Let [m] denote the set

{1, 2, . . . ,m} for some integer m.
Definition 2 ((K, r)-local colorable): Let c : V → [K]

be any valid vertex coloring for the graph Gd ignoring the
direction of edges. Then, Gd is (K, r)-local colorable if there
exists some c such that |c(N+

c (i))| ≤ r holds for all i ∈ V .
When K = χ(G) and r = χL(Gd), we have optimal local

coloring built upon optimal vertex coloring. Given such a
coloring assignment, we can generate K vectors with size r
each such that any r of them are linearly independent. By
assigning these vectors to all vertices of the message conflict
graph, we end up with a valid OSIA coding scheme with
dsym = 1

χL(Gd) , which is no less than 1
χ(G) achieved by

orthogonal access (e.g., TDMA) [12] because χL(Gd) ≤ χ(G).
2) Vector Assignment via Fractional Local Coloring: In

fractional coloring, each vertex is assigned a set of colors
rather than just one color, such that no two connected vertices
share any common colors. A fractional coloring with set size b
is referred to as a b-fold coloring. An a : b-coloring refers to a
b-fold coloring with a available colors. The b-fold chromatic
number, denoted as χb(G), is the smallest value of a such
that there exists an a : b-coloring. The fractional chromatic
number, denoted as χf (G), is defined as follows:

χf (G) = lim
b→∞

χb(G)
b

= inf
b

χb(G)
b

. (2)

When b = 1, fractional coloring reduces to a normal coloring.
Fractional local coloring is a fractional version of local col-

oring, aiming to minimize the number of colors used in each
in-neighborhood for any valid fractional coloring. If we regard
the b colors assigned to a node as the b beamforming vectors
assigned to the corresponding message, then the requirements
of fractional local coloring perfectly match those of OVIA.

Definition 3 ((K, r, b)-fractional local colorable): Let c :
V → {{i1, i2, . . . , ib} | 1 ≤ i1 < i2 < · · · < ib ≤ K} be
any valid fractional vertex coloring of size b for the graph Gd
ignoring the direction of edges. Then, Gd is (K, r, b)-fractional
local colorable if there exists some c such that |c(N+(i))| ≤ r
holds for all i ∈ V .

We further define the fractional local chromatic number
χfL(Gd) of Gd to be the smallest number of colors that
appeared in the closed in-neighborhood of any vertex divided
by b, over all valid fractional coloring on the underlying
undirected graph i.e., minc

r
b .

Given such a fractional color assignment, we can generate
K vectors with size r × 1 each such that any r of them
are linearly independent. By assigning these vector sets to all
vertices of the message conflict graph, we end up with a valid
OVIA coding scheme with dsym = 1

χLf (Gd) , which is no less
than 1

χL(G) achieved by OSIA, because χLf (Gd) ≤ χL(G)
[36].

3) Vector Generation via MDS Coding: To generate K vec-
tors with size r so that any r of them are linearly independent,
we resort to maximum distance separable (MDS) coding.



For a q-ary2 code with length n, width k, and minimum
distance d, in short, (n, k, d)q code, the Singleton bound [37]
states that d ≤ n−k+1. A code which meets this bound, i.e.,
d = n−k+1 is called MDS code, such as the Reed Solomon
code. It provides the best error-correction capabilities due to
their maximum distance among all codes. A (n, k) MDS code
is a set of n vectors with length k. Every k columns of the
generator matrix Gk×n are linearly independent.

To summarize, OSIA via local coloring for TIM coding can
be conducted as follows. Given a TIM instance with message
conflict graph Gd, and suppose a (K, r)-local coloring strategy
on Gd is already obtained, one can first create a (K, r) MDS
code with generator matrix Gr×K . Then, by assigning each
column of G to each color class, the column assigned to any
node i is distinct and linearly independent from the columns
assigned to the nodes pointed to i. The former comes from
the rule of vertex coloring, and the latter is true because the
number of colors in each in-neighborhood is at most r, and
every r columns of G are linearly independent. Therefore, all
destinations will be able to decode the demanded messages, as
the interfering signals are perfectly aligned with a (r−1)-dim
subspace, leaving 1-dim clean subspace to recover the desired
message. An example of this process is shown in Figure 5 with
K = 4 and r = 3, and the IA coding yields dsym = 1

r = 1
3 .

The process of conducting OVIA via fractional local color-
ing for TIM coding is analogous to the scalar case. Given a
TIM instance with a message conflict graph Gd, and assuming
a (K, r, b)-fractional local coloring strategy on Gd has been ob-
tained, one can first create a (K, r) MDS code with a generator
matrix Gr×K . Subsequently, by assigning each column of G
to each color class, the b columns assigned to any node i will
be distinct and linearly independent from the columns assigned
to the nodes pointed to by i. This property is guaranteed by the
rule of fractional vertex coloring, which ensures that adjacent
vertices receive disjoint sets of columns, and the fact that every
r columns of G are linearly independent. Consequently, all
destinations will be able to decode the demanded messages,
as the interfering signals are perfectly aligned within an (r−b)-
dimensional subspace, leaving a b-dimensional clean subspace
to recover the desired message. Hence, dsym = b

r . Note that
when b = 1, OVIA reduces to OSIA. Figure 3 is an example
with K = r = 5, b = 2 and dsym = 2

5 .

B. Subspace IA via Matrix Rank Reduction

While subspace IA can still be implemented using vector
assignment as one-to-one IA, there are two different points:
(1) Vector assignment should be done in a different way, as
the graph coloring is not adequate to specify the overlap of
different subspaces (cf. partial subspace alignment); (2) Vector
generation should be done differently, as linearly independent
vectors are not sufficient to meet the demands of subspace
alignment, and therefore, MDS codes will not be used to
generate beamforming vectors. To tackle these points, we

2The field size can be relaxed to infinite (i.e., the field of real/complex
numbers) when considering the performance metric of DoF.

Fig. 5. An example of designing MDS code through local coloring to solve
TIM instance.

propose a new vector assignment method with matrix rank
reduction and a new way to generate beamforming vectors,
which are tailored to subspace IA.

1) Vector Assignment via Matrix Rank Reduction: Let us
assume that each node i ∈ V is assigned b beamforming
vectors with size x × 1, which are concatenated to form
a matrix Ai, regardless of the order of vectors. Then we
define the dimension of the subspace spanned by the assigned
beamforming vectors in i’s in-neighborhood N+(i) as

rN (i) = rank(⊕j∈N+(i)Aj), (3)

where ⊕ represents the matrix concatenation along the first
dimension. Similarly, we can define the dimension of the
subspace spanned by the assigned beamforming vectors in i’s
closed in-neighborhood N+

c (i) as

rcN (i) = rank(⊕j∈N+
c (i)Aj). (4)

Next, we specify the requirements of matrix rank reduction
as follows:

1) For each node i in Gd, it must satisfy

rcN (i)− rN (i) = b, (5)

where b is the number of assigned beamforming vectors
for each node. This requirement meets the condition C3.

2) rcN (i) to be as small as possible, meeting condition C4.
We then define the so-called (r, b)-matrix rank reducible:
Definition 4 ((r, b)-matrix rank reducible): Let c : V → ~V b

be any vertex assignment for the graph Gd, where ~V denotes
the set of all vectors assigned to Gd. Then, Gd is r-matrix rank
reducible if there exists some c such that both equation 5 and

max
i∈V

rcN (i) ≤ r (6)

hold.
In fact, we can prove that a vector assignment scheme

satisfying (5) is decodable. Since span(⊕j∈N+
c (i)Aj) ⊇

span(⊕j∈N+(i)Aj), we have rcN (i)− rN (i) = b if and only
if rank(Ai) = b and span(Ai) ∩ span(⊕j∈N+(i)Aj) = ∅, for
every i. Therefore, if (5) is satisfied, the vectors assigned to
each node i are mutually independent and not contained in the
subspace spanned by the assigned vectors in N+(i). Hence,
each user i would be able to decode the desired message.



We explain why we need to minimize rcN (i) to increase the
symmetric DoF. Since dsym = b

x , to increase DoF as much as
possible, we need to minimize the vector size x. For a given
vector assignment scheme, we have

x ≥ max
i∈V

rcN (i). (7)

Otherwise, there would not exist a matrix of any x×1 vectors
with rank rcN (i). Therefore, we choose x = maxi∈V rcN (i)
to ensure that the vectors are separable, and hence, it is crucial
to minimize rcN (i).

2) Vector Generation: As mentioned earlier, vectors used
for subspace IA usually require special design [38], [39].
Thanks to the efficiency of reinforcement learning, we do
not need to design vectors in a special way as in traditional
methods. Instead, we directly generate all “0-1” vectors of a
given size x × 1 corresponding to different subspace, i.e., a
total of 2x − 1 vectors excluding the all “0” vector. In the
example of Figure 4, we generate 23 − 1 = 7 vectors, which
correspond to all possible subspace1

0
0

,
0
1
0

,
0
0
1

,
1
1
0

,
1
0
1

,
0
1
1

,
1
1
1

. (8)

It is worth noting that we use the placeholder “1” to in-
dicate that the corresponding subspace is occupied and “0”
otherwise. The task of assigning which vectors which node is
delegated to the Matrix Rank Reduction algorithm. In practice,
only a small subset of these vectors may be actually used.

IV. LEARNING TO CODE ON GRAPHS

In what follows, we propose different ways for the learning
to code on graphs (LCG) framework to implement vector
assignment for one-to-one and subspace IA.

A. Learning for Local Coloring
For the one-to-one IA, while vector generation can be

readily done by MDS code construction, it is challenging to
assign vectors via local coloring in a systematic way. Even
worse, there do not exist general local coloring algorithms
in the literature. To address this challenge, we adopt a deep
reinforcement learning (RL) approach [40] to the (K, r)-local
coloring problem.

1) Overview of Our LCG Approach: The RL approach to
the (K, r)-local coloring takes the directed graph Gd, message
conflict graph, as the input and output a valid color assignment
with in total K colors and at most r colors in the closed in-
neighborhood of any node.

Let Gd = (V, E). First, we utilize a K-selector to roughly
estimate K as an input to RL, as shown in Figure 1. For
instance, one can use the greedy method to initialize K,
and then repeat the RL method with decreasing K. At each
iteration, the agent (policy network) gives a color from the
color set to some of the undetermined vertices and defers
the remaining vertices to later iterations. This process will
be repeated until all vertices have been given colors. The RL
procedure can be represented as Markov decision processes
(MDP) with four essential components:

a) State: For each stage of the MDP, we define the
RL state as a vertex-state vector s = [si : i ∈ V] ∈
{1, 2, . . . ,K, 0}V , where si = k represents that vertex i is
assigned color “k”, k ∈ [K], and si = 0 represents vertex i
was decided to be deferred. The vertex-state is initialized to
all “deferred”, i.e., s0 = [0 : i ∈ V], and the algorithm is
terminated when all nodes have been colored or have reached
the time limit B.

b) Action: Given a state s, the agent will output a
corresponding action a0 = [ai : i ∈ V0] ∈ {1, 2, . . . ,K, 0}V0
towards deferred nodes set V0. The nodes that have been
colored in previous stages will not be given any new action.
Similarly to the state, the vertex i is assigned color “k” when
ai = k, or deferred when ai = 0.

c) Transition: There are two versions of transition: col-
oring and (K, r)-local coloring.
• For coloring, the RL transits from state s to the next state

s′ through two steps: update and clean-up-I. In the update
step, RL overwrites the deferred part of the previous
state with the action a0, resulting in an intermediate
state s′′, i.e., s′′i = ai for i ∈ V0 and s′′i = si
otherwise. In the clean-up-I step, RL identifies nodes that
are adjacent but assigned the same color, which violates
the rules of coloring. These nodes are then mapped back
to “deferred”. Note that even if the vertex i is already
colored in previous iterations, it remains possible to be
rolled back.

• For local coloring, the algorithm will perform one more
step: clean-up-II. In this step, the closed in-neighborhood
N+(i) of vertex i whose number of in-color larger than
r, i.e., {N+(i) : |c(N+(i))| > r, i ∈ V}, will be rolled
back to the “deferred”. Since such a (K, r)-local coloring
scheme does not always exist, if the algorithm does not
terminate after reaching the time limit αT , clean-up-II
will be discarded. This ensures that the model first tries to
find a (K, r)-local coloring scheme, and if that fails, finds
a K-coloring scheme. See Figure 6 for a more detailed
illustration of the transition between two states.

Fig. 6. Illustration of the transition process.

d) Reward: We define the reward for taking an action in
a state. The reward is the sum of two parts: the cardinality
reward Rc, and the early-terminated reward Rt, i.e.,

R = Rc + βRt, (9)



as described in Section IV-A2.
The policy network learns through repeated episodes (se-

quences of states, actions, and rewards) to adopt actions that
maximize cumulative reward. Given the cumulative reward for
each placement, we utilize proximal policy optimization (PPO)
[41] to update the policy network’s parameters.

2) Reward: We consider two types of rewards.
a) Cardinality Reward: Suppose the MDP transits from

state s to state s′, the cardinality reward is defined as

Rc(s, s
′) =

∑
i∈V\V′

0

1−
∑

i∈V\V0

1. (10)

This will reward the agent if more nodes are assigned in the
new state. If an action causes more rollbacks than are assigned,
the model gets a negative reward. By doing so, RL tends to
extend the cardinality of the successfully assigned node set.

b) Early-terminated Reward: In order to encourage the
model to make decisions as fast as possible, the model is
rewarded with Rt when the algorithm terminates at time t
and given the time limit B, where

Rt =
B − t
B

. (11)

Our experiments have demonstrated that this significantly
increases the speed of training.

3) Policy and Value Network Architecture: Our model uses
Actor-Critic reinforcement learning based on graph convolu-
tional neural networks (GCNN). Both policy network π(a|s)
and value network q(s,a) consist of 4-layers GraphSAGE
networks [42] with GCN aggregator [43]. The n-th layer
performs the following transformation on input H:

h(n)(H) = ReLU(HW
(n)
1 +D−

1
2BD−

1
2HW

(n)
2 ),(12)

where B and D represent the adjacency matrix and degree
matrix, respectively. W (n)

1 and W
(n)
2 are the weights updated

during the training process. To create actions and value esti-
mations at the final layer, the policy and value networks use
softmax and graph read-out functions with sum pooling [44]
instead of ReLU. The neural network’s input features are the
current iteration-index of the MDP and the sum of the one-hot
encoding of the neighbor’s state. Thanks to these features, we
only take the subgraph induced on the deferred vertices V0 as
the input of the networks.

B. Learning for Fractional Local Coloring

For one-to-one vector IA, we utilize the technique of node
splitting to transform fractional local coloring in the original
graph into a more conventional local coloring problem on a
reconstructed graph. Through the construction of a refined b-
order node splitting graph, we embark on a local coloring
endeavor within this intricately crafted graph. Each node
undergoes meticulous splitting, assigning a solitary color to
each constituent node within the splitting graph. However, the
key of this approach lies in the amalgamation of the split nodes
belonging to each original node, thereby unveiling a remark-
able fractional local coloring scheme for the original graph.

This transformation grants us the privilege of seamlessly ap-
plying the well-established LCG method, which we previously
proposed, to efficiently resolve the local coloring predicament
within the node splitting graph, ultimately surmounting the
challenges posed by the fractional local coloring problem in
the original graph.

Definition 5 (b-order node splitting graph): Let G = (V, E)
be a directed graph, and let b be a positive integer. The b-
order node splitting graph of G, denoted as G′b = (V ′b, E ′b), is
defined as follows: Each original node v ∈ V is split into b
nodes v1, v2, . . . , vb such that

V ′b = {v1, v2, . . . , vb | v ∈ V}. (13)

For each edge (u, v) ∈ E , there exist b2 edges {(ui, vj) | 1 ≤
i, j ≤ b} in E ′b. Moreover, the b split nodes of each original
node are fully connected. That is,

E ′b ={(ui, vj) | (u, v) ∈ E , 1 ≤ i, j ≤ b} (14)
∪ {(vi, vj) | v ∈ V, 1 ≤ i, j ≤ b, i 6= j}. (15)

In other words, the b-order node splitting graph3 is obtained
by splitting each node in the original graph into b directed fully
connected nodes, and then connecting each split node of u to
each split node of v, if u points to v in the original graph.

Fig. 7. Illustration of node splitting and merging.

Figure 7 showcases an example for the generation of a 2-
order node splitting graph, the subsequent application of local
coloring on the splitting graph, and the subsequent merger of
the splitting graph and coloring scheme back into the original
graph to yield a fractional local coloring scheme.

The proof establishing that a valid (K, r)-local coloring of
a b-order node splitting graph G′b can be seamlessly merged
to produce a valid (K, r, b)-fractional local coloring of the
original graph G is straightforward and can be derived directly
from the underlying definitions. In essence, we have effectively
expanded the scope of the LCG method to address the frac-
tional local coloring problem by employing a combination of
node splitting and merging techniques.

C. Learning for Matrix Rank Reduction

For the subspace IA, our proposed LCG framework to
address the (r, b)-matrix rank reduction problem follows a
similar one used for solving the local coloring problem.
However, there are specific differences in the construction of

3The b-order node splitting graph can be seen as the Cartesian product of
the original conflict graph and the directed clique of size b.



the MDP to accommodate the matrix rank reduction condition.
These differences primarily manifest in the design of new
state-decision pairs and the transition mechanism tailored for
matrix rank reduction. It is important to note that in our
analysis, we assume b = 1, corresponding to the subspace
scalar IA, as the case of b > 1 can be effectively resolved using
the node splitting technique, similar to resolving fractional
local coloring.

In the RL approach to matrix rank reduction, the message
conflict graph Gd = (V, E) and the rank parameter r are pro-
vided as inputs. The RL procedure outputs a vector assignment
scheme satisfying the eq. 5 with a vector size of x = r × 1.
To start the process, we generate a vector set ~V that consists
of all possible vectors. The size of this vector set is 2r − 1,
as explained in Section III-B2. At each iteration, the agent
selects some vectors from ~V and assigns them to some of the
undetermined vertices (one vertix will be assigned at most one
vector) while deferring the remaining vertices for subsequent
iterations. This iterative process continues until all vertices
have been assigned vectors.

The components of MDP are following:
a) State: For each stage of the MDP, we define the RL

state as a vertex-state vector s = [si : i ∈ V] ∈ {1, 2, . . . , 2r−
1, 0}V , where si = k represents that vertex i is assigned vector
vk, vk ∈ ~V , and si = 0 represents vertex i was decided to be
deferred. The vertex-state is initialized to all “deferred”, i.e.,
s0 = [0 : i ∈ V], and the algorithm is terminated when all
nodes have been assigned or have reached the time limit B.

b) Action: Given a state s, the agent will output a cor-
responding action a0 = [ai : i ∈ V0] ∈ {1, 2, . . . , 2r − 1, 0}V0
towards deferred nodes set V0. The nodes that have been
assigned vector in previous stages will not be given any new
action. The vertex i is assigned vector vk when ai = k, or
deferred when ai = 0.

c) Transition: The RL transits from state s to the next
state s′ through two steps: update and clean-up. The update
step is the same as the one in IV-A1. In the clean-up step, RL
computes the values of rN (i) and rcN (i) for each vertex i, and
then rolls back the state of the vertex and its in-neighborhood
to “deferred” if the condition 5, rcN (i) − rN (i) = 1, is not
satisfied.

The reward function and network architecture remain un-
changed, and therefore will not be further elaborated upon in
this context.

V. EXPERIMENTS

In this section, the proposed LCG framework is evalu-
ated with extensive experiments for coloring, local coloring,
fractional local coloring, and matrix rand reduction against a
variety of TIM instances.4

Dataset generation: To thoroughly assess the efficacy of
the proposed LCG method in comparison to other approxima-
tion or heuristic algorithms for graph coloring schemes, we

4The detailed experiment setups and implementation are available at https:
//github.com/ZhiweiShan/Learning-to-Code-on-Graphs

generate diverse types of random bipartite graphs as network
topology graphs. Specifically, we consider Erdős-Rényi (ER)
graphs [45], preferential attachment (PA) graphs [46], Havel-
Hakimi (HH) graphs [47], [48], and wireless network simu-
lation graphs (Wireless Net) [49]. Additionally, we directly
generate random geometric (GEO) graphs [50] and Barabasi-
Albert (BA) graphs [51] as message conflict graphs to assess
their transferability.

To classify the datasets, we determine their chromatic num-
bers by solving linear programming problems using Gurobi
[52]. The size of each bipartite graph is presented in pairs,
representing the number of nodes in both node sets. For
instance, (30, 30) denotes a network comprising 30 source
nodes and 30 destination nodes.

For a comprehensive understanding of the graph instance
generation process, we refer the reader to Appendix A, where
complete details are provided.

LCG with RL: In our LCG approach, we generate a total
of 50,000 graphs for training and 5,000 graphs for evaluation,
employing various random parameter settings. These graphs
are subsequently categorized into multiple datasets based on
their chromatic numbers, which serve as the basis for both the
training and evaluation stages. The hyperparameters utilized
in our approach can be found in Appendix B. Notably, the
number of colors K is set equal to the chromatic number of
each dataset.

It is important to mention that, for testing all the local col-
oring, fractional local coloring and matrix rank reduction, we
employ the model trained on the coloring problem using ER
graphs. The only distinction lies in utilizing the corresponding
versions of the Markov Decision Process (MDP) transition, as
outlined in Section IV-A1 and IV-C.

Baselines: We compare our method to two heuristic algo-
rithms: the smallest-last greedy method with the interchange
(SLI) [31], [32] and TabuCol [33]. The smallest-last greedy
method is a simple yet powerful approach. It assigns each
vertex in a sequential manner to the lowest indexed color that
does not result in any conflicts, and it adds new colors when
necessary. The interchange technique is employed to enhance
the effectiveness of any sequential coloring algorithm.

TabuCol, on the other hand, is a well-studied heuristic based
on Tabu local search. In this method, the chromatic number
is assumed to be given, and we set the maximum number of
iterations for TabuCol to 1000.

All our experiments are performed using a single GPU
(NVIDIA A100 40 GB) and a single CPU (AMD EPYC 7452).

A. Experiments for Coloring

To assess the quality of the solutions, we measure the
optimal ratio, which represents the proportion of graphs that
can be colored using χ(G) colors out of the total number
of graphs. The performance results are presented in Table I,
encompassing various general coloring problems.

Notably, our LCG model consistently achieves the highest
optimal ratios across all datasets, outperforming other meth-
ods. Moreover, LCG exhibits superior computational efficiency



compared to the SLI greedy method in most cases. Although
the SLI algorithm demonstrates relatively poorer performance,
it offers the advantage of faster execution time, as anticipated,
when compared to TabuCol.

TABLE I
OPTIMAL RATIO ON TEST GRAPHS, WHERE THE BEST RATIOS ARE

MARKED IN BOLD. RUNNING TIMES (IN SECONDS) ARE PROVIDED IN
BRACKETS. IN THIS TABLE, TRAINING AND TESTING USE DATA FROM THE

SAME DISTRIBUTION.

Type N χ SLI TabuCol LCG

ER
(15, 15) 5 0.98 (1.83) 1 (9.58) 1 (2.38)

6 0.99 (0.68) 1 (2.53) 1 (1.79)

(30, 30) 7 0.73 (7.28) 0.87 (1677) 0.92 (5.10)
8 0.85 (15.8) 0.92 (2699) 0.94 (8.59)

PA
(15, 15) 5 1 (4.58) 1 (25.9) 1 (2.55)

6 1 (4.38) 1 (23.9) 1 (2.53)

(30, 30) 7 0.99 (4.46) 1 (100) 1 (2.98)
8 1 (5.41) 1 (103) 1 (3.47)

HH
(15, 15) 5 1 (5.23) 1 (44.8) 1 (3.05)

6 1 (4.54) 1 (36.8) 1 (2.85)

(30, 30) 7 0.99 (5.35) 1 (258) 1 (3.58)
8 0.99 (9.19) 1 (356) 1 (5.22)

Wireless Net
(15, 15) 5 0.94 (9.64) 1 (406) 1 (5.06)

6 1 (10.6) 1 (169) 1 (5.41)

(30, 30) 7 0.88 (28.5) 0.97 (3602) 0.99 (13.2)
8 0.99 (10.8) 0.99 (497) 1 (6.36)

B. Experiments for Local Coloring

We evaluate the performance of LCG in solving the (K,K−
1)-local coloring problem. As LCG is the first algorithm
designed for this specific problem, we do not include compar-
isons with other algorithms. We conduct local coloring tests
on wireless networks with sizes of (15, 15) and (30, 30).

Figure 8 provides a summary of the results. Subfigure (a)
shows the results for the (15, 15) nodes Wireless Net, while
subfigure (b) shows the results for the (30, 30) nodes Wireless
Net. Each dataset consists of 100 graphs.

For example, in the (15, 15) nodes dataset with a density of
0.3 and a chromatic number of 7, the highest achieved ratio is
approximately 0.29. This indicates that approximately 29% of
the generated TIM instances exhibit suboptimal performance
with TDMA and can benefit from using IA coding schemes
instead of orthogonal access [12].

(a) (15, 15) nodes Wireless Net. (b) (30, 30) nodes Wireless Net.

Fig. 8. Successful local coloring ratio on Wireless Network graphs with
different size and density. Each dataset contains 100 graphs.

C. Experiments for Fractional Local Coloring

We test the ability of LCG with node splitting to handle the
(K, r, b)-fractional coloring problem, i.e. OVIA. We perform
the tests on a randomly generated set of 431 Wireless Nets
with N = (8, 8) and χ = 3, considering various values of b
and r. The original graph was directly used for testing OSIA,
while it was transformed into a 2-order node splitting graph
and a 3-order node splitting graph for testing 2-dim OVIA and
3-dim OVIA, respectively.

We present the number of cases achieving different dsym =
b
r values under different methods (i.e., different choices of b)
in Table II. From the results presented, we can see that LCG
with node splitting is an effective approach for addressing the
(K, r, b)-fractional coloring problem. Specifically, while both
OSIA and 2-dim OVIA were able to achieve 4 cases with
dsym = 1/2, 2-dim OVIA was able to achieve an additional
13−4 = 9 cases with dsym = 2/5, making it a stronger method
than OSIA, as expected. Additionally, 3-dim OVIA was able to
achieve 5−4 = 1 additional case with dsym = 3/7, making it
stronger than both OSIA and 2-dim OVIA. However, it should
be noted that those 13 cases with dsym = 3/8 achieved a
higher dsym = 2/5 in 2-dim OVIA. This is because these
methods are only able to produce fractional results, and not
continuous ones. Based on this, we can speculate that the
optimal dsym for these examples lie in the range [2/5, 3/7).

TABLE II
NUMBER OF CASES ACHIEVING DIFFERENT SYMMETRIC DOF UNDER

OSIA AND OVIA. “/" INDICATES NOT APPLICABLE

Method
dsym 1/3 3/8 2/5 3/7 1/2

OSIA 431 / / / 4
2-dim OVIA 431 / 13 / 4
3-dim OVIA 431 13 / 5 4

D. Experiments for Matrix Rank Reduction

We test the ability of LCG to handle the (r, 1)-matrix rank
reduction problem, i.e., SSIA. We perform the tests on a
randomly generated set of 577 Wireless Nets with N = (15,
15) and χ = 4, considering r = 4, 3. As a comparison, we
also tested the performance of (4, r)-fractional coloring on the
same dataset. As shown in the Table III, both methods were
able to achieve dsym = 1/4 for all cases, which is the limit
that conventional orthogonal access approaches can achieve.
For dsym = 1/3, OSIA was able to achieve it for 10% of the
cases (60 out of 431), while SSIA was able to achieve it for
18% of the cases (106 out of 431), which is 8% more cases
than OSIA.

TABLE III
NUMBER OF CASES ACHIEVING DIFFERENT SYMMETRIC DOF UNDER

OSIA AND SSIA

Method
dsym 1/4 1/3

OSIA 577 60
SSIA 577 106



E. Performance Evaluation for Wireless Networks

Given the focus of the TIM problem on wireless net-
works, wireless network topologies hold particular signifi-
cance. Leveraging the high generalization and transferability
of our LCG model, we train it on ER graphs with (15, 15) and
(30, 30) nodes and evaluate its performance on Wireless Net
graphs with nodes ranging up to (100, 100). A comprehensive
summary of the results is presented in Table IV.

The outcomes clearly demonstrate the feasibility of training
LCG on small-scale ER graphs and utilizing it effectively
for large-scale network simulation graphs. This exemplifies
the scalability and adaptability of our model across diverse
wireless network scenarios. For more specific information
regarding the parameters employed in generating wireless
network topologies, please refer to Appendix A.

TABLE IV
OPTIMAL RATIO FOR WIRELESS NETWORK SIMULATION GRAPHS. EACH
TEST DATASET IS FILTERED FROM 5000 TEST GRAPHS ACCORDING TO χ.

Training on
ER graph Test on Wireless Net graph

N χ N SLI TabuCol LCG

(15, 15)

5
(30, 30) 0.85 (20.8) 0.98 (976) 1 (12.4)
(50, 50) 0.96 (23.2) 0.99 (10421) 1 (20.7)

(100, 100) 0.99 (39.5) 0.99 (7142) 1 (29.5)

6
(30, 30) 0.99 (13.1) 1 (263) 1 (10.1)
(50, 50) 0.99 (8.98) 1 (1136) 1 (7.32)

(100, 100) 0.99 (8.42) 1 (593) 1 (6.54)

(30, 30)

7
(30, 30) 0.88 (25.6) 0.97 (1718) 0.99 (21.8)
(50, 50) 0.97 (34.9) 0.99 (1727) 0.99 (13.8)

(100, 100) 0.92 (12.3) 0.92 (7729) 0.99 (11.7)

8
(30, 30) 0.99 (15.4) 1 (250) 1 (10.4)
(50, 50) 1 (6.41) 1 (160) 1 (3.83)

(100, 100) 0.99 (3.22) 0.99 (560) 1 (4.14)

F. Generalization and Transferability

Finally, we conduct an evaluation of the generalization
and transferability of our method, specifically examining its
performance on unseen graph types and varying sizes. To
investigate this, we train the LCG model on ER graphs of
different sizes and subsequently test its generalization ability
on ER, HH, GEO, and BA graphs. The comprehensive results
are presented in Table V.

The outcomes clearly demonstrate that our LCG model
exhibits excellent performance on unseen graph types and
sizes. This inherent capability is advantageous as it allows
us to train LCG on a specific graph type without the need to
consider the graph type during testing. This flexibility greatly
enhances the applicability and versatility of our method across
diverse graph scenarios.

VI. CONCLUSION

Building upon the relation between interference alignment
and local graph coloring, we proposed a learning to code on
graphs (LCG) framework for the TIM problems, leveraging
deep reinforcement learning for graph coloring. By exploiting
local coloring of message conflict graphs, LCG automatically
assign colors (coding vectors) to different messages so as to

TABLE V
OPTIMAL RATIO ON GRAPHS FROM DIFFERENT TYPES AND SIZE GRAPHS.

EACH DATASET IS FILTERED FROM 5000 TEST GRAPHS BY χ = 7.

Train
Test ER

(15, 15)
ER

(20, 20)
ER

(25, 25)
ER

(30, 30)
HH
20

Geo
50

BA
50

ER (15, 15) 0.999 0.995 0.996 0.934 1 1 0.998
ER (20, 20) 1 0.993 0.996 0.944 1 1 0.996
ER (25, 25) 0.997 0.993 0.996 0.928 1 1 0.997
ER (30, 30) 1 0.993 0.995 0.925 1 1 0.995

achieve one-to-one interference alignment (IA). The proposed
LCG framework was further extended to the vector version
of one-to-one IA and subspace IA to discover new advanced
IA coding schemes. A comprehensive experimental evaluation
of the proposed framework demonstrates its effectiveness in
coloring and local coloring. As the first learning-to-code ap-
proach to the TIM problem, we hope this work could stimulate
the future development of coding techniques, bringing in new
advances from machine learning.
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APPENDIX A
DATASET DETAILS

We train on graphs randomly generated based on variant
specific parameters. 50,000 graphs were generated and sep-
arated according to the chromatic number for training, and
5,000 graphs for evaluation.
• The specific parameters for random graphs in Table I,

IV, V are shown in Table VI, VII, VIII separately. q
represents the percent of randomly choosing demanded
messages.

• For Wireless Net, we randomly distribute transmitters and
receivers within a square area of 1,000 m × 1,000 m. As
in [49], the simulated channel follows the LoS model
in ITU-1411. The carrier frequency is 2.4 GHz, antenna
height is 1.5 m, and the antenna gain per device is -2.5
dB. The noise power spectral density is -174 dBm/Hz,
and the noise figure is 7 dB. Each pair of transmitter and
receiver is uniformly spaced within [2, 65] meters. Each
link is expected to operate over a 10 MHz spectrum and
the maximum transmit power is 30 dBm.

TABLE VI
SPECIFIC PARAMETERS FOR GENERATING GRAPH IN TABLE I. WIRELESS
NET FOLLOWS ALL-UNICAST SETTING, THEREFORE Q DOES NOT APPLY.

Type N q Specific parameters

ER
(15, 15)

0.2

Probability for edge creation = 0.2

(30, 30) Probability for edge creation = 0.2

PA
(15, 15) Probability that a new bottom node is added = 0.2

Max degree of the random degree sequence = 7

(30, 30) Probability that a new bottom node is added = 0.2
Max degree of the random degree sequence = 6

HH
(15, 15) Max degree of the random degree sequence = 6

(30, 30) Max degree of the random degree sequence = 8

Wireless
Net

(15, 15)
\

Topological density = 0.4

(30, 30) Topological density = 0.3

TABLE VII
SPECIFIC PARAMETERS FOR GENERATING GRAPH IN TABLE V.

Type N q Specific parameters

ER

(15, 15)

0.2

Probability for edge creation = 0.3
(20, 20) Probability for edge creation = 0.25
(25, 25) Probability for edge creation = 0.2
(30, 30) Probability for edge creation = 0.2

HH (20, 20) Max degree of the random degree sequence = 7
GEO 50 \ Distance threshold value = 0.2

BA 50 Number of edges to attach from
a new node to existing nodes = 7

APPENDIX B
IMPLEMENTATION OF LCG

We use the same hyperparameters for each experiments,
except for the maximum iterations per episode B. Evaluation
result in Table I and Table V is obtained by setting B = 32,
while that of Table IV is obtained by setting B = 64. Policy

TABLE VIII
SPECIFIC PARAMETERS FOR GENERATING GRAPH IN TABLE IV.

Type N q Specific parameters

ER (15, 15) 0.2 Probability for edge creation = 0.2
(30, 30) Probability for edge creation = 0.2

Wireless
Net

(30, 30)
\

Channel magnitude percentile threshold value = 0.2 (0.3)
for chromatic number 5, 6 (7, 8)

(50, 50) Channel magnitude percentile threshold value = 0.1 (0.15)
for chromatic number 5, 6 (7, 8)

(100, 100) Channel magnitude percentile threshold value = 0.04 (0.08)
for chromatic number 5, 6 (7, 8)

and value networks were parameterized using a graph convo-
lutional network with four layers and 128 hidden dimensions.
Using the Adam optimizer with a learning rate of 0.001,
each instance of the model was trained for 5,000 iterations
of proximal policy optimization [41]. For each instance, we
calculate 20 cases in parallel and select the best results to
report. The gradient norms were clipped by 0.2. As a function
of the number of vertices in a dataset, the cardinality reward
is normalized by this number.


