
ar
X

iv
:2

30
4.

06
73

3v
1 

 [
cs

.L
G

] 
 1

3 
A

pr
 2

02
3

Near-Optimal Degree Testing for Bayes Nets

Vipul Arora∗1, Arnab Bhattacharyya†1, Clément L. Canonne2, and Joy Qiping Yang‡1,2

1
National University of Singapore. {vipul, arnab, jyang}@comp.nus.edu.sg.

2University of Sydney. clement.canonne@sydney.edu.au, qyan6238@uni.sydney.edu.au

Abstract

This paper considers the problem of testing the maximum in-degree of the Bayes net underlying an
unknown probability distribution P over {0, 1}n, given sample access to P . We show that the sample
complexity of the problem is Θ̃(2n/2/ε2). Our algorithm relies on a testing-by-learning framework,
previously used to obtain sample-optimal testers; in order to apply this framework, we develop
new algorithms for “near-proper” learning of Bayes nets, and high-probability learning under χ2

divergence, which are of independent interest.

1 Introduction

One of the most natural and widely-used ways to model high-dimensional distributions is as Bayesian
networks (or, Bayes nets for short) [Pea88]. In particular, a Bayes net on {0, 1}n is given by a directed
acyclic graph (DAG) G on n vertices, and probability distributions pi,π on {0, 1}, for all i ∈ [n], and
all assignments π to the parents of the i’th node in the graph G. To generate an n-dimensional sample,
one samples the nodes in a topological order of G, where the i’th node is sampled according to pi,π for
the assignment π that is already fixed by the samples for the parent nodes of i. Bayes nets naturally
encode causal information [Pea95], and learning a Bayes net description of a probability distribution is
considered a fundamental problem in statistics and machine learning [Hec98]. For instance, Sachs et
al. [SPP+05] used this approach to discover protein regulatory networks from gene expression data.

Sufficiently complex Bayes nets can encode arbitrary distributions, and so, it is infeasible in general
to learn general Bayes nets. Instead, one often restricts to Bayes nets whose underlying DAGs have
bounded in-degree. Distributions having sparse Bayes net descriptions naturally arise in machine
learning, robotics, natural language processing [WJ08], medicine, and computational biology [FLNP00].
Moreover, information-theoretically, it is known that Bayes nets with in-degree bounded by d can be
learned up to total variation (TV) distance ε using Õ(n2d/ε2) samples [CDKS17]. Hence, the maximum
in-degree of a Bayes net is an important modeling parameter to consider.

In this work, we consider the problem of testing whether a distribution belongs to the concept class
of degree-d Bayes nets, i.e., those whose in-degree is at most d. Specifically, given sample access to a
distribution P on {0, 1}n, we consider the property testing question: is P described by a degree-d Bayes
net, or is P ε-far from all such Bayes nets, in TV distance?

Theorem 1.1. (Main Theorem, Informal, See Theorem 5.1) Given an unknown distribution P
on {0, 1}n and a degree parameter d ≪ n, testing whether P is Markov with respect to any degree-d

Bayes net has sample complexity Θ̃
(
2n/2

ε2

)
.
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Our result requires that d < n/2 − Ω(log n), which is consistent with our motivation of testing Bayes
net sparsity. The main contribution of this work lies in establishing the upper bound of the theorem;
we note that the (nearly) matching lower bound follows from [BCY22, Corollary B.2].

Over the course of deriving this upper bound, we obtain three new learning results which we
believe to be of independent interest. (1) First, a high-probability learning result in χ2 divergence
(Proposition 4.1). While the sample complexity of learning an arbitrary distribution P over a discrete
domain Σ to χ2 divergence ε is known to be Θ(|Σ|/ε) for constant probability of success,1 boosting this
success probability to 1 − δ for arbitrarily small δ > 0 was until now open. In particular, whether a
logarithmic dependence on δ was possible, as for total variation distance and (as recently shown) KL

divergence, was unknown. We show this is indeed the case: O
(
|Σ|
ε log |Σ|

δ

)
i.i.d. samples suffice for

high-probability learning in χ2 divergence. Interestingly, the estimator achieving this bound is neither
the empirical estimator, nor the usual Laplace add-1 estimator, but instead an add-K estimator for a
suitable K = K(δ).

(2) Second, a near-proper learning algorithm in χ2-divergence for degree-d Bayes nets, with sample
complexity Õ(2dn2/ε) (Theorem 4.1). We note that previous learning algorithms for Bayes nets either
learn with respect to a weaker distance measure (TV or KL) or are non-proper, in the sense that the
hypothesis they output is not a degree-d Bayes net itself. In comparison, our algorithm outputs a bona
fide degree-d Bayes net P̂ , along with a subset S ⊆ {0, 1}n of the domain such that (i) P , P̂ put all but
O(ε) probability mass on S, and (ii) P , and P̂ are within χ2 divergence ε when restricted to this subset
S.

This hybrid guarantee, which makes our learning algorithm near -proper instead of proper, may seem
artificial. However, our third result shows that it is indeed necessary, in a very strong sense:

(3) We prove in Proposition 4.2, a lower bound on the sample complexity of proper learning in χ2

divergence, showing that any learning algorithm whose χ2 guarantees holds on the whole domain must
have sample complexity Ω(2n/2/ε), even for degree-1 Bayes nets.

2 Related work

While learning graphical models in a range of settings and under various distance measures has a
rich history, both in Statistics and Machine Learning, the corresponding task of testing properties of
an unknown distribution represented as a (succinct) graphical model has only been considered much
more recently. [DDK19] initiated the question of testing identity (goodness-of-fit) and independence
of high-dimensional distributions with dependency structure modeled as an undirected graph (i.e.,
Ising models or, more generally, Markov Random Fields); this line of work was then continued in,
e.g., [DDK17,GNS18,NL19,BBC+20], leading to a range of positive (algorithms), and negative (lower
bounds) results. Very recently, [CDDK22] introduced the question of goodness-of-fit testing for latent
Ising models, where only the leaf nodes of the tree are observable.

Focusing on another widely-studied type of graphical models, the concurrent works [CDKS17],
and [DP17] studied analogous testing questions for Bayesian networks, where the underlying dependency
structure is modeled as a directed graph. [ABDK18] focused on the related tasks for causal Bayesian
networks, given the ability to perform interventions on the network. Finally, closest to our own
work, [BCY22] studies the question of independence testing for Bayesian networks, obtaining near-
optimal sample complexity bounds for the task of deciding if a given high-dimensional distribution,
promised to be a sparse Bayesian network, is in fact a product distribution.

The other contribution of our work, high-probability learning in χ2 divergence for arbitrary discrete

1i.e., outputting P̂ such that dχ2 (P, P̂ ) ≤ ε with probability at least 9/10.
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distributions, follows a long line of results related to density estimation under various distance measures
(see, e.g., [KOPS15,DL01,Dia16], as well as [Can20], and references within). While learning arbitrary
distributions under χ2 distance with constant success probability has long been well understood, even
to the optimal leading constant in the minimax estimation rate [KOPS15], obtaining high-probability
bounds has proven quite elusive. Even for the weaker notion of learning under Kullback–Leibler (KL)
divergence, such a high-probability learning result was only obtained very recently [BGPV21].

Finally, to the best of our knowledge no result was known for learning Bayesian networks under
χ2 divergence, even for constant success probability, besides the trivial bound one gets by treating the
Bayesian network as an unstructured probability distribution over Σn. This is again to contrast with
the case of KL divergence, for which optimal constant-probability learning bounds, and high-probability
learning bounds are known (cf. [BGPV21], and references within).

3 Overview

Our algorithm follows the testing-by-learning framework developed in [ADK15], and since used in several
works (e.g., [DKW18, CDKL22]). Specifically, if the property one wants to test in TV distance is
relatively easy to learn in a “harder” notion of distance, e.g., χ2, then it is possible to build an efficient,
and possibly sample-optimal tester by first learning the distribution in χ2, assuming that it has the
given property, and then use a “χ2-TV tolerant tester” [ADK15] to test whether the hypothesis output
by the learning algorithm is close to the actual distribution. The key is that these tolerant testers must
not only reject distributions far in TV, but also accept those sufficiently close in χ2 (“tolerance”): now,
if the unknown distribution P does have the property, then the learning algorithm works as intended,
and its output P̂ is close to P : so, the tester will accept. However, if P is far from the property, then
either the learning algorithm fails and P̂ is far from P (and the tester rejects); or it still succeeds, but
by the triangle inequality P̂ must be itself far from the property (and this can be checked and detected,
as we now have an explicit description of P̂ ).

The key here is that the sample complexity of this “χ2-tolerant” tester is O(
√
|Σ|/ε2) for

distributions over domain Σ – which is optimal (up to constants) for many testing tasks, and matches the
sample complexity of the “non-tolerant” testers. Thus, as long as the learning stage can be done with
much fewer than O(

√
|Σ|/ε2) samples, the overall approach yields a sample-efficient testing algorithm.

(Moreover, this approach can be extended in many ways, e.g., for testing in Hellinger distance instead
of TV [DKW18,BCY22].)

While the testing-by-learning idea seems relatively straightforward, the main technical contribution
of this paper is in obtaining the required learning algorithm to apply it: namely, an efficient learning
algorithm with high probability, and proper learning of Bayes nets (both in χ2). Indeed, and quite
surprisingly, before our work it was still unclear whether one could learn a discrete distribution in χ2

divergence with failure probability at most δ by paying only an O(log(1/δ)) dependence in the sample
complexity. In particular, the “obvious” approaches based on applying either McDiarmid’s inequality,
or some sort of “median trick” fail for χ2 divergence, due respectively to the high sensitivity of the
estimators, and the failure of the triangle inequality. We remark that achieving an exponentially worse
O(1/δ) dependence is straightforward via Markov’s inequality [KOPS15]; however, this cost becomes
impractical in settings when one requires an exponentially small failure probability, such as ours – as
we need 2d · n conditional distributions to be learned well simultaneously, and thus need to do a union
bound over these many runs of a learning algorithm.

Interestingly, learning with high probability with only a O(log(1/δ)) dependence in the sample
complexity, and learning a Bayes net with Õ(2d · n/ε) are both achievable for the relatively easier
dKL divergence (and even then, the high-probability result was only established recently [BGPV21]).
Unfortunately, learning in KL is a much weaker guarantee, and trying to instantiate the aforementioned
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“testing-by-learning” framework with KL-TV instead of χ2-TV would only yield a much looser
Õ(2n/(n · ε2)) testing upper bound.

Below, we give a series of results on learning with respect to χ2 divergence: (1) high-probability
learning with O(|Σ| · log(1/δ)/ε) sample; (2) a near-proper Bayes net learning algorithm with sample
complexity Õ(2dn2/ε); and (3) an exponential sample complexity lower bound of Ω(2n/2/ε) for learning
Bayes nets. Later in Section 5, we will build on the second result as the first step of our main result,
the maximum in-degree testing algorithm of Theorem 1.1.

Preliminaries. We use the standard asymptotic notations O(·),Ω(·), o(·),Θ(·), and the (semi)-standard
Õ(·), Ω̃(·), and Θ̃(·) to hide polylogarithmic factors in the argument. Since we are focusing entirely on
the in-degree of Bayes nets, all references to degree will be implicitly in-degree unless stated otherwise.
We use A . B to indicate that A 6 C ·B for some absolute constant C.

For a multivariate random variable X supported on {0, 1}n, we use Xi to denote its i-th component
(coordinate); for a Bayes net, we will use Πi to denote the set of parents of Xi.

4 Learning in χ2

4.1 High probability learning in χ2 Our analysis will largely follow the analysis of [BGPV21,
Theorem 6.1, and Claim 4.4] for KL divergence, with a few crucial differences which allow us to extend
it to χ2 divergence, and to obtain a strictly better sample complexity than prior work. Specifically, we
go beyond the standard add-1 Laplace estimator, and instead analyze the more general add-K estimator
for a suitable, non-constant value of K. Recall that the add-K estimator, given N i.i.d. samples from
some probability distribution over a domain Σ (with empirical counts N1, . . . , N|Σ|), is defined by

P̂ (i) =
Ni +K

N +K|Σ| , i ∈ Σ . (4.1)

Intuitively, the parameter K controls the amount of smoothing for our estimator. With χ2 divergence
being a very stringent notion of distance (much more so than KL divergence, let alone TV distance), the
idea to achieve high-probability learning guarantees is to increase the smoothing in order to counteract
the risk of “low-probability but catastrophic” events which could make the χ2 divergence blow up. We
are then able to show that setting K = Θ(log(1/δ)) achieves the desired sample complexity in the
high-probability regime, much better than the Laplace estimator (which corresponds to K = 1).

Proposition 4.1. Fix any δ ∈ (0, 1], and let K = Θ(log(1/δ)). Given N i.i.d. samples from an
unknown probability distribution P over an alphabet Σ, with probability at least 1−δ, the add-K estimator
yields a hypothesis P̂ such that

dχ2(P, P̂ ) .
|Σ| log(|Σ|/δ)

N
.

In particular, N = O
(
|Σ|
ε log |Σ|

δ

)
samples suffice to learn P to χ2 divergence ε with probability 1− δ.

In contrast, using a similar analysis for the Laplace estimator would only yield a worse sample complexity
of O

(
(|Σ|/ε) log2(|Σ|/δ)

)
, off by a logarithmic factor in |Σ|

δ . We will use this result in Section 4.2.

Proof. [Analysis of the add-K estimator] Let Q be the output of the add-K estimator with N i.i.d.
samples from P . By the proof of [BGPV21, Claim 4.4], we have the following for each i, and Ti being
the count of the element i from N samples, with probability at least 1− δ,

∣∣∣∣Pi −
Ti

N

∣∣∣∣ 6

√
3Pi log

(
2
δ

)

N
+

3 log
(
2
δ

)

N
.
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In the following, we will use A . B to indicate that A 6 C ·B for some absolute constant C.

|Pi −Qi| 6

∣∣∣∣Pi −
Ti

N

∣∣∣∣+
∣∣∣∣
Ti

N
−Qi

∣∣∣∣

=

∣∣∣∣Pi −
Ti

N

∣∣∣∣+
∣∣∣∣
Ti

N
− Ti +K

N +K|Σ|

∣∣∣∣

=

∣∣∣∣Pi −
Ti

N

∣∣∣∣+
∣∣∣∣
Ti|Σ|/N − 1

N +K|Σ|

∣∣∣∣K

6

√
3Pi log

(
2
δ

)

N
+

3 log
(
2
δ

)

N
+

Ti|Σ|/N
N +K|Σ|K +

K

N +K|Σ|

6

√
3Pi log

(
2
δ

)

N
+

3 log
(
2
δ

)

N
+

K|Σ|
N +K|Σ|

Ti

N
+

K

N

6

√
3Pi log

(
2
δ

)

N
+

3 log
(
2
δ

)

N
+

K

N

+
K|Σ|

N +K|Σ|



√

3Pi log
(
2
δ

)

N
+

3 log
(
2
δ

)

N
+ Pi




6 2

√
3Pi log

(
2
δ

)

N
+

6 log
(
2
δ

)

N
+

K|Σ|
N +K|Σ|Pi +

K

N
.

We wish to show that Pr
[
dχ2(P,Q)=

∑
i
(Pi−Qi)2

Qi
6 Cε2

]
> 1− δ, when taking at most |Σ|

ε2
log(|Σ|δ−1)

samples. We split the analysis into two cases:

If Pi 6
C′ log( 2

δ )
N , then

√
3Pi log( 2

δ )
N 6

√
3C′ log( 2

δ )
N and K|Σ|

N+K|Σ|Pi 6
C′ log( 2

δ )
N and thus 2

√
3Pi log( 2

δ )
N +

6 log( 2
δ )

N + K|Σ|
N+K|Σ|Pi +

K
N 6

(
2
√
3C ′ + 6 + C ′

)
log( 2

δ )
N + K

N . We then have

(Pi −Qi)
2

Qi
.

(
log
(
1
δ

))2

N2Qi
+

K2

N2Qi
.

(
log
(
1
δ

))2

NK
+

K

N
,

since Qi >
K

N+K|Σ| >
K
2N , for N > C ′K · |Σ|.2

If Pi >
C′ log( 1

δ )
N , |Pi − Qi| . Pi

(
1√
C′

+ 1
C′ +

1
N

K|Σ|
+1

)
. Pi

(
1√
C′

+ 1
C′ +

1
C′+1

)
and thus, for large

enough C ′, Qi > Pi/2, giving us

(Pi −Qi)
2

Qi
.

(√
Pi log( 1

δ )
N + K|Σ|

N+K|Σ|Pi +
K
N

)2

Pi

.
log
(
1
δ

)

N
+

(
K|Σ|

N +K|Σ|

)2

Pi +
K2

N2Pi

.
log
(
1
δ

)

N
+

(
K|Σ|

N +K|Σ|

)2

Pi +
K2

N log 1
δ

.

2If N < C′K|Σ|, then Qi >
1

(1+C′)|Σ|
and we can easily construct counter example for which |Pi −Qi| > ε for small enough ε.
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Combining both cases, and applying a union bound, we have that with probability at least 1− |Σ|δ,

∑

i

(Pi−Qi)
2

Qi
. |Σ|

((
log
(
1
δ

))2

NK
+
K

N
+
log
(
1
δ

)

N
+

K2

N log 1
δ

)
+

(
K|Σ|

N +K|Σ|

)2

.

Analyzing all the individual terms to have the summation to be bounded by ε2, we need N >
|Σ|
ε2
· max

{
log2(1/δ)

K ,K, log(1/δ), K2

log(1/δ) , ε ·K
}

> |Σ|
ε2
· max

{
log2(1/δ)

K ,K, log(1/δ), K2

log(1/δ)

}
> |Σ| log(1/δ)

ε2
;

and the optimal is reached when K = Θ(log(1/δ)). Rescaling δ to adjust for the |Σ|δ union bound, we
conclude our proof.

4.2 A near-proper learning algorithm for Bayes nets For learning general distributions on the
Boolean hypercube {0, 1}n, it is known that Θ(2n/ε2) samples are both necessary and sufficient to learn
within χ2 divergence ε2 (with constant probability). As a direct consequence, we can obtain a non-
proper Bayes net learning algorithm on the entire support, costing at most O(2n/ε2) samples. However,
this approach is not interesting in our context: it costs more samples to learn then to test, the resulting
distribution is not a Bayes net, and the lack of triangle inequality in χ2 means that we cannot find
a close enough distribution in the space of Bayes net to make it proper. In fact, it is unclear (to us)
whether properly learning a Bayes net in χ2 is feasible in O(2n/ε2).

While one would hope that since Bayes nets have a sparse description (2d · n vs. 2n), it would allow
us to bypass the Ω(2n/ε2) lower bound presented in [KOPS15] and possibly gives us a much better
upper bound. However, we will show in Section 4.6 that, in stark contrast to learning in KL, learning
a sparse Bayes net in χ2 remains exponentially hard in sample complexity.

Loosely speaking, our lower bound hides a “distinguished node” behind a very biased common
parent. By construction, the learning algorithm will never observe this distinguished “rare” node unless
it takes exponentially many samples, which leads to an estimation error, entirely due to this very biased,
large out-degree parent node. While this estimation error would be acceptable under TV distance or
even KL divergence, the brittleness of χ2 divergence to low-probability elements leads to a very large
estimation error overall. Thus, any χ2 learning algorithm on the entire support cannot afford to be
inaccurate even on such rare nodes, and thus must take exponentially many (in n) samples.

Nevertheless, given that testing is our end goal here, we only need a majority of the support to
be learned well to proceed, which allows us to bypass this lower bound. Specifically, for testing in TV
distance, it suffices to guarantee that P̂ is close to P in χ2, on a majority of the support S:

dχ2(PS , P̂S) = dχ2(P, P̂ , S) =
∑

i∈S

(Pi − P̂i)
2

P̂i

,

where
∑

i∈S Pi = P (S) > 1−O(ε). For Hellinger, we need something slightly stronger, but in the same
spirit. Such framework is already present [ADK15,DKW18], though it is only implied in the analysis
of [DKW18] for Hellinger distance. Thus, the main problem that remains is the availability of such
(sample-efficient) near-proper learning of Bayes nets algorithm.

Connecting back to the degree-1 lower bound, the main difficulty is the information bottleneck
presented by the biased parent. By relaxing the problem into near-proper learning, we can simply give
up on learning the rare set of parents altogether (when it is sufficiently small), since the sum of these
masses will not exceed O(ε). From here, a natural idea is to exclude a subset of the support, where
a child and its parents’ masses are at most O(ε/(2d · n)).3 This guarantee would be enough for our

3There are at most 2d · n parent configurations; excluding them with this threshold, we can still have a mass of 1−O(ε) left.
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main result, testing with respect to TV distance; however, to extend it to the more stringent Hellinger
testing guarantee, one needs to strengthen this to removing a subset of mass at most O(ε2), instead of
O(ε). As this extension changes little of the proof and provides a stronger result, in the remainder of
the analysis, we focus on this goal.

In the interest of space and formatting, we use the abbreviated notation below in this section:

P (xi, πi(x)) := PXi,Πi(xi, πi(x)). (4.2)

We define a support of interest to learn on:

S′
k :=

{
x ∈ {0, 1}k | ∀i ∈ [k], P (xi, πi(x)) > 4c

ε2

2d+1n

}
. (4.3)

We also define a superset Sk of S′
k:

Sk :=

{
x ∈ {0, 1}k | ∀i ∈ [k], P (xi, πi(x)) > c

ε2

2d+1n

}
. (4.4)

In what follows, we assume the algorithm is provided with a set S̃k such that S′
k ⊆ S̃k ⊆ Sk. Indeed,

Lemma 4.2, analyzed in Section 4.3 via Algorithm 1, guarantees that we can efficiently learn such a set
with high probability.

Algorithm 1: ε2-majority support identification

Input : Sample access to distribution P , accuracy parameter ε and a DAG G.
1 Draw a multiset S of m samples from P , where m = 3 · 2d+1n log(6 · 2d+1n)/(c · ε2).
2 Let Nxi,πi be the number of occurrences of (xi, πi) in S.

3 Let Zxi,πi =
Nxi,πi

m and S̄ := ∅.
4 for i = 1; i 6 n; i = i+ 1 do

5 for (xi, πi) ∈ {0, 1}|Πi|+1 do

6 if Zxi,πi 6 2c ε2

2d+1n
then S̄ ← S̄ ∪ {i, (xi, πi)}

7 end

8 end

9 Mark all pairs in S̄ : Xi = xi,Πi = πi as excluded (from {0, 1}n) and return the remaining
support.

A straightforward way to approach this problem is to consider learning guarantees on all the
conditionals, i.e., dχ2(PXi|Πi

, QXi|Πi
) 6 ε2

n for any Πi = πi and hence4

1 + dχ2(P,Q) 6
n∏

i=1

(1 + max
πi

dχ2(PXi|Πi=πi
, QXi|Πi=πi

)) 6

(
1 +

ε2

n

)n

6 1 + ε2.

Coupled this with the fact that mass on the parents is lower bounded by ε
2dn

, we can obtain enough

samples for learning each conditional by paying an extra O
(
2dn
ε

)
per O

(
n
ε2

)
(and some log factors for

high probability learning and a union bound), giving us a sample complexity of Õ
(
2dn2

ε3

)
and in the

case of 1−O(ε2), a sample complexity of Õ
(
2dn2

ε4

)
. As we will see later, we can do something slightly

better to tighten the dependence on ε.
We will defer the proof of Lemma 4.1 to Sections 4.4 and 4.5, and provide a proof sketch in-place.

4While 1 + dχ2 (P,Q) should be 2P (S)−Q(S) + dχ2 (PS , QS), it does not affect the analysis if P (S) > 1−O(ε2).
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Algorithm 2: ε2-near proper learning in χ2

Input : Sample access to distribution P , accuracy parameter ε.
1 /* Obtain the majority support A. */

2 A ← call Algorithm 1 with P and ε.

3 Draw a multiset S of m samples from P , where m = O(2dn2 log(2dn)/ε2).

4 K ← Θ(log(2d+1 · n))
5 Let Nxi,πi be the count of Xi = xi,Πi = πi out of the m samples.
6 for i = 1; i 6 n; i = i+ 1 do

7 for xi, πi ∈ {0, 1}|Πi|+1 do

8 Q(xi|πi)← K+Nxi,πi∑
x′
i
∈{0,1} K+Nx′

i
,πi

9 end

10 end

11 /* A mass shifting step in (4.8) is necessary for testing in Hellinger

downstream. */

12 Q(x1, . . . , xn)←
∏n

i=1 Q(xi|πi)

Lemma 4.1. When m = O
(
2dn2 log(2dn)

cε2

)
, the hypothesis Q output by Algorithm 2 satisfies the following

recurrence:

dχ2(PX1,...,Xk
, QX1,...,Xk

, Sk) 6

(
1 +

1

n

)
dχ2(PX1,...,Xk−1

, QX1,...,Xk−1
, Sk−1) +O

(
ε2

n

)
,

which, by recursion, implies
dχ2(PX1,...,Xn , QX1,...,Xn , Sn) 6 O(ε2).

Proof. [Sketch] By lower bounding all parents’ masses, we can guarantee that the χ2 error on all
conditionals of the hypothesis will be bounded by,

dχ2(PXi|Πi
, QXi|Πi

) 6
O(1)

m · P (Πi)

with an application of a Chernoff bound; in contrast, the naive approach is to simply take P (Πi) > ε2

2dn
.

With this and some careful rearrangement of the residual terms, we are able to show this recurrence.

Such arrangement is tricky because the standard χ2 form becomes −2P (S)+Q(S)+
∑

i
P 2
i

Qi
rather than

the standard −1 +∑i P
2
i /Qi form.

For testing in dH , we need the following tweaks: from the obtained Q, we shift masses to get a Q̃
s.t., Q̃(S̃n) > 1 − O(ε2), while maintaining the graphical structure of Q and the dχ2 closeness from P

on S̃n; though this could potentially make the dχ2 on the entire support unbounded (it will be infinity
since there are 0’s in the denominator), it does not affect our downstream testing. As we will see later
on in the analysis, this is an extra (and seemingly necessary) step for testing maximum in-degree in dH ;
but for dTV, interestingly, Q and S̃n is sufficient.

Theorem 4.1. Given O
(
2dn2 log(2dn)/ε2

)
samples, we can obtain a proper hypothesis Q of the degree-

d Bayes net P , and a S̃n ⊂ {0, 1}n on which dχ2(P,Q, S̃n) 6 O(ε2), and P (S̃n) > 1−O(ε2).
Additionally, with some post-processing (without extra samples), we can obtain another proper

hypothesis Q̃ with guarantees subsuming the above, and: Q̃(S̃n) = 1 > 1−O(ε2).

8



Proof. By Lemma 4.1, and the fact that S̃n ⊆ Sn,

dχ2(PX1,...,Xn , QX1,...,Xn , S̃n)6dχ2(PX1,...,Xn , QX1,...,Xn , Sn),

which is O(ε2). This concludes the proof.

4.3 Efficient Estimation of O(ε2)-effective support We write the formal statement regarding S̃n

assumed in Section 4.2 as Lemma 4.2.

Lemma 4.2. There exists a routine (Algorithm 1) that takes at most O
(
2d+1n log(2d+1n)/(c · ε2)

)

samples from P , and return an approximation S̃n with the following guarantees: for all k ∈ [n], and
with probability at least 5/6,

S′
k ⊆ S̃k ⊆ Sk,

where S′
k, Sk are as defined in Equations (4.3) and (4.4).

Proof. We prove by analyzing Algorithm 1. The algorithm takes m = 3
c · 2d+1n log(6 · 2d+1n)/ε2

samples and checks if the ratio of each Xi,Πi exceeds 2c ε2

2d+1n
– for x ∈ {0, 1}n, if all i ∈ [n],

(xi, πi) := (xi(x), πi(x)) ∈ {0, 1}|Πi|+1, Nxi,πi > 2c ε2·m
2d+1n

then x gets added to S̃n, where Nxi,πi is
the number of occurrences of Xi = xi,Πi = πi over the m samples.

Our argument here is to ensure that the a ∈ {0, 1}|Πi|+1 with smaller masses than c ε2

2d+1n
won’t

pass the procedure, and that for each i ∈ [n], at most O(ε2/n) of masses are dropped. We do so via
a Chernoff bound, a stochastic dominance argument and a union bound. First, consider the Bernoulli
distribution T ∼ Bern(m, p), where p = c ε2

2d+1n
. By Chernoff’s inequality,

Pr

[
T > 2 · c ε2

2d+1n

]
= Pr[T > 2mp] 6 exp(−mp/3) = exp

(
−mc

ε2

2d+1n
/3

)
=

1

6 · 2d+1n
.

Since any T ′ ∼ Bern(m, p′) is first-order stochastically dominated by T ∼ Bern(m, p) if p′ 6 p, thus

for p′ < c
2

ε2

2d+1n
, Pr

[
T ′ > 2c ε2

2d+1n

]
6 Pr

[
T > 2c ε2

2d+1n

]
6 1

2d+1n
.

Therefore, for p 6 c ε2

2d+1n
, T ∼ Bern(m, p), Pr

[
T > 2c ε2

2d+1n

]
6 1

2d+1n
.

Via similar argument, all p > 4c ε2

2d+1n
will pass the test with high probability: let T ′′ ∼ Bern(m, p′′),

where p′′ > 4c ε2

2d+1n
, and by Chernoff,

Pr

[
T ′′ 6

1

2
· 4c ε2

2d+1n

]
= Pr

[
T ′′ 6

1

2
mp′′

]
6 exp(−mp′′/8) 6 exp

(
−1

2
mc

ε2

2d+1n

)
6

1

6 · 2d+1n
.

Finally, a union bound over all elements a ∈ {0, 1}Πi+1 = Support(Xi,Πi) implies that (w.h.p.)

all i ∈ [n] and a ∈ {0, 1}Πi+1: PXi,Πi(a) > 4c ε2

2d+1n
will pass the test; PXi,Πi(a) 6 c ε2

2d+1n
will fail

the test. This tells us that, for k ∈ [n],
{
x ∈ {0, 1}k |∀i ∈ [k], PXi,Πi(xi, πi(x)) > 4c ε2

2d+1n

}
⊂ S̃n ⊂{

x ∈ {0, 1}k|∀i ∈ [k], PXi,Πi(xi, πi(x)) > c ε2

2d+1n

}
.

4.4 Some useful high probability events for Lemma 4.1 In this subsection, we analyze some
crucial high probability events in the form of Equations (4.7) and (4.9), to facilitate our main proof.
But first we need to build up some technical machinery. We will use the term configuration to refer to

9



some set of binary strings that is a subset of {0, 1}n. First, we define the set of configurations for parent
nodes with “large enough” masses,

ASk
:=

{
a ∈ {0, 1}|Πk | | PΠk

(a) > c · ε2

2dn

}
.

We define another closely related set of configurations: let C(a, Sk) be the set of configurations (excluding
the current parent nodes Πk and last node Xk) remaining in Sk,

5 given Πk = a and it is independent of
the value Xk takes. Formally:

→ C(a, Sk) = {x ∈ {0, 1}k−1−|Πk | | ∃x′ ∈ {0, 1}{(X1, . . . ,Xk−1 \Πk) = x,Πk = a,Xk = x′} ∈ Sk}

Or equivalently C(a, Sk) = {x ∈ {0, 1}k−1−|Πk | | {(X1, . . . ,Xk−1 \Πk) = x,Πk = a} ∈ Sk−1} – fixing Πk

to a out of the X1, . . . ,Xk variables and checking if x, a ∈ Sk−1. Similarly,

→ B(a, Sk) = {x ∈ {0, 1} | ∀x′ ∈ {0, 1}k−1−|Πk |{(X1, . . . ,Xk−1 \Πk) = x′,Πk = a,Xk = x} ∈ Sk}

Or we may equivalently define B(a, Sk) =
{
x ∈ {0, 1} | P (Πk = a,Xk = x) > c · ε2

2d+1n

}
.

Other sets of configurations include: Ck := {0, 1}k−1−|Πk |, the full set of configurations for
{X1, . . . ,Xk−1 \ Πk} without any restrictions; just as Bk := {0, 1} is related to Xk; Ak := {0, 1}|Πk |;
ASc

k
:= Ak\ASk

; B(a, Sc
k) := Bk\B(a, Sk); C(a, Sc

k) := Ck\C(a, Sk). Note that x where (xk, πk) ∈ ASk

may not imply x ∈ Sk (its converse is true); and knowing Πk = a, in order for x ∈ Sk, it has to satisfy
both constraints – one from {X1, . . . ,Xk−1 \Πk} and the other {Xk}.

Let mΠk=a be the random variable counting the number of samples with Πk = a. For any x ∈ Sn,

every k ∈ [n], and a ∈ {0, 1}|Πk | satisfies P (Πk = a) =
∑

x∈Xk
P (x,Πk = a) > 2·c ε2

2d+1n
= c ε2

2dn
, and thus

by Chernoff, mΠk=a > 1
2mP (Πk = a), with v.h.p. We condition on this event, and with the learning

result in Proposition 4.1, by setting K = log(6 · 2d+1n), we can derive: for all a ∈ ASk
,

Pr

[
−1 +

∑

b∈B

P 2
Xk|Πk

(b|a)
QXk|Πk

(b|a) >
c′ log(2d+1n)

mΠk=a

]
6

1

6

1

2d+1n
, (4.5)

for some constant c′.
And thus, with high probability, for all a ∈ ASk

,

− 1 +
∑

b∈B

P 2
Xk |Πk

(b|a)
QXk|Πk

(b|a) 6
c′ log(2d+1n)

mΠk=a

6
2c′ · log(2d+1n)

mP (Πk = a)
. (4.6)

We then again condition on this event happening; since

∑

b∈B(a,Sk)

P 2
Xk |Πk

(b|a)
QXk|Πk

(b|a) 6
∑

b∈B

P 2
Xk |Πk

(b|a)
QXk |Πk

(b|a) ,

giving us,

− 1 +
∑

b∈B(a,Sk)

P 2
Xk |Πk

(b|a)
QXk|Πk

(b|a) 6
2c′ · log(2d+1n)

mP (Πk = a)
. (4.7)

5This term is used to analyze (independently) the two terms generated by conditioning on the parent nodes Πk in this Markov
chain: {X1, . . . ,Xk−1}\Πk → Πk → Xk.
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In the later part of the proof of Lemma 4.1, we will need a stronger condition on our density estimate
(a slightly different Q by moving at most O(ε2) mass around) – we will call it Q̃, and we can obtain it
directly from Q and S̃n:

Q̃Xk|Πk
(b|a) :=

{
QXk|Πk

(b|a)∑
b∈B(a,S̃k) QXk|Πk

(b|a) if b ∈ B(a, S̃k),

0 otherwise.
(4.8)

Furthermore, Q̃ on S̃n shares very similar guarantees as Q on Sn. For every a ∈ AS̃k
⊆ ASk

, since

B(a, S̃k) ⊆ B(a, Sk) (conditioning on Equation 4.6),

∑

b∈B(a,S̃k)

P 2
Xk|Πk

(b|a)
QXk|Πk

(b|a) 6
∑

b∈B(a,Sk)

P 2
Xk|Πk

(b|a)
QXk|Πk

(b|a) 6 1 +
2c′ · log(2d+1n)

mP (Πk = a)
.

As moving masses from B(a, S̃c
k) to B(a, S̃k) will only reduce the quantity

P 2
Xk|Πk

(b|a)
Q̃Xk|Πk

(b|a) further, we

have

− 1 +
∑

b∈B(a,S̃k)

P 2
Xk |Πk

(b|a)
Q̃Xk|Πk

(b|a)
6

2c′ · log(2d+1n)

mP (Πk = a)
. (4.9)

Finally, by a union bound, we have that with probability at least 5/6, for all k ∈ [n] and Πk = a,
both statements in Equations (4.7) and (4.9) will hold. Throughout the rest of the appendix, we will
condition on these two statements.

4.5 Proof of Lemma 4.1 We write the partial sum of χ2 between PX1,...,Xk
and QX1,...,Xk

on the
subset Sk ⊂ {0, 1}k as:

dχ2(PX1,...,Xk
, QX1,...,Xk

, Sk) =
∑

x∈Sk

(PX1,...,Xk
(x)−QX1,...,Xk

(x))2

QX1,...,Xk
(x)

=
∑

x∈Sk

−2PX1,...,Xk
(x) +QX1,...,Xk

(x) +
PX1,...,Xk

(x)2

QX1,...,Xk
(x)

= −2PX1,...,Xk
(Sk) +QX1,...,Xk

(Sk) +
∑

x∈Sk

PX1,...,Xk
(x)2

QX1,...,Xk
(x)

,

By definition of Sk, we can write the sum over x ∈ Sk as a ∈ ASk
, b ∈ B(a, Sk) and g ∈ C(a, Sk):

dχ2(PX1,...,Xk
, QX1,...,Xk

, Sk)

=




∑

a∈ASk

P 2
Πk

(a)

QΠk
(a)
·

∑

g∈C(a,Sk)

P 2
X1,...,Xk−1\Πk|Πk

(g | a)
QX1,...,Xk−1\Πk|Πk

(g | a) ·
∑

b∈B(a,Sk)

P 2
Xk|Πk

(b | a)
QXk|Πk

(b | a)





−(2PX1,...,Xk
(Sk)−QX1,...,Xk

(Sk))

=




∑

a∈ASk

P 2
Πk=a

QΠk=a
·

∑

g∈C(a,Sk)

P 2
X1,...,Xk−1\Πk |Πk

(g | a)
QX1,...,Xk−1\Πk|Πk

(g | a) ·


−1 +

∑

b∈B(a,Sk)

P 2
Xk |Πk

(b | a)
QXk|Πk

(b | a)







−
(
2PX1,...,Xk−1

(Sk−1)−QX1,...,Xk−1
(Sk−1)

)
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+
∑

a∈ASk

∑

g∈C(a,Sk)

P 2
Πk=a

QΠk=a
·
P 2
X1,...,Xk−1\Πk |Πk

(g | a)
QX1,...,Xk−1\Πk|Πk

(g | a)

+(2PX1,...,Xk−1
(Sk−1)−QX1,...,Xk−1

(Sk−1))

−(2PX1,...,Xk
(Sk)−QX1,...,Xk

(Sk)) (4.10)

=




∑

a∈ASk

P 2
Πk

(a)

QΠk
(a)

∑

g∈C(a,Sk)

P 2
X1,...,Xk−1\Πk |Πk

(g | a)
QX1,...,Xk−1\Πk|Πk

(g | a) ·


−1 +

∑

b∈B(a,Sk)

P 2
Xk |Πk

(b | a)
QXk|Πk

(b | a)







+dχ2(PX1,...,Xk−1
, QX1,...,Xk−1

, Sk−1)

+(2PX1,...,Xk−1
(Sk−1)−QX1,...,Xk−1

(Sk−1))

−(2PX1,...,Xk
(Sk)−QX1,...,Xk

(Sk)) (4.11)

6 2c
ε2

n
+ 4c′

2d log(2dn)

m
+

(
1 +

2c′2dn log(2dn)

cmε2

)
× dχ2(PX1,...,Xk−1

, QX1,...,Xk−1
, Sk−1). (4.12)

We obtain (4.10) by adding and subtracting the same terms, giving us a recurrence in Sk−1 in
(4.11). From this, we get (4.12) by applying a couple of technical results: Lemmas 4.3 and 4.4. Finally,

by setting m = 4c2dn2 log(2dn)
ε2

, we get the desired recursive formulation for dχ2(PX1,...,Xk
, QX1,...,Xk

, Sk),
concluding our proof of Lemma 4.1.

We now prove the aforementioned technical lemmata.

Lemma 4.3.

(2PX1,...,Xk−1
(Sk−1)−QX1,...,Xk−1

(Sk−1))− (2PX1,...,Xk
(Sk)−QX1,...,Xk

(Sk)) 6 2c
ε2

n
.

Proof.

(2PX1,...,Xk−1
(Sk−1)−QX1,...,Xk−1

(Sk−1))− (2PX1,...,Xk
(Sk)−QX1,...,Xk

(Sk))

=
∑

x1,...,xk−1∈Sk−1

∑

xk∈{0,1}
2PX1,...,Xk

(x1, . . . , xk)−
∑

x1,...,xk∈Sk

2PX1,...,Xk
(x1, . . . , xk)

−(QX1,...,Xk−1
(Sk−1)−QX1,...,Xk

(Sk))

=
∑

x1,...,xk−1∈Sk−1,xk∈Sc(x1,...,xk−1)

(2P (x1, . . . , xk)−Q(x1, . . . , xk))

6
∑

x1,...,xk−1∈{0,1}k−1

∑

xk∈Sc(x1,...,xk−1)

2P (x1, . . . , xk)

= 2
∑

{x1,...,xk−1\πk}∈{0,1}k−1−|Πk |

∑

πk

∑

xk∈Sc(πk)

P (x1, . . . , xk−1 \ πk|πk)P (xk, πk)

6 2
∑

xk ,πk∈Sc(Xk,Πk)

PXk ,Πk
(xk, πk) 6 2c

ε2

n
.

Lemma 4.4.

∑

a∈ASk
g∈C(a,Sk)

P 2
Πk=a

QΠk=a

P 2
X1,...,Xk−1\Πk|Πk

(g|a)
QX1,...,Xk−1\Πk|Πk

(g|a)


−1 +

∑

b∈B(a,Sk)

P 2
Xk|Πk

(b|a)
QXk|Πk

(b|a)




12



6
2c′ · 2dn log(2dn)

cmε2
dχ2(PX1,...,Xk−1

, QX1,...,Xk−1
, Sk−1) +

4c · 2d log(2dn)
m

.

Proof.

∑

a∈ASk
g∈C(a,Sk)

P 2
Πk=a

QΠk=a

P 2
X1,...,Xk−1\Πk|Πk

(g|a)
QX1,...,Xk−1\Πk|Πk

(g|a)


−1 +

∑

b∈B(a,Sk)

P 2
Xk|Πk

(b|a)
QXk|Πk

(b|a)


 (4.13)

6
∑

a∈AS
g∈C(a,Sk)

P 2
Πk=a

QΠk=a

P 2
X1,...,Xk−1\Πk|Πk

(g|a)
QX1,...,Xk−1\Πk|Πk

(g|a)
2c′ · log(2dn)
mPΠk

(a)

=
∑

a∈AS
g∈C(a,Sk)

(
−2PX1,...,Xk−1

(a, g) +QX1,...,Xk−1
(a, g) +

P 2
X1,...,Xk−1

(a, g)

QX1,...,Xk−1
(a, g)

)
· 2c

′ · log(2dn)
mPΠk

(a)

+
∑

a∈AS
g∈C(a,Sk)

(2PX1,...,Xk−1
(a, g) −QX1,...,Xk−1

(a, g)) · 2c
′ · log(2dn)
mPΠk

(a)

=
∑

a∈AS
g∈C(a,Sk)

(PX1,...,Xk−1
(a, g) −QX1,...,Xk−1

(a, g))2

QX1,...,Xk−1
(a, g)

· 2c
′ · log(2dn)
mPΠk

(a)

+
∑

a∈AS

∑

g∈C(a,Sk)

(2PX1,...,Xk−1
(a, g) −QX1,...,Xk−1

(a, g)) · 2c
′ · log(2dn)
mPΠk

(a)
(4.14)

6
2c′2dn log(2dn)

cmε2
·

∑

a∈AS
g∈C(a,Sk)

(PX1,...,Xk−1
(a, g) −QX1,...,Xk−1

(a, g))2

QX1,...,Xk−1
(a, g)

+
∑

a∈AS

∑

g∈C(a,Sk)

PX1,...,Xk−1
(a, g) · 4c

′ · log(2dn)
mPΠk

(a)

=
2c′2dn log(2dn)

cmε2
(PX1,...,Xk−1

, QX1,...,Xk−1
, Sk−1)

+
∑

a∈AS

PΠk
(a) · 4c

′ · log(2dn)
mPΠk

(a)

∑

g∈C(a,Sk)

PX1,...,Xk−1\Πk |Πk
(g|a))

︸ ︷︷ ︸
61

6
2c′2dn log(2dn)

cmε2
dχ2(PX1,...,Xk−1

, QX1,...,Xk−1
, Sk) +

4c′ · 2d log(2dn)
m

. (4.15)

4.6 A lower bound for learning a Bayes net in χ2 Our lower bound relies on a family of degree-1
Bayes nets, with all n−1 nodes sharing the same common 1-node parent. We will set the probability of
the parent to be so imbalanced that by taking even exp(O(n)) number of samples, we still cannot obtain
one sample from the rare side. In this case, it would be impossible to observe any sample from one side
of the n− 1 conditionals and thus, it is information theoretically hard to obtain good estimates of these
conditional densities. Due to the multiplicative accumulation of error in these “hidden” conditional
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densities, the χ2 distance remains large despite the small parent probability. Note that, this is not
a problem for KL: the error expressed in terms of KL is linearly accumulated as compared to χ2’s
multiplicative (and hence exponential) accumulation.

Definition 4.1. We define a process for drawing our hard instances to analyze in Proposition 4.2:

1. Let the prior P ∼ π be distributions such that P = PX1 ·PX2|X1
· · ·PXn|X1

and P (X1 = 1) = ε0, a
parameter of our choosing.

2. Draw xh uniformly at random from {0, 1}n−1.

3. Based on xh, set PXi|X1=1 = δxh
i
and as a consequence PX2,...,Xn|X1=1 =

∏n
i=2 PXi|X1=1 = δxh,

where

δy(x) =

{
1, x = y
0, otherwise

.

4. Let PX2,...,Xn|X1=0 = Un−1 be uniform on {0, 1}n−1 in the other case.

Intuitively, we are merely hiding a particular point xh from the learners; each distribution in π,
when conditioned on X1 = 1 will concentrate their mass on one point in the simplex (deterministic).
While it takes only one sample (with x1 = 1) to learn, no learner can get one with less than O(1/ε0)
number of samples. We state the main result below.

Proposition 4.2. Minimax risk of estimating a degree-1 Bayes net P in χ2 is at least Ω(ε) when the
number of samples m 6 O(2n/2/ε). In particular, the family of distributions in Definition 4.1 takes at
least Ω(2n/2/ε) to learn to ε.

By a standard Lagrange multiplier calculation, as inspired by the proof of [KOPS15, Lemma 5], we
have these useful facts. We will use them to prove Proposition 4.2.

Fact 4.1. Let qi, ai > 0, i ∈ [k], such that
∑k

i=1 qi 6 1. Then the quantity
∑k

i=1
ai
qi

is minimized when
qi ∝

√
ai.

Fact 4.2. Optima of the following form is obtained when Q2
i =

1
2n−1 , i = 1, · · · , n− 1:

min
Q∈Rn−1

2n−1∑

i=1

1

Qi
· 1

2n−1
, s.t.

2n−1∑

i=1

Q2
i = 1.

Proof. To see this, we simply verify the K.K.T. condition [BV14] of the constrained optimization
problem:

2n−1∑

i=1

1

Qi
· 1

2n−1
+ λ




2n−1∑

i=1

Q2
i − 1


 .

Necessary conditions:

− 1

Q2
i

· 1

2n−1
+ 2λQi = 0,∀i;

2n−1∑

i=1

Q2
i − 1 = 0.

Solving the first equation gives Qi =
1

2n/3λ1/3 ; and since all Qis are equal, Q
∗ ought to be uniform. Since

1
Qi

and Q2
i are both convex, we have that the necessary conditions are also sufficient for global minima.
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Proof. [Proof of Proposition 4.2] Let si = (X1,i, . . . ,Xn,i) be the ith sample, denote event S = {X1,i =

0, i ∈ [m]}, the probability is thus Pr[S] = (1 − ε0)
m > e−

1
2
ε0m > 1 − 1

2ε0m. We will condition on S
being true during the computation. Let Am denote the set of deterministic algorithms taking m samples
from P . Then, for Rχ2(m) being the minimax risk over Am,

Rχ2(m) = inf
Q∈Am

sup
P∈P

Es1,...,sm∼P

[
dχ2 (P,Qs)

]

> inf
Q∈Am

EP∼πEs∼P⊗m

[
dχ2 (P,Qs)

]

> inf
Q∈Am

EP∼πEs∼P⊗m

[
dχ2 (P,Qs) |S

]
Pr[S]

= inf
Q∈Am

E
P∼π

E
s∼P⊗m

[
−1 +

∑

x1,...,xn

P 2(x1, . . . , xn)

Qs(x1, . . . , xn)
| S
]
Pr[S]. (4.16)

Denote for convenience, P0 = PX1,...,Xn−1|Xn=0; P1 = PX1,...,Xn−1|Xn=1; Q0,s =
Qs(X1, . . . ,Xn−1|Xn = 0); Q1,s = Qs(X1, . . . ,Xn−1|Xn = 1). We focus on the inner summation
and lower bound them separately; and before that, we need a separate auxiliary tool – using Fact 4.1
above, we can show that, for any fixed P and Qs,

P 2(x1 = 0)

Qs(x1 = 0)
+

P 2(x1 = 1)

Qs(x1 = 1)

(
1 + dχ2 (P1, Q1,s)

)

>
P 2(x1 = 0)

P (x1=0)

P (x1=0)+P (x1=1)
√

1+dχ2 (P1,Q1)

+
P 2(x1 = 1)(1 + dχ2(P1, Q1))

P (x1=1)
√

1+dχ2 (P1,Q1)

P (x1=0)+P (x1=1)
√

1+dχ2 (P1,Q1)

>
(
P (x1 = 0) + P (x1 = 1)

√
1 + dχ2(P1, Q1)

)2
(4.17)

=⇒− 1 +
∑

x1,...,xn

P 2(x1, . . . , xn−1, xn)

Qs(x1, . . . , xn−1, xn)

=− 1 +
∑

x1,...,xn−1

P 2(xn = 0)P 2(x1, . . . , xn−1|xn = 0)

Qs(xn = 0)Qs(x1, . . . , xn−1|xn = 0)

+
∑

x1,...,xn−1

P 2(xn = 1)P 2(x1, . . . , xn−1|xn = 1)

Qs(xn = 1)Qs(x1, . . . , xn−1|xn = 1)

=− 1 +
P 2(xn = 0)

Qs(xn = 0)

(
1 + dχ2 (P0, Q0,s)

)
+

P 2(xn = 1)

Qs(xn = 1)

(
1 + dχ2 (P1, Q1,s)

)

>− 1 +
P 2(xn = 0)

Qs(xn = 0)
+

P 2(xn = 1)

Qs(xn = 1)

(
1 + dχ2 (P1, Q1,s)

)

>− 1 +
(
P (xn = 0) + P (xn = 1)

√
1 + dχ2 (P1, Q1,s)

)2
(4.18)

=− 1 +
(
(1− ε0) + ε0

√
1 + dχ2 (P1, Q1,s)

)2

=− 1 +
(
1 + ε0

(√
1 + dχ2 (P1, Q1,s)− 1

))2

= 2ε0

(√
1 + dχ2 (P1, Q1,s)− 1

)
+
(
ε0

(√
1 + dχ2 (P1, Q1,s)− 1

))2

15



> 2ε0

(√
1 + dχ2 (P1, Q1,s)− 1

)
. (4.19)

For any fixed Qs(x1, . . . , xn), we can compute Qs(xn = 0), Qs(xn = 1), and dχ2 (P1, Q1,s); in other
words, they are also fixed, given s. Then a lower bound can be obtained via a variation argument in
(4.18) via (4.17). Connecting (4.16), and (4.19), we continue with the following expression,

Rχ2(m)

Pr[S]
> inf

Q∈Q
E

P ∼ π
s ∼ P⊗m

[
2ε0(

√
1 + dχ2 (P1, Q1,s)− 1)|S

]

= inf
Q∈Q

E
P1∼π

E
s∼P⊗m|S

[
2ε0

(√
1 + dχ2 (P1, Q1,s)− 1

)]

= inf
Q∈Q

E
xh∼Un−1

E
s∼Ũ⊗m

n−1

[
2ε0

(√
1 + dχ2 (P1, Q1,s)− 1

)]
(4.20)

= inf
Q∈Q

E
s∼Ũ⊗m

n−1

E
xh∼Un−1

[
2ε0

(√
1 + dχ2 (P1, Q1,s)− 1

)]
(4.21)

>

(
E

s∼Ũ⊗m
n−1

inf
Q∈Q

E
xh∼Un−1

[
2ε0

(√∑

x

P 2
1 (x)

Q1,s(x)
− 1

)])
(4.22)

>

(
inf

Q∗∈∆2n−1
E

xh∼Un−1

[
2ε0

(√∑

x

P 2
1 (x)

Q∗(x)
− 1

)])
(4.23)

= inf
Q∗∈∆2n−1

E
α,(α1,...,αn−1)∼Un−1

[
2ε0

(√
1

Q∗(α)
− 1

)]

= 2ε0

(
2

n−1
2 − 1

)
. (4.24)

Since we are only changing P1 (or xh) in the construction, we can replace P ∼ π with P1 ∼ π (or
xh ∼ Un−1); note that there is no sample with X1 = 1 in s, and thus s is merely samples drawn from
uniform distribution with all their corresponding X1 = 0 and this is what we mean by s ∼ Ũ⊗m

n−1 in
(4.20). Therefore, P1 or xh is independent with s, and we can swap the expectation in (4.21); and in
(4.22), we lower bound the expectation as the learner can first observe the samples s before choosing
the algorithm from Q. But in any case, it is fixed before the last expectation, and hence (4.23) follows.
As we assume the learning algorithm Q is deterministic, for a fixed s, Q1,s is also fixed. We obtain
(4.24) through Fact 4.2.

In the end, we have that

Rχ2(m) > 2ε0

(
2

n−1
2 − 1

)
Pr[S] > ε02

n
2 (1− ε0m).

By setting ε0 =
2ε

2n/2 , we can see that if m 6 1
4ε2

n
2 , then Rχ2(m) > 2ε− 4ε2

2n/2m > ε.

5 Testing maximum in-degree of Bayes nets

Theorem 5.1. Given an unknown distribution P , and a maximum degree-d graph G supported on

{0, 1}n, it takes at most O
(
max

(
2n/2

ε2
, 2

dn2d log(n)
ε2

))
i.i.d. samples to test whether dH(P,G) =

0 or dH(P,G) > ε, with probability > 2/3.
Furthermore, testing whether P is Markov w.r.t. any max degree-d graphs with success probability

at least 2/3, takes at most O
(
max

(
2n/2

ε2
, 2

dn2d log(n)
ε2

)
· log(ndn)

)
samples.
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Algorithm 3: Testing P is a degree-d DAG G

Input :Sample access to distribution P , accuracy parameter ε and a degree-d DAG G.

1 Learn P with ε, G and 2dn2 log(2dn)
ε2 samples via Algorithm 2: obtaining an estimate Q̃, and an

O(ε2)-effective support set A via Algorithm 1.

2 Draw a multiset S of Poisson(m) samples from P , where m = 2n/2

ε2 .

3 Call [DKW18, Algorithm 1] and return PA, Q̃A, S, ε.

Proof. We prove by analyzing Algorithm 3. By the guarantee of the underlying tester in [DKW18,
Algorithm 1], it suffices to verify the following:

• Soundness: If dH(P,G) > ε (it is far from any Bayes nets of graph G), then dH(PA, Q̃A) > Ω(ε);

• Correctness: If dH(P,G) = 0, then dχ2(PA, Q̃A) 6 O(ε2); and we have this from Theorem 4.1.

Roughly speaking, we can pretend P and Q̃ are supported only on A, and since |A| 6 2n, O(
√
2n)/ε2

samples suffice for testing. For soundness, by Theorem 4.1, we have

Q̃(S̃) > 1−O(ε2), and P (S̃) > 1−O(ε2).

Since

d2H(P,Q) = d2H(PA, QA) + d2H(PĀ, QĀ), and d2H(PĀ, QĀ) 6 dTV(PĀ, QĀ) 6
1

2
(P (Ā) +Q(Ā)) 6 O(ε2),

we have that d2H(PA, QA) > Ω(ε2).
Since it costs an extra O(log(1/δ)) to amplify the success probability to 1− δ for each test, we will

run amplified accurate tests on all nO(dn) possible maximum in-degree-d graphs and follow up with a
union bound of 1 − δ · nO(dn). In particular, we set δ = 1

ndn , which brings an additional O(log(ndn))
factor to the overall sample complexity, and thus, it gives us a tester for maximum in-degree-d graphs

with sample complexity O
(
max

(
2n/2

ε2
, 2

dn2d log(n)
ε2

)
· log(ndn)

)
.

5.1 Extending Theorem 5.1 to TV distance While our result in Theorem 5.1 already implies
a tester in dTV, with our near-proper learner in dχ2 for bounded degree Bayes net, it also implies a
similar graphical tester in dTV analogous to Theorem 5.1, where the shifting of masses is unnecessary
(see [ADK15, Remark 1]), i.e., the additional requirement of Q(S̃) > 1−O(ε2) is no longer necessary in
the case of TV; and we can also weaken requirement on P (S̃): P (S̃) > 1−O(ε).

To see this, we only need to verify that dTV(PA, QA) > Ω(ε) in the case of soundness. Assuming
that dTV(P,Q) > 10ε and P (S) > 1− ε, we analyze the two cases,

− When Q(S) < 1− 2ε, we have P (Sc) 6 ε,Q(Sc) > 2ε, and thus

1

2

∑

i∈S
|Pi −Qi| >

1

2

∣∣∣∣∣
∑

i∈S
(Pi −Qi)

∣∣∣∣∣ =
1

2
(P (S)−Q(S)) >

1

2
(1− ε− (1− 2ε)) =

ε

2
.

− When Q(S) < 1− 2ε, similarly,

1

2

∑

i∈S
|Pi −Qi| =

1

2

∑

i∈Ω
|Pi −Qi| −

1

2

∑

i 6∈S
|Pi −Qi| >

1

2
(10ε − (ε+ 2ε)) =

7

2
ε.

In both cases, we have dTV(PS , QS) > Ω(ε). Nevertheless, we note that the same technique does not
work for Hellinger, and thus requires a slightly stronger guarantee.
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6 Conclusion and future directions

In this paper, we provided (nearly) tight sample complexity bounds for testing the maximum in-degree
of an unknown Bayesian network. Along the way, we obtained several results of independent interest,
including a near-proper learner for Bayesian networks under χ2 divergence, and a high-probability χ2

learning algorithm (for arbitrary discrete distributions).
Our results raise two interesting future directions. The first is to generalize our testing result to

the more general question of maximum degree-d testing under maximum degree-k assumption, where
k > d are both input parameters; in particular, our results correspond to k = n. The second is to
either strengthen our high-probability χ2 learning bound to obtain an additive log(1/δ) dependence (as
is known for total variation distance learning), instead of a multiplicative one; or to show that such a
multiplicative dependence on log(1/δ) is necessary. We note that such a result is not known even for
the weaker KL divergence learning.
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