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Abstract—In this paper, we study the computation of the rate-
distortion-perception function (RDPF) for discrete memoryless
sources subject to a single-letter average distortion constraint
and a perception constraint that belongs to the family of f -
divergences. For that, we leverage the fact that RDPF, assuming
mild regularity conditions on the perception constraint, forms
a convex programming problem. We first develop parametric
characterizations of the optimal solution and utilize them in an
alternating minimization approach for which we prove conver-
gence guarantees. The resulting structure of the iterations of the
alternating minimization approach renders the implementation of
a generalized Blahut-Arimoto (BA) type of algorithm infeasible.
To overcome this difficulty, we propose a relaxed formulation
of the structure of the iterations in the alternating minimization
approach, which allows for the implementation of an approximate
iterative scheme. This approximation is shown, via the derivation
of necessary and sufficient conditions, to guarantee convergence
to a globally optimal solution. We also provide sufficient con-
ditions on the distortion and the perception constraints which
guarantee that our algorithm converges exponentially fast. We
corroborate our theoretical results with numerical simulations,
and we draw connections with existing results.

I. INTRODUCTION

The theoretical framework of rate distortion theory subject

to a single-letter average distortion constraint stems from the

seminal work of Shannon in [1], [2]. Therein, Shannon de-

scribed, for the first time, the fundamental trade-offs between

the desired bit rate used for a compressed representation of the

source messages and the associated achievable distortion crite-

rion attained between the source message and its reconstructed

representation. The mathematical representation in rate dis-

tortion theory is manifested by the rate-distortion function

(RDF). Rate distortion theory has been the foundational basis

to study and develop lossy compression algorithms for various

multimedia applications.

In recent years, it has been shown through multiple works,

spanning from machine learning and computer vision to

multimedia applications [3]–[8], that focusing exclusively on

distortion minimization does not necessarily imply a good per-

ceptual quality of the reconstructed signal, where perceptual

quality refers to the property of a sample to appear visually

pleasing from a human perspective. Motivated by the need

for a general characterization of RDF to enable encompassing

the perceptual quality of the sample, Blau and Michaeli in [9]

introduced a generalization of the single-letter RDF, coined

rate-distortion-perception function (RDPF). The specific in-

formation theoretic characterization complements the classical

single-letter distortion constraint between a source message

and its reconstruction, which is inherent in RDF formulation,

with a divergence constraint between the induced distributions

of the source and its estimated value. The divergence constraint

in RDPF is precisely used as a proxy of the human perception,

measuring the degree of satisfaction in the consumption of the

data from a human perspective. The divergence constraint can

also be viewed as a semantic quality metric, which measures

the degree of relevance of the reconstructed source from the

perspective of the observer, a point first hinted at in [10].

Another relevant yet different setup is the recently introduced

robust source coding framework, see, e.g., [11] (and references

therein), in which in place of the perception quality, there

exists an additional distortion criterion.

Since its conception, RDPF has received substantial interest

from the information theory community. Theis and Wagner in

[12] proved that the RDPF can be achieved via stochastic,

variable-length codes by making use of a strong functional

representation lemma [13], whereas Chen et al. in [14] studied

the role of stochasticity in the encoder/decoder structure and

proved the achievability of the RDPF by deterministic codes

(except certain extreme cases) in the asymptotic regime. Wag-

ner in [15] considered the case of perfect perceptual quality

in the definition of RDPF and devised a coding theorem that

allows for a specified amount of common randomness between

the encoder and decoder.

It should be emphasized that similarly to the classical RDF,

there are no known closed-form representations of the RDPF

for general alphabet sources. In fact, there are only a few

examples in the literature where analytical expressions are

provided for the RDPF, such as the case of binary sources

subject to Hamming distortion and total variation distance [9],

[16] or the case of a Gaussian source subject to a mean-squared

error distortion and a 2-Wasserstein distance [4].

In this paper, we focus on the computation of the RDPF for

discrete memoryless sources subject to a single-letter average

distortion constraint and a perception constraint that belongs

to the class of f -divergences1. In particular, we leverage the

fact that under mild regularity conditions on the perception

constraint (i.e., convexity on the second argument) the RDPF

forms a convex program. This enables us to derive a parametric

characterization of the optimal solution of the RDPF (Lemma

1For a mathematical background on f -divergences and their properties we
refer the reader to [17].
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1), which is subsequently utilized to construct an alternating

minimization procedure2 for which we also establish con-

vergence guarantees (Theorem 2). The resulting structure of

the iterations in Theorem 2 prohibits the implementation of

a generic Blahut-Arimoto (BA) algorithm similar to what is

already known for the classical rate distortion theory for i. i. d
sources and single-letter distortions [20]. To overcome this

technical difficulty, we introduce a new relaxed formulation

of the structure of the iterations in Theorem 2, which results

in a variant of an approximate BA algorithm (Theorem 3).

Additionally, in Theorem 3, we derive necessary and suffi-

cient conditions to ensure that our approximation algorithm

converges to a globally optimal solution. In light of our

result in Theorem 3, we also provide sufficient conditions on

the structure of the distortion and the perception constraints

based on which our algorithm converges exponentially fast

(Theorems 6, 7). We corroborate our theoretical findings with

numerical simulations and draw comparisons with existing

results in the literature (Section V).

Notation: We denote with px(x) the probability distri-

bution over the source alphabet X evaluated on the symbol x,

and by qx̂(x̂) any arbitrary marginal probability on the output

alphabet X̂ evaluated on the symbol x̂. Qx̂|x(x̂|x) denotes the

entry (x̂, x) of the transition matrix Q
x̂|x while Qx̂(x̂) denotes

the marginal on X̂ induced by px and Q
x̂|x, evaluated on the

symbol x̂. We denote by E[·] the expectation operator, and by

Eq[·] the probability distribution q on which the expectation

operator is applied. We denote by p1[p2] the explicit form of

the functional dependence of some probability distribution p1
functionally dependent on another probability distribution p2.

We denote by D(·||·) any divergence measure and by Df (·||·),
DKL(·||·), Dχ2(·||·), TV (·||·), the class of f -divergence, the

Kullback–Leibler divergence, the chi-squared divergence and

the total variation distance, respectively. We denote by f ∈ C0,

the continuous function defining the f -divergence and ∂f

denotes its sub-gradient [21, Definition 8.3]. For a continuous

and twice differentiable function f ∈ C2, we denote by f ′′(·)
the second derivative with respect to its argument.

II. PRELIMINARIES ON THE RDPF

In this section, we consider finite alphabets sources and

deterministic encoders/decoders pairs and define the minimum

achievable rates subject to average per-letter distortion and

average per-letter perception constraints. Our analysis herein

stems from recent results in [14].

We assume that we are given an i. i. d sequence of n-length

random variables Xn that induce the probability distribution

px. The source sequence is received by an encoder (e) that

generates the index e(Xn) ∈ Z , Z = {1, 2, . . . , 2nR},
whereas at the decoder (g), the system reconstructs an estimate

of X̂n. Formally, the encoder and decoder are deterministic

mappings with e : Xn → Z and g : Z → X̂n, respectively.

We let d : X ×X̂ → R+
0 to denote a single-letter distortion

function and D : P × Q → R+
0 to denote a divergence

2For details on the alternating minimization procedure, see e.g., [18], [19].

measure. Moreover, we define the fidelity criterion ∆ as the

expected per-symbol distortion and the fidelity criterion Φ as

the expected per-symbol divergence3 as follows:

∆ , E

[

1

n

n
∑

i=1

d(xi, x̂i)

]

Φ ,
1

n

n
∑

i=1

D(px||qx̂i
).

We are now ready to introduce the definition of achievability

and that of infimum of all achievable rates.

Definition 1. (Achievability) Given a distortion level D > 0
and a perception constraint P > 0, a rate R is said to be

(D,P )-achievable if for an arbitrary ǫ > 0, there exists, for

large enough n, a deterministic lossy source code (n,M,∆,Φ)
with M ≤ 2n(R+ǫ) such that ∆ ≤ D + ǫ and Φ ≤ P + ǫ.

Then, we define

Rnr(D,P ) ≡ inf{R : (R,D, P ) is achievable}. (1)

Next, we give the definition of the information theoretic

characterization of the RDPF (see [9]) assuming that D > 0
and P > 0.

Definition 2. (RDPF) For a given finite alphabet source dis-

tribution px, a single-letter distortion d(·, ·) and a divergence

D(·||·), the RDPF is characterized as follows:

R(D,P ) =min
Q

x̂|x

I(X, X̂)

s.t. E[d(x, x̂)] ≤ D, D(px||Qx̂) ≤ P

(2)

where D ∈ [Dmin, Dmax] ⊂ (0,∞), P ∈ [Pmin, Pmax] ⊂
(0,∞) and

I(X, X̂) = DKL(pxQx̂|x, pxQx̂) , I(px, Qx̂|x) (3)

where I(px, Qx̂|x) highlights the dependency on {px, Qx̂|x}.

We stress the following technical remarks on Definition 2.

Remark 1. (On Definition 2) Following [9], it can be shown

that (2) has some useful properties, under mild regularity

conditions. In particular, [9, Theorem 1] shows that R(D,P )
is (i) monotonically non-increasing function in both D ∈
[Dmin, Dmax] ⊂ [0,∞) and P ∈ [Pmin, Pmax] ⊂ [0,∞);
(ii) convex if the divergence D(·||·) is convex in its second

argument.

In the sequel, we consider that in (2) the perception con-

straint is an f -divergence, i.e., D(·||·) = Df (·||·), which is

known to be convex in both arguments [22, Lemma 4.1].

Hence in light of the discussion in Remark 1, R(D,P ) forms

a convex programming problem.

We conclude this section by providing a theorem that

connects Rnr(D,P ) with R(D,P ) for finite alphabets, as long

as D > 0 and P > 0.

3Following for instance [14, Remark 3], one can choose the perception
fidelity criterion to be D(px||qx̂i

), i = 1, . . . , n, or D(px||
∑

n

i=1
qx̂i

).
Both types of fidelity criteria result in the same operational quantity for finite
alphabets in the asymptotic regime.



Theorem 1. For |X | <∞, D > 0, P > 0, we obtain

Rnr(D,P ) = R(D,P ). (4)

Proof: This is a consequence of [14, Assumption 2] that

results into [14, Theorem 2].

It should be noted that in the previous analysis, we excluded

the extreme case where P = 0. This is because, in that

scenario, deterministic encoders and decoders do not achieve

R(D, 0) and one instead requires common [12, Theorem 3]

or private [14, Theorems 4] randomness to achieve it.

III. MAIN RESULTS

In this section, we present our main results. We start by

reformulating (2) into a double minimization problem.

Lemma 1. (Double minimization) Let s1 ≥ 0, s2 ≥ 0, and

define s = (s1, s2). Moreover, let D > 0, P > 0 and let

D(·||·) = Df(·||·). Then (2) can be expressed as a double

minimum as follows:

R(D,P ) =− s1D − s2P + min
Q

x̂|x

min
q
x̂

[

s1E[d(x, x̂)]

+ s2Df (px||Qx̂) +DKL(pxQx̂|x||pxqx̂)
]

(5)

where D = EQ∗
x̂|x

[d(x, x̂)], P = Df(px||Q
∗
x̂), with Q∗

x̂|x

achieving the minimum. Furthermore, for fixed Q
x̂|x(x̂|x), the

right side of (5) is minimized by

qx̂(x̂) =
∑

x∈X

px(x)Qx̂|x(x̂|x). (6)

For fixed qx̂, the right side of (5) is minimized by

Qx̂|x(x̂|x) = qx̂(x̂) ·
A(x,x̂,s)∑

i∈X q
x̂
(i)A(x,i,s) (7)

where

A(x, x̂, s) = exp{−s1d(x, x̂)− s2g(px, Qx̂, x̂)} (8)

g(px, Qx̂, x̂) = f
(

px(x̂)
Q

x̂
(x̂)

)

− px(x̂)
Q

x̂
(x̂)∂f

(

px(x̂)
Q

x̂
(x̂)

)

.

We note that Lemma 1 differs from [23, Theorem 6.3.3]

in (7). Specifically, the presence of the additional perception

constraint Df (·||·) in (2) changes the functional properties

of the parametric solution (7), as it requires an additional

exponential term, i.e., s2g(px, Qx̂, x̂), with g(·) depending on

the induced marginal Qx̂.

The next corollary is a consequence of Lemma 1.

Corollary 1. R(D,P ) in (5) can be reformulated as follows:

R(Ds, Ps) =− s1Ds − s2Ps

+min
q
x̂

s2
∑

x̂∈X̂

px(x̂)∂f
(

px(x̂)
Q

x̂
[q

x̂
](x̂)

)

−
∑

x∈X

px(x) log





∑

x̂∈X̂

qx̂(x̂)A(x, x̂, s)





(9)

where q∗x̂ achieves the minimum and

Ds =
∑

(x,x̂)∈X×X̂

px(x)
q∗
x̂
(x̂)A(x,x̂,s)∑

i∈X̂ q∗
x̂
(i)A(x,i,s)d(x, x̂)

Ps = Df (px||Qx̂[q
∗
x̂]).

Next, we proceed to construct an alternating minimization

procedure and show its convergence to a point of R(D,P ).

Theorem 2. (Alternating minimization) Let s1 ≥ 0, s2 ≥ 0
be given, with s = (s1, s2), and let A[qx̂] be such that

A[qx̂](x, x̂, s) = exp{−s1d(x, x̂)− s2g(px, Qx̂[qx̂], x̂)}

g(px, Qx̂[qx̂], x̂) = f
(

px(x̂)
Q

x̂
[q

x̂
](x̂)

)

− px(x̂)
Q

x̂
[q

x̂
](x̂)∂f

(

px(x̂)
Q

x̂
[q

x̂
](x̂)

)

.

Let q
(0)
x̂ denote any probability vector with nonzero compo-

nents and let q
(n+1)
x̂ ≡ Qx̂[q

(n)
x̂ ] and Q

(n+1)
x̂|x ≡ Qx̂|x[q

(n)
x̂ ] be

defined as functions of the previous iteration q
(n)
x̂ as follows:

Q
(n+1)
x̂|x (x̂|x) = q

(n)
x̂ (x̂) A(n)(x,x̂,s)

∑
i∈X̂ q

(n)
x̂

(i)A(n)(x,i,s)

q
(n+1)
x̂ (x̂) = q

(n)
x̂ (x̂)

∑

x∈X

px(x)A
(n)(x,x̂,s)

∑
i∈X̂ q

(n)
x̂

(i)A(n)(x,i,s)
(10)

where A(n)(x, x̂, s) = A[q
(n)
x̂ ](x, x̂, s). Then, as n −→ ∞, we

obtain

D(Q
(n)
x̂|x) −→ Ds, P (Q

(n)
x̂|x) −→ Ps, I(px, Q

(n)
x̂|x) −→ R(Ds, Ps).

Despite being optimal, the alternating minimization scheme

of Theorem 2 does not allow the implementation of a BA

type of algorithmic embodiment. Due to the structure of the

iterations in (10), a non-reversible dependency of q
(n+1)
x̂ on

itself appears once A(n)(x, x̂, s) is substituted therein, thus

requiring the knowledge of q
(n+1)
x̂ to evaluate q

(n+1)
x̂ itself. To

circumvent this technical difficulty, we introduce a relaxation

in the structure of the iterations of Theorem 2. This results in

a variant of an approximate alternating minimization scheme,

for which we derive necessary and sufficient conditions that

ensure its convergence to a globally optimal point. The

aforementioned relaxation and the necessary and sufficient

conditions that lead to a globally optimal solution are stated in

the following theorem, which is a major result of this paper.

Theorem 3. (Approximate alternating minimization) Let s1 ≥
0, s2 ∈ [0, s2,max] be given with s = (s1, s2) and let

Ã[qx̂](x, x̂, s) be

Ã[qx̂](x, x̂, s) = exp{−s1d(x, x̂)− s2g̃(px, v[qx̂], x̂)}

g̃(px, v[qx̂], x̂) = f( px(x̂)
v [q

x̂
](x̂) )−

px(x̂)
v [q

x̂
](x̂)∂f(

px(x̂)
v [q

x̂
](x̂) )

where v[qx̂] is any probability vector. Let q̃
(0)
x̂ be any probabil-

ity vector with nonzero components and let q̃
(n+1)
x̂ = Qx̂[q̃

(n)
x̂ ]

and Q̃
(n+1)
x̂|x = Q

x̂|x[q̃
(n)
x̂ ] be defined as functions of the past

iteration q̃
(n)
x̂ as follows:

Q̃
(n+1)
x̂|x = q̃

(n)
x̂ (x̂) Ã(n)(x,x̂,s)

∑
i∈X̂ q

(n)
x̂

(i)Ã(n)(x,i,s)

q̃
(n+1)
x̂ = q̃

(n)
x̂ (x̂)

∑

x∈X

px(x)Ã
(n)(x,x̂,s)

∑
i∈X̂ q̃

(n)
x̂

(i)Ã(n)(x,i,s)



where Ã(n)(x, x̂, s) = Ã[q̃
(n)
x̂ ](x, x̂, s). Then, as n −→ ∞, we

obtain

D(Q̃
(n)
x̂|x) −→ Ds, P (Q̃

(n)
x̂|x) −→ Ps, I(px, Q̃

(n)
x̂|x) −→ R(Ds, Ps)

if and only if lim
n→∞

q̃
(n+1)
x̂

v [q̃
(n)
x̂

]
→ 1 with at least linear rate of

convergence.

Theorem 3 enables the implementation of the alternating

minimization scheme by introducing an auxiliary variable

v[q
(n)
x̂ ] (approximation), designed as a function of only the

current iteration of q
(n)
x̂ . Nevertheless, depending on v , this

approximation may incur restrictions on the domain of the

Lagrangian multiplier s2 in order to have convergence guar-

antees. The implementation of Theorem 3 is illustrated in

Algorithm 1.

We conclude this section, with a lemma where we provide

necessary and sufficient conditions for the optimal solution of

the studied problem.

Lemma 2. Let Df (·||·) be such that f ∈ C1(0,∞) continuous

and differentiable on (0,∞). Then, a probability vector qx̂
yields a point on the R(D,P ) curve via the transition matrix

Qx̂|x[qx̂](x̂) = qx̂(x̂)
px(x)Ã(x,x̂,s)

∑
i∈X̂ q

x̂
(i)Ã(x,i,s)

if and only if, ∀x̂ ∈ X̂ ,

c(x̂) =
∑

x∈X

px(x)Ã(x,x̂,s)
∑

i∈X̂ q̃
x̂
(i)Ã(x,i,s)

≤ 1,

holding with equality for any x̂ for which qx̂(x̂) is nonzero.

IV. ANALYSIS OF ALGORITHM 1

In this section, we study a stopping criterion and the

convergence rate of Algorithm 1.

Before obtaining stopping conditions for Algorithm 1, we

first derive a useful lemma which is needed to obtain the

stopping conditions.

Lemma 3. Let s1 ≥ 0, s2 ∈ [0, s2,max) be given with s =
(s1, s2) and let Qx̂|x be a transition matrix included in the set

L(D,P ) defined as follows:

L(D,P ) = {Qx̂|x : EQ
x̂|x

[d(x, x̂)] ≤ D ∧Df (px||Qx̂) ≤ P}.

Then, ∀λ ∈ Λs,v [Q
x̂
], with Λs,v [Q

x̂
] =

{

λ ∈ R|X | : ∀x ∈

X , λ(x) ≥ 0 ∧ ∀x̂ ∈ X̂ ,
∑

x∈X px(x)λ(x)Ã(x, x̂, s) ≤ 1
}

,

we obtain

R(D,P ) ≥−
∑

x∈X

px(x) log
(

1
λ(x)

)

− s1D

− s2
∑

(x,x̂)∈X×X̂

px(x)Qx̂|x(x, x̂)g̃(x̂).

Theorem 4. (Stopping criterion) Let Q̃
x̂|x and q̃x̂ be defined

as in Theorem 3, c(x̂) be as defined as in Lemma 2 and cmax =

Algorithm 1 Implementation of Theorem 3

Require: source distribution px; Lagrangian multipliers s =
(s1, s2) with s1 ≥ 0 and s2 ∈ [0, s2,max]; error tolerance

ǫ; divergence measure Df (·||·); distortion measure d(·, ·);

initial assignment q
(0)
x̂ .

1: n← 0
2: flag← 0
3: while flag == 0 do

4: g(x̂)← f
(

px(x̂)
v(n)(x̂)

)

− px(x̂)
v(n)(x̂)

∂f
(

px(x̂)
v(n)(x̂)

)

5: Ã(n)(x, x̂, s)← exp[−s1d(x, x̂) + s2g(px, v[qx̂], x̂)]

6: c(n)(x̂)←
∑

x∈X
px(x)Ã

(n)(x,x̂,s)
∑

i∈X q̃
(n)
x̂

(i)Ã(n)(x,i,s)

7: q
(n+1)
x̂ ← q

(n)
x̂ · c(n)

8: ω ← log c
(n)
max(x̂)−

∑

x̂∈X̂ q
(n)
x̂ c(n)(x̂) log(c(n)(x̂))

9: if ω ≤ ǫ then

10: flag← 1
11: end if

12: n← n+ 1
13: end while

Ensure: Q
x̂|x = q

(n)
x̂ (x̂) Ã(n)(x,x̂,s)

∑
i∈X̂ q

(n)
x̂

(i)Ã(n)(x,i,s)
, Ds =

EpxQ
x̂|x

[d(x, x̂)], Ps = Df(px, q
(n)
x̂ ), R(Ds, Ps) =

W̃ [q
(n)
x̂ ] − s1Ds − s2Ps −

∑

x̂∈X̂ q
(n)
x̂ c(x̂) log(c(x̂)),

W̃ [·] = (13).

maxx̂∈X̂ c(x̂). Then, at the point D = EQ̃
x̂|x

[d(x, x̂)], and

P = Df(px||Q̃x̂)), the following bounds hold

R(D,P ) ≥ −s1D − s2P + W̃ [q̃x̂]− log(cmax) (11)

R(D,P ) ≤ −s1D − s2P + W̃ [q̃x̂]

−
∑

x̂∈X̂

q̃x̂c(x̂) log(c(x̂))
(12)

where W̃ [q̃x̂] is given by

W̃ [q̃
(n)
x̂ ] = −

∑

x∈X

px(x) log





∑

x̂∈X̂

q̃
(n)
x̂ (x̂)Ã(n)(x, x̂, s)





+ s2
∑

x̂∈X̂

px(x̂)
px(x̂)
v(n)(x̂)

∂f
(

px(x̂)
v(n)(x̂)

)

+ s2

[

∑

x̂∈X̂

q̃
(n+1)
x̂

(

f

(

px(x̂)

q
(n+1)
x̂

(x̂)

)

− f
(

px(x̂)

v(n)(x̂)

)

)

]

.

(13)

Next, we study the convergence rate of Algorithm 1. This is

done by first studying the convergence rate of the alternating

minimization procedure of Theorem 2 and then, using it as a

reference to analyze the convergence rate of the approximate

alternating minimization procedure of Theorem 3.

Note that based on the structure of the parametric solution

of q
(n+1)
x̂ at the previous iteration n, we can similarly define a

vector function S : R|X | →R|X | as S[qx̂](i) = qx̂(i)·c[qx̂](i).
Using Lemma 2, a distribution q∗x̂ that achieves the RDPF is

a fixed point of S(qx̂). Following [24], we can analyze the



convergence rate of the alternating minimization procedure in

both Theorems 2 and 3. Using the first order Taylor expansion

of S[qx̂] around a fixed point q∗x̂, we obtain S[qx̂] = S[q∗x̂] +
J(q∗x̂) · (qx̂− q∗x̂)+ o(||qx̂− q∗x̂||), where J(qx̂) is the Jacobian

matrix of S(qx̂) with entries Ji,j(qx̂) ,
∂S[q

x̂
](i)

∂q
x̂
(j) , (i, j) ∈

X × X̂ . The next theorem provides the functional form of

the Jacobian for the case of Theorem 2.

Theorem 5. (Jacobian form) The Jacobian J(qx̂) computed

at the fixed point q∗x̂ is given as

J(q∗x̂) = (I −M)(I − ΓJ(q∗x̂)) (14)

where

M ,

[

q∗x̂(i)
∑

x∈X

px(x)
A(x,i,s)A(x,j,s)

(
∑

k∈X̂ q∗
x̂
(k)A(x,k,s))2

]

(i,j)∈X×X̂

(15)

Γ , s2 · diag

[

q∗x̂(i) ·
∂2

∂q(i)2Df (px||q)

∣

∣

∣

∣

q∗
x̂

]

i∈X

. (16)

Next, we introduce two lemmas, in which we use the

structure of (14) to identify properties of matrix M .

Lemma 4. Let {λi}i=1:|X | be the set of eigenvalues of M .

Then, given a distortion function d : X × X̂ → R+
0 that

induces a full-rank matrix D = [e−s1d(i,j)](i,j)∈X×X̂ , then

λi > 0,∀i ∈ [1 : |X |], i.e., M has only positive eigenvalues.

Remark 2. (On Lemma 4) We note that a popular example

that satisfies the assumptions imposed on Lemma 4 is the

Hamming distortion denoted hereinafter as dH [25].

Lemma 5. Let {λi}i=1:|X | be the set of eigenvalues of M .

Then, at fixed point q∗x̂, we have that λi ≤ 1, ∀i ∈ 1 : |X |.

Using Lemmas 4 and 5, we can now characterize the interval

that contains the set of eigenvalues of J(q∗x̂) and subsequently

the convergence rate of Theorem 2.

Theorem 6. (Convergence rate of Theorem 2) Let {θi}i∈X be

the eigenvalues of J(q∗x̂). Then,

0 ≤ {θi}i∈X < 1.

Moreover, let γ ∈ [θmax, 1). Then, there exists δ > 0 and

K > 0 such that if q0x̂ ∈ {qx̂ : ||qx̂ − q∗x̂|| ≤ δ}, we obtain

||q
(n)
x̂ − q∗x̂|| < K · ||q

(0)
x̂ − q∗x̂|| · γ

n (17)

i.e., the iterations converge exponentially.

Following similar steps that led to Theorem 6, we can now

write the Jacobian Ja(q
∗
x̂) for Theorem 3 considering a specific

form of the auxiliary variable v[q
(n)
x̂ ] = q

(n)
x̂ . This results into

the following structure of the Jacobian matrix

Ja(q
∗
x̂) = (I −M)(I − Γ)

where M and Γ are given by (15) and (16), respectively.

Unlike Theorem 2, where the structure of (14) bounds its own

eigenvalues, in this case we need to bound the Lagrangian

multiplier s2, hence matrix Γ, to guarantee exponential con-

vergence of the algorithm. This is proved in the following

theorem.

Theorem 7. For a given s1 ≥ 0, let Is2 = [0, s2,max] be the

domain of s2, {θa,i}i∈X the set of eigenvalues of Ja(q
∗
x̂) and

θmax the maximum eigenvalue of J(q∗x̂) in (14). Define the set

Iǫs2 = [0, s2,max− ǫ] for 0 < ǫ < s2,max. Then, there exists an

ǫ′ such that if s2 ∈ Iǫ
′

s2
then 0 ≤ {θa,i}i∈X < 1.

Theorem 7 guarantees exponential convergence for Theorem

3 only for s2 ∈ Iǫs2 which means that we are able to consider

P ∈ [Pmin(ǫ), Pmax], depending on the characteristics of the

specific problem.

V. NUMERICAL RESULTS

In this section, we provide numerical results to demonstrate

the utility of Algorithm 1.

Example 1. Suppose that X = X̂ = {0, 1} and let

px ∼ Ber(0.15) with d(·, ·) = dH(·, ·) and perception con-

straint chosen to be either (a) Df (px||qx̂) = TV (px||qx̂) =
1
2

∑

i∈X |px(i) − qx̂(i)|, or (b) Df (·||·) = DKL(·||·), or (c)

Df (·||·) = Dχ2(·||·).
In Fig. 1a we compare the theoretical results of [9, Equation

6] with the numerical results obtained using Algorithm 1.

We observe that Algorithm 1 achieves exactly the theoretical

solution of [9, Equation 6] as long as D ≤ Dmax = 0.15.

In Fig. 1b and Figure 1c we use Algorithm 1 to compute

R(D,P ) for Df (·||·) = DKL(·||·), and for Df(·||·) =
Dχ2(·||·), respectively.

(a)

(b) (c)

Fig. 1: R(D,P ) for a Bernoulli source under a Hamming

distortion and various perception constraints.
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