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Abstract

Nanopore sequencing, superior to other sequencing technologies for DNA storage in multiple aspects, has recently attracted
considerable attention. Its high error rates, however, demand thorough research on practical and efficient coding schemes to enable
accurate recovery of stored data. To this end, we consider a simplified model of a nanopore sequencer inspired by Mao et al.,
incorporating intersymbol interference and measurement noise. Essentially, our channel model passes a sliding window of length
ℓ over a q-ary input sequence that outputs the composition of the enclosed ℓ bits and shifts by δ positions with each time step. In
this context, the composition of a q-ary vector x specifies the number of occurrences in x of each symbol in {0, 1, . . . , q − 1}.
The resulting compositions vector, termed the read vector, may also be corrupted by t substitution errors. By employing graph-
theoretic techniques, we deduce that for δ = 1, at least log log n symbols of redundancy are required to correct a single (t = 1)
substitution. Finally, for ℓ ≥ 3, we exploit some inherent characteristics of read vectors to arrive at an error-correcting code that
is of optimal redundancy up to a (small) additive constant for this setting. This construction is also found to be optimal for the
case of reconstruction from two noisy read vectors.

Index Terms

Sequence reconstruction, DNA sequences, nanopore sequencing, error-correction codes, composition errors

I. INTRODUCTION

The advent of DNA storage as an encouraging solution to our ever-increasing storage requirements has spurred significant

research to develop superior synthesis and sequencing technologies. Among the latter, nanopore sequencing [1], [2], [3] appears

to be a strong contender due to low cost, better portability, and support for longer reads. In particular, this sequencing process

comprises transmigrating a DNA fragment through a microscopic pore that holds ℓ nucleotides at each time instant and

measuring the variations in the ionic current, which are influenced by the different nucleotides passing through. However, due

to the physical aspects of this process, multiple kinds of distortions corrupt the readout. Firstly, the simultaneous presence of

ℓ > 1 nucleotides in the pore makes the observed current dependent on multiple nucleotides instead of just one, thus causing

inter-symbol interference (ISI). Next, the passage of the DNA fragment through the pore is often irregular and may involve

backtracking or skipping a few nucleotides, thereby leading to duplications or deletions. Furthermore, the measured current is

accompanied by random noise, which might result in substitution errors.

Several attempts have been made to develop a faithful mathematical model for the nanopore sequencer. In particular, [4]

proposed a channel model that embodies the effects of ISI, deletions, and random noise while establishing upper bounds on

the capacity of this channel. The authors of [5] focused on a more deterministic model incorporating ISI and developed an

algorithm to compute its capacity. Efficient coding schemes for this abstracted channel were also suggested. More recently, a

finite-state Markov channel (FSMC)-based approach was adopted to formulate a model that accounts for ISI, duplications, and

noisy measurements [6].

In this work, we adopt a specific variation of the model proposed in [4], which is also interesting owing to its resemblance

with the transverse-read channel [7], which is relevant to racetrack memories. Expressly, we represent the process of nanopore

sequencing as the concatenation of three channels, as depicted in Fig. 1. The ISI channel, parameterized by (ℓ, δ), is meant to

reflect the dependence of the current variations on the ℓ consecutive nucleotides in the pore at any given time. We may view

this stage as a sliding window of size ℓ passing through an input sequence and shifting by δ positions after each time instant,

thereby producing a sequence of strings of ℓ consecutive symbols, or ℓ-mers. Next, the substitution channel captures the effect

of random noise by introducing possible substitution errors into the sequence of ℓ-mers. Finally, this erroneous sequence of

ℓ-mers is converted by a memoryless channel into a sequence of discrete voltage levels according to a deterministic function,

specifically the composition.
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Fig. 1. Simplified model of a nanopore sequencer

This work aims to design efficient error-correcting codes for nanopore sequencing. More specifically, as a starting point for

future analysis, the aforementioned channel model is treated where at most one substitution occurs and δ = 1. The problem is

stated more formally as follows.

Let Rℓ,δ(x) represent the channel output for an input x ∈ Σn
q , given that no substitution affected the ℓ-mers. Now we

seek to find a code C ⊆ Σn
q such that for any x1,x2 ∈ C, the Hamming distance between Rℓ,δ(x1) and Rℓ,δ(x2) strictly

exceeds 2. In other words, one can uniquely deduce the channel input despite ISI and the subsequent occurrence of at most

one substitution, provided it belongs to the code C.

The rest of the manuscript is organized as follows. We begin by establishing relevant notation and terminology while

discussing the underlying properties of read vectors in Section II. The results that follow, hold for all (ℓ, 1)-read vectors, where

ℓ ≥ 3. In Section III, we employ graph-theoretic techniques from [8] to determine the minimum redundancy required by any

code that corrects a single substitution error in an (ℓ, 1)-read vector. Section IV describes a redundancy-optimal instantiation

of such a code. Subsequently, in Section V, we find that this instantiation is also redundancy-optimal when reconstructing x

from two distinct noisy copies of Rℓ,δ(x), each of which has suffered at most 1 substitution. Concluding remarks concerning

future work are offered in Section VI.

II. PRELIMINARIES

A. Notations and Terminology

In the following, we let Σq indicate the q-ary alphabet {0, 1, . . . , q − 1}. Additionally, [n] is used to denote the set

{1, 2, . . . , n}. Element-wise modulo operation on a vector, say y ∈ Σn
q , is represented as

y mod a ,
(
y1 mod a, y2 mod a, . . . , yn mod a

)
. (1)

For any vector x = (x1, . . . , xn), we refer to its substring (xi, xi+1, . . . , xj) as x
j
i . The composition of a vector x is denoted by

c(x) , 0i0 . . . (q−1)iq−1 , such that x contains i0 ‘0’s, i1 ‘1’s and so on. We also define the L1-weight of the composition c(x)
as |c(x)|1 , i1 + 2i2 + · · ·+ (q − 1)iq−1= |x|1. This operator may also be applied to a vector of compositions in the same

spirit as in (1). By abuse of notation, when n is known from the context, we omit from c(x) any symbol x ∈ Σq such

that ix = 0. Further, when convenient, we treat c(x) as a formal monomial by using expressions of the form c(x) · (c(y))−1.

We also extensively use the Hamming distance, which is defined for any two vectors x,y ∈ Σn, for any alphabet Σ, as

dH(x,y) = |{ i : i ∈ [n], xi 6= yi }|.

Throughout this paper, we assume existence of integers n, ℓ, and δ that satisfy the relation n+ ℓ ≡ 0 (mod δ).

Definition 1. The (ℓ, δ)-read vector of any x ∈ Σn
q is of length (n+ ℓ)/δ − 1 and is denoted by

Rℓ,δ(x) , (c(xδ
δ−ℓ+1), c(x

2δ
2δ−ℓ+1), . . . , c(x

n+ℓ−δ
n−δ+1)),

where for any i 6∈ [n], we let xi = φ, i.e., a null element such that c(y ◦ φ) = c(y). Rℓ,δ(x)i is used to denote the i-th
element of Rℓ,δ(x), i.e., Rℓ,δ(x)i = c(xiδ

iδ−ℓ+1).

Remark: The above definition of an (ℓ, δ)-read vector appears similar to that of the (ℓ, δ)-transverse-read vector introduced

in [7], except that the L1-weights are replaced by compositions and Rℓ,δ(x) begins and ends with the compositions of

substrings xδ
1 and xn

n−δ+1 respectively, even though its intermediate elements signify compositions of length-ℓ substrings. This

is motivated by obtaining a current reading even when the DNA strand has only partially entered the nanopore.

Definition 2. Let R = (c1, . . . , ck) where for each 1 ≤ i ≤ k, ck is a composition of some vector in Σℓ
q . Then the derivative

of R is the length-(k + 1) formal-monomial-vector defined as

∆ ,
(
c1c

−1
0 , c2c

−1
1 , . . . , ck+1c

−1
k

)
,

where c0, ck+1 = φ are included for uniformity. Observe that the differentiation R 7→ ∆ is invertible.
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Definition 3. For any ℓ, δ where ℓ ≥ δ, the i-th read sub-derivative, is used to indicate a specific subsequence of the derivative

of Rℓ,δ(x), and is defined for any α ∈ Σ⌊ ℓ
δ
⌋ as

∆α
ℓ,δ(x) , (R(x)α+1 · R(x)

−1
α ,R(x)α+⌊ ℓ

δ
⌋+1 · R(x)

−1
α+⌊ ℓ

δ
⌋
, . . . ,R(x)α+k⌊ ℓ

δ
⌋+1 · R(x)−1

α+k⌊ ℓ
δ
⌋
)

= (c(x
(α+1)δ
αδ+1 ) · c(x

(α+1)δ−ℓ
αδ−ℓ+1 )−1, . . . , c(x

(α+k⌊ ℓ
δ
⌋+1)δ

(α+k⌊ ℓ
δ
⌋)δ+1

) · c(x
(α+k⌊ ℓ

δ
⌋+1)δ−ℓ

(α+k⌊ ℓ
δ
⌋)δ−ℓ+1

)−1),

where k = ⌊n+ℓ−(α+1)δ
δ⌊ℓ/δ⌋ ⌋ and for any p 6∈ [n+ℓ−δ

δ ] and m 6∈ [n], we let R(x)p = φ and xm = φ. We let ∆α
ℓ,δ(x)i indicate

the i-th element of ∆α
ℓ,δ(x), i.e.,

∆α
ℓ,δ(x)i = R(x)α+(i−1)⌊ ℓ

δ
⌋+1 · R(x)−1

α+(i−1)⌊ ℓ
δ
⌋
.

When clear from the context, ℓ and δ will be removed from the preceding notations.

Example 1. Consider x = (1, 2, 0, 1, 2, 2). The (3, 1)-read vector of x is thus R3,1(x) = (1, 12, 012, 012, 012, 122, 22, 2).
Evidently, R3,1(x)3 = 012, ∆0

3,1(x) = (1, φ, 1−1), ∆1
3,1(x) = (2, φ, 2−1) and ∆2

3,1(x) = (0, 0−12, 2−1).

As mentioned earlier, [7] investigated a similar model designated as the transverse-read channel in connection with racetrack

memories. Therein, the information limit of this channel was derived for different parameters, and several codes enabling

unique reconstruction were proposed. Certain error-correcting codes were also presented for ℓ = 2 and δ = 1.

B. Properties of the Read Vectors

A closer look at the definitions in the last section reveals that not every vector of ℓ-compositions represents the read vector

of some x ∈ Σn
q , i.e., is valid. In this section, we first observe which vectors are valid and thereby deduce specific properties

that often enable us to detect errors and thereby assist in designing error-correcting constructions of improved redundancies.

Definition 4. For x ∈ Σn
q and any α ∈ Σ⌊ ℓ

δ
⌋, let

Cα
ℓ,δ(x) , (c(x

(α+1)δ
αδ+1 ), . . . , c(x

(α+k⌊ ℓ
δ
⌋+1)δ

(α+k⌊ ℓ
δ
⌋)δ+1

)),

where k = ⌊n+ℓ−(α+1)δ
δ⌊ℓ/δ⌋ ⌋, be a sequence of compositions.

Observe that for δ = 1 each Cα
ℓ,δ(x) is a subsequence of x, composed of the positions at indices i ≡ α + 1 (mod ⌊ ℓδ ⌋),

and in particular there exists a bijection between Σn and the set of ⌊ ℓδ ⌋-tuple of length-(k + 1) vectors.

Example 2. Reconsidering x = (1, 2, 0, 1, 2, 2) from Example 1, we observe that C0
3,1(x) = (1, 1), C1

3,1(x) = (2, 2) and

C2
3,1(x) = (0, 2), which are evidently subsequences of x. Under δ > 1, these transform into composition vectors; for instance

C0
4,2(x) = (12, 22) and C1

4,2(x) = (01).

Lemma 1. Take ℓ, δ satisfying ℓ ≡ 0 (mod δ), and let {Cα : α ∈ Σℓ/δ} be any (ℓ/δ) arbitrary length-(k + 1) vectors

of compositions, belonging to vectors in Σδ
q, where k = ⌊n+ℓ−(α+1)δ

ℓ ⌋. Then there exists x ∈ Σn
q such that the respective

derivatives {∆α : α ∈ Σℓ/δ} satisfy ∆α = ∆α
ℓ,δ(x), and x satisfies Cα = Cα

ℓ,δ(x) for all α ∈ Σℓ/δ. Further, when δ = 1
this x is unique.

Proof: Recall that owing to xi = φ for all i 6∈ [n], the following holds for any α ∈ ℓ
δ .

∆α
ℓ,δ(x) = (c(x

(α+1)δ
αδ+1 ), c(x

(α+1)δ+ℓ
αδ+ℓ+1 ) · c(x

(α+1)δ
αδ+1 )−1, . . . ,

c(x
(α+1)δ+kℓ
αδ+kℓ+1 )c(x

(α+1)δ+(k−1)ℓ
αδ+(k−1)ℓ+1 )−1, c(x

(α+1)δ+kℓ
αδ+kℓ+1 )−1),

where k = ⌊n−(α+1)δ
ℓ ⌋+1. Evidently, by left-to-right (or right-to-left) reconstruction, we observe that Cα

ℓ,δ(x) can be uniquely

deduced from ∆α
ℓ,δ(x). The other direction follows from the observation that ∆α

ℓ,δ(x) is essentially the derivative of Cα
ℓ,δ(x),

in accordance with Definition 2.

Corollary 1. If ℓ ≡ 0 (mod δ), then for any x ∈ Σn
q and α ∈ Σ ℓ

δ
, the cumulative product of the first m+1 elements of ∆α

ℓ,δ(x)

is c(x
mℓ+(α+1)δ
mℓ+αδ+1 )1. Thus, ∆α

ℓ,δ(x) determines Cα
ℓ,δ(x), which in the special case of δ = 1, is effectively (xα+1, xα+ℓ+1, . . .).

Since Rℓ,δ(x) is in bijection with the set {∆α(x)}α∈Σ
⌊ ℓ
δ
⌋
, it follows that when ℓ ≡ 0 (mod δ) (and, in particular, when δ =

1) the set of valid read vectors is isomorphic to the set of ⌊ ℓδ ⌋-tuple of length-(k+ 1) composition-vectors.

Corollary 2. For δ = 1 and any x ∈ Σn
q , let R(x) be either R(x) or |R(x)|1 mod q. Then x ∈ Σn

q , x
j
i can be uniquely

determined, either from

1Analogous result exists for sum of last m+ 1 elements.
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1) x
i−1
i−ℓ+1 and (R(x)i, R(x)i+1, . . . , R(x)j); or

2) x
j+ℓ−1
j+1 and (R(x)i+ℓ−1, R(x)i+ℓ, . . . , R(x)j+ℓ−1),

where for all k 6∈ [n], xk = φ. Since for p ∈ {1, n}, xp = R(x)p, the first or last n elements of R(x) suffice to reconstruct x.

Proof: We restrict our attention to R(x) = |R(x)|1 mod q since the proof for R(x) follows similarly. By successively

applying the fact that for i ≤ p ≤ j, one can recover xp from the combined knowledge of x
p−1
p−ℓ+1 and |Rℓ,1(x)p|1 =∑p

h=p−ℓ+1 xh mod q, we arrive at the statement of the corollary. The same argument also holds for right-to-left reconstruction.

Example 3. We wish to reconstruct x given R3,1(x) = (1, 12, 012, 012, 012, 122, 22, 2) from Example 1. Firstly, we observe

that R(x)1 = x1 = 1. Next, R(x)2 = c(x2
1) = 12, causing x2 = 2. Such a left-to-right reconstruction of R(x) leads us

to x = (1, 2, 0, 1, 2, 2), as in Example 1. Similarly, when given |R3,1(x)|1 mod 3 = (1, 0, 0, 0, 0, 2, 1, 2), one can infer from

Definition 1 that x1 = |R3,1(x)1|1 mod 3 = 1, x1+x2 = |R3,1(x)2|1 mod 3 and so on, thereby leading to x = (1, 2, 0, 1, 2, 2)
once again. Right-to-left reconstruction will yield the same result.

Lemma 2. For any ℓ, δ such that ℓ ≡ 0 (mod δ), and all x ∈ Σn
q , it holds that

∏n+ℓ
δ

−1
i=1 R(x)i =

(
c(x)

)ℓ/δ
. Further,

∏⌊n−(α+1)δ
ℓ

⌋+2
i=1 ∆α

ℓ,δ(x)i = c(φ) for any α ∈ Σℓ/δ.

Proof: Observe that for all α ∈ Σℓ/δ, we have
⌊

n−(α+2)δ
ℓ

⌋
+1∏

i=0

R(x)α+i ℓ
δ
+1 = c(x). (2)

This naturally leads us to

n+ℓ
δ

−1∏

i=1

R(x)i =

ℓ/δ−1∏

α=0

⌊n−(α+2)δ
ℓ

⌋+1∏

i=0

R(x)α+i ℓ
δ
+1 = c(x)ℓ/δ.

While one can arrive at
∏⌊

n−(α+1)δ
ℓ

⌋+2
i=1 ∆α(x)i = c(φ) directly from the definition, we may also use (2) to prove this as

follows.

⌊n−(α+1)δ
ℓ

⌋+2∏

i=1

∆α(x)i =

⌊n−(α+1)δ
ℓ

⌋+1∏

i=0

R(x)α+i ℓ
δ
+1 · R(x)−1

α+i ℓ
δ

=
( ⌊n−(α+1)δ

ℓ
⌋+1∏

i=0

R(x)α+i ℓ
δ
+1

)( ⌊n−(α+1)δ
ℓ

⌋+1∏

i=0

R(x)α+i ℓ
δ

)−1

= c(x) · c(x)−1 = φ,

where we let R(x)p = φ for all p 6∈ [n+ℓ−δ
δ ].

Another important consequence of the aforementioned properties is stated below.

Theorem 1. When ℓ > 1 and δ = 1, for any two distinct x,y ∈ Σn
q , dH(R(x),R(y)) ≥ 2.

Proof: Assume that dH(R(x),R(y)) = 1, and let i denote the index where R(x) and R(y) differ, i.e., R(x)i 6= R(y)i.
From Lemma 2, we infer that

(
c(x) · c(y)−1

)ℓ
=

n+ℓ
δ

−1∏

j=1

R(x)j · R(y)−1
j = R(x)i · R(y)−1

i .

Since the preceding equation suggests that each positive and negative degree should be divisible by ℓ, and we know that

the sum of degrees in each of R(x)i and R(y)i must be ℓ, the only possibility involves R(x)i · R(y)−1
i = aℓb−ℓ for some

a, b ∈ Σq , a 6= b.
However, denoting α , (i − 1) mod ℓ it also follows that ∆α(x) and ∆α(y) differ in a unique index, at which R(x)i ·
R(x)−1

i−1 = (R(y)ia
ℓb−ℓ) · R(y)−1

i−1 6= R(y)i · R(y)−1
i−1. Hence, by Lemma 2

c(φ) =

⌊n−(α+1)δ
ℓ

⌋+2∏

i=1

∆α(x)i

= aℓb−ℓ

⌊n−(α+1)δ
ℓ

⌋+2∏

i=1

∆α(y)i = aℓb−ℓc(φ),
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in contradiction.

C. Error Model

Similar to [7], we study the occurrence of substitution errors in read vectors and design suitable error-correcting constructions.

To suitably define what constitutes an error-correcting construction in our framework, we first define the set of vectors that

may result from at most t substitutions on a vector u ∈ Σn, for any alphabet Σ, as

Bt(u) , {v ∈ Σn : dH
(
u,v

)
≤ t}. (3)

In our application we will only be interested in Bt(R(x)), for some x ∈ Σn
q .

Definition 5. A code C is said to be a t-substitution (ℓ, δ;M)-read code if for any two distinct x,y ∈ Σn
q , it holds that

|Bt(Rℓ,δ(x)) ∩Bt(Rℓ,δ(y))| < M .

In words, C is a t-substitution (ℓ, δ;M)-read code if obtaining any M distinct noisy versions of any codeword, where at

most t substitutions occur in each version, allows one to uniquely reconstruct that codeword.

This work focuses on the case when δ = 1 and t = 1. To this end, we seek to find a code that can correct a single substitution

error in the read vectors of its constituent codewords, i.e., a single-substitution (ℓ, 1)-read code. In the upcoming sections, we

endeavor to derive an upper bound on the cardinality of any such code, and subsequently propose an optimal instantiation of

the same.

III. MINIMUM REDUNDANCY OF SINGLE-SUBSTITUTION (ℓ, 1; 1)-READ CODES

To establish a lower bound on the redundancy required by a single-substitution (ℓ, 1; 1)-read code, we first attempt to

characterize the relationship between any two non-binary vectors x,y ∈ Σn
q , that might be confusable after a single substitution

in their respective read vectors.

A. Characterization of Confusable Read Vectors

To proceed in this direction, we first note from Theorem 1 that there exists no two distinct vectors x,y ∈ Σn
q that satisfy

dH(R(x),R(y)) = 1 for any ℓ > 1. Thus, we attempt to ascertain the conditions under which dH(R(x),R(y)) = 2 may

occur.

Lemma 3. For ℓ ≥ 3, any two distinct vectors x,y ∈ Σn
q satisfy dH(R(x),R(y)) = 2 if and only if there exist distinct

i, j ∈ [n+ ℓ− 1], for which R(x)i · R(y)−1
i = R(x)−1

j · R(y)j 6= c(φ) and j ≡ i (mod ℓ).

Proof: Let i < j represent the indices at which R(x) and R(y) differ, i.e., R(x)i 6= R(y)i and R(x)j 6= R(y)j . As

(R(x)i−1
1 ,R(x)n−ℓ+1

j+1 ) = (R(y)i−1
1 ,R(y)n−ℓ+1

j+1 ), we may infer from Corollary 2 that xi−1
1 = y

i−1
1 and xn

j−ℓ+2 = yn
j−ℓ+2.

As a consequence, we obtain xi · y
−1
i = R(x)i · R(y)−1

i 6= c(φ), i.e., xi 6= yi.
Similarly, xj−ℓ+1 · y

−1
j−ℓ+1 = R(x)j · R(y)−1

j 6= c(φ). On account of Lemma 2, we also have

(xi · y
−1
i )(xj−ℓ+1 · y

−1
j−ℓ+1) =

n+ℓ−1∏

i=1

R(x)i · R(y)−1
i

= c(x)ℓc(y)−ℓ,

hence the degree in (xi · y
−1
i )(xj−ℓ+1 · y

−1
j−ℓ+1) of each symbol in Σq is a multiple of ℓ. Since ℓ ≥ 3, it follows that

(xi · y
−1
i )(xj−ℓ+1 · y

−1
j−ℓ+1) = c(φ). Because xi 6= yi, we have xi = yj−ℓ+1 and yi = xj−ℓ+1 (i.e., c(x) = c(y)), or, put

differently, R(x)j · R(y)−1
j = x−1

i yi = R(x)−1
i · R(y)i.

Finally, if j 6≡ i, i+ 1 (mod ℓ) then under Lemma 2 we observe (denoting α , i mod ℓ)

c(φ) =
∏

k

∆α(x)k

=
(∏

k

∆α(y)k

)
(R(x)−1

i R(y)i)

= R(x)−1
i R(y)i,

in contradiction. Similarly, if j ≡ i+ 1 (mod ℓ) then

c(φ) =
∏

k

∆α(x)k

=
(∏

k

∆α(y)k

)
(R(x)−1

i R(y)i)(R(x)jR(y)−1
j )

= R(x)−2
i R(y)2i ,
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again in contradiction. Hence, i ≡ j (mod ℓ), concluding the proof.

Further inspection reveals how two binary vectors with confusable read vectors are related.

Lemma 4. For ℓ ≥ 3, any two vectors x,y ∈ Σn
q that satisfy dH(R(x),R(y)) = 2, i.e., R(x)i · R(y)−1

i = R(x)−1
j · R(y)j

for some i, j ∈ [n+ ℓ− 1] such that i < j, it must hold that (yi, yi+1) = (xi+1, xi).

Proof: From Corollary 2 and R(x)i−1
1 = R(y)i−1

1 , we infer that xi−1
1 = y

i−1
1 and xn

j−ℓ+2 = yn
j−ℓ+2. It directly follows

from R(x)i · R(y)−1
i = xi · y

−1
i 6= c(φ).

Note that Lemma 3 suggests j−i ≥ ℓ ≥ 3. Thus, we must have R(x)i+1 = R(y)i+1, or equivalently,R(x)i+1 ·R(y)−1
i+1 =

c(φ). Since xi−1
i−ℓ+2 = yi−1

i−ℓ+2, the preceding requirement essentially translates to c(xi+1
i ) · c(yi+1

i )−1 = c(φ). Since xi 6= yi,
we conclude that xi+1 = yi and yi+1 = xi.

Example 4. For x = (1, 2, 0, 1, 2, 2) and y = (2, 1, 0, 2, 1, 2), we haveR3,1(x) = (1, 12, 012, 012, 012, 122, 22, 2) andR3,1(y) =
(2, 12, 012, 012, 012, 122, 12, 2) respectively. Evidently, dH(R(x),R(y)) = 2. If i = 1 and j = 7, then R(x)i · R(y)−1

i =
R(y)j · R(x)−1

j and j ≡ i (mod ℓ), in keeping with Lemma 3. Also, as suggested by Lemma 4, it holds that (xi, xi+1) =
(1, 2) = (yi+1, yi).

Lemma 5. For ℓ ≥ 3, consider two vectors x,y ∈ Σn
q , such that for some i, j ∈ [n+ ℓ− 1], i < j, R(x)i · R(y)−1

i =

R(x)−1
j ·R(y)j , and for all p 6∈ {i, j},R(x)p = R(y)p. Assume for some t ≥ i that xt−1

t−ℓ+2 = yt−1
t−ℓ+2, (xt, xt+1) = (yt+1, yt).

Then, one of the following conditions will hold.

1) xn
t+2 = yn

t+2 and j = t+ ℓ; or

2) x
t+ℓ−1
t+2 = y

t+ℓ−1
t+2 , (xt+ℓ, xt+ℓ+1) = (xt, xt+1), (yt+ℓ, yt+ℓ+1) = (yt, yt+1) and j > t+ ℓ+ 1.

Proof: Let m indicate the smallest index strictly greater than t + 1 for which xm 6= ym; if xn
t+2 = yn

t+2, consider

m =∞. Further recall throughout the proof that from R(x)p = R(y)p for j < p < n + ℓ and Corollary 2, it follows that

xn
j−ℓ+2 = yn

j−ℓ+2.

We start by noting that m ≥ t + ℓ; indeed, if m < t + ℓ then R(y)m · R(x)−1
m = ym · x−1

m 6= c(φ), hence j = m but

xn
j−ℓ+2 = yn

j−ℓ+2 contradicts xt+1 6= yt+1. We continue this proof by cases.

Case 1) If m > t + ℓ, we deduce that R(y)t+ℓ · R(x)−1
t+ℓ = yt+1 · x

−1
t+1 6= c(φ). Thus, j = t + ℓ, implying xn

t+2 = yn
t+2

(in particular, this case is only possible when m =∞).

Case 2) If m = t+ ℓ, then xn
j−ℓ+2 = yn

j−ℓ+2 implies that j ≥ t+ 2ℓ− 1 > t+ ℓ+ 1.

Observe that R(y)t+ℓ · R(x)−1
t+ℓ = (yt+ℓyt+1) · (xt+ℓxt+1)

−1 = c(φ), and hence (xt+ℓ, yt+ℓ) = (yt+1, xt+1). In turn,

R(y)t+ℓ+1 · R(x)−1
t+ℓ+1 = c(yt+ℓ+1

t+ℓ ) · c(xt+ℓ+1
t+ℓ )−1 = c(φ) now implies (xt+ℓ+1, yt+ℓ+1) = (yt+ℓ, xt+ℓ).

Example 5. To demonstrate the implications of Lemma 5, we refer back to Example 4 and note that when t ∈ {1, 4}, we have

xt−1
t−ℓ+2 = yt−1

t−ℓ+2, xt+1
t = (1, 2) and yt+1

t = (2, 1). As before, let j denote the last index where R(y)j ·R(x)−1
j 6= c(φ). Now

when t = 4, it holds that xn
t+2 = yn

t+2 and j = t+ ℓ. On the other hand, when t = 1, we observe that xt+ℓ−1
t+2 = y

t+ℓ−1
t+2 ,

x
t+ℓ+1
t+ℓ = (1, 2) and y

t+ℓ+1
t+ℓ = (2, 1) and j = t+ 2ℓ.

Upon successive applications of Lemma 5 in conjunction with Lemma 3 and Lemma 4, we arrive at the following theorem.

Theorem 2. For ℓ ≥ 3 and any x,y ∈ Σn
q , the following statements are equivalent:

1) dH(R(x),R(y)) = 2.

2) There exist distinct i, j ∈ [n + ℓ − 1], j ≡ i (mod ℓ), such that R(x)i · R(y)−1
i = R(x)−1

j · R(y)j 6= c(φ) and

R(x)r = R(y)r for all r 6∈ {i, j}.
3) There exist p ≥ 1 and i ∈ [n− (p− 1)ℓ− 1] such that for all m ∈ Σp it holds that xi+mℓ+1

i+mℓ = (a, b), yi+mℓ+1
i+mℓ = (b, a)

(or vice versa) where a, b ∈ Σq and a 6= b, and xr = yr for all r 6∈
⋃

m∈Σp
{i+mℓ, i+mℓ+ 1}.

Further, if these conditions hold, then j = i+ pℓ in the above notation.

B. An Upper Bound on the Code Size

We derive a lower bound on the redundancy required by a single-substitution (ℓ, 1; 1)-read code by adopting the approach

employed in [8]. More precisely, we consider a graph G(n) containing vertices corresponding to all vectors in Σn
q . Any

two vertices in G(n) that signify two distinct binary vectors, say x,y ∈ Σn
q , are considered to be adjacent if and only if

dH(R(x),R(y)) = 2. Therefore, any independent set (i.e., a subset of vertices of G(n), wherein no two vertices are adjacent)

is a 1-substitution (ℓ, 1; 1)-read code.

Definition 6. A clique cover Q is a collection of cliques in a graph G, such that every vertex in G belongs to at least one

clique in Q.

The following graph-theoretic result is well-known [9].
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Theorem 3. If Q is a clique cover, then the size of any independent set is at most |Q|.

For the remainder of this section, we seek to define a clique cover Q by utilizing Theorem 2. By Theorem 3, the size of

such a clique cover will serve as an upper bound on the cardinality of a 1-substitution (ℓ, 1; 1)-read code.

Definition 7. Let G′(n) be the graph whose vertices are all vectors in Σn
q , and an edge connects x,y ∈ Σn

q if and only if

{x,y} = {u ◦ (ab)j ◦ v,u ◦ (ba)j ◦ v}, for some j, sub-strings u,v and a, b ∈ Σq where a 6= b.

Observe that when q = 2, the preceding definition is identical to that in [8, Sec. IV].

Our method of proof would be to pull back a clique cover from G′ based on the non-binary extension of [8, Lem. 7], i.e.,

Lemma 6, into G. To do that, we have the following definition:

Definition 8. For a positive integer p, define a permutation πp on Σn
q as follows. For all x ∈ Σn

q , arrange the coordinates of

x
pℓ⌊n/(pℓ)⌋
1 in a matrix X ∈ Σp⌊n/(pℓ)⌋×ℓ, by row (first fill the first row from left to right, then the next, etc.). Next, partition X

into sub-matrices of dimension p× 2 (if ℓ is odd, we ignore X’s right-most column). Finally, going through each sub-matrix

(from left to right, and then top to bottom), we concatenate its rows to obtain πp(x) (where unused coordinates from x are

appended arbitrarily).

More precisely, for all 0 ≤ i < ⌊ npℓ⌋, 0 ≤ j < ⌊ ℓ2⌋ and 0 ≤ k < p denote

x(i,j,k) , x(ip+k)ℓ+2j+1x(ip+k)ℓ+2j+2;

then

x(i,j) , x(i,j,0) ◦ · · · ◦ x(i,j,p−1)

and

x(i) , x(i,0) ◦ · · · ◦ x(i,⌊ℓ/2⌋−1).

Then πp(x) = x(0) ◦ · · · ◦ x(⌊n/pℓ⌋−1) ◦ x̃, where x̃ is composed of all coordinates of x not previously included.

Example 6. For x = (1, 2, 0, 1, 2, 2) and y = (2, 1, 0, 2, 1, 2) it holds that dH(R3,1(x),R3,1(y)) = 2. To obtain πp(x) and

πp(y) for p = 2, note that

X =

[
1 2 0
1 2 2

]
, Y =

[
2 1 0
2 1 2

]
.

Since ℓ is odd, we ignore the last column in X and Y and partition the respective results into 2×2 sub-matrices to ultimately

obtain πp(x) = (1, 2, 1, 2, 0, 2) and πp(y) = (2, 1, 2, 1, 0, 2) (here, unused coordinates were appended in the order of their

indices).

Definition 9. For a positive integer p, let

Λp,a,b ,
{
(v)j(t)p−j : j ∈ [p], {v, t} = {ab, ba}

}
,

where v0 = t0 is the empty word, and Λ̃p,a,b , Σ2p
q \ Λp,a,b. Further, let

Γ ,

{
(u,w, a, b) : i ∈ [m],u ∈ Λ̃i−1

p,a,b,w ∈ Σ2p(m−i)
q ,

a, b ∈ Σq, a 6= b
}
,

where m = ⌊ ℓ2⌋⌊
n
pℓ⌋, and Λ̃0

p is the singleton containing the empty word. Then, for all γ = (u,w, a, b) ∈ Γ define

Q(0)
γ ,

{
u(ab)h(ba)p−hw : h ∈ [p]

}
,

Q(1)
γ ,

{
u(ba)h(ab)p−hw : h ∈ [p]

}
.

Finally, let

Q(m, p) ,
{
{x} : x ∈ Λ̃m

p

}
∪
{
Q(0)

γ , Q(1)
γ : γ ∈ Γ

}
,

where Λ̃p = Σ2p
q \ ∪a,b∈Σq

a 6=b

Λp,a,b.

Example 7. For p = 2, a = 1 and b = 2, we obtain Λp,a,b = {(1, 2, 2, 1), (1, 2, 1, 2), (2, 1, 1, 2), (2, 1, 2, 1)}. Revisiting

Example 6, we observe that for γ =
(
u,w, 1, 2

)
∈ Γ, where u = Λ̃0

p,a,b and w = (2),

Q(0)
γ = {(1, 2, 0, 2, 1, 2), x = (1, 2, 0, 1, 2, 2)},

Q(1)
γ = {(2, 1, 0, 1, 2, 2), y = (2, 1, 0, 2, 1, 2)}.

It follows from Theorem 2 that Q
(0)
γ ∪Q

(1)
γ forms a clique.
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Lemma 6. Q(m, p) is a clique-cover of G′(2pm), where m = ⌊ ℓ2⌋⌊
n
pℓ⌋.

This is the non-binary analogue of [8, Lemma 7] and the proof is relegated to the appendix.

Theorem 4. Let

Qp ,
{
π−1
p (Q× {z}) : Q ∈ Q(m, p), z ∈ Σn−2pm

q

}
,

where π−1
p (A) ,

{
u ∈ Σn

q : πp(u) ∈ A
}

. Then, Qp is a clique-cover in G(n).

Proof: First, observe that it readily follows from
⋃
Q(m, p) = Σ2pm

q that
⋃
Qp = Σn

q . It is therefore left to prove that

every element of Qp is a clique of G(n).
Next, observe for all Q ∈ Q(m, p) and z ∈ Σn−2pm

q that either Q is a singleton, or all elements y ∈ Q × {z} agree

on all coordinates yk except 2(i − 1)p < k ≤ 2ip for some i ∈ [m], and y
2ip
2(i−1)p ∈

{
(ab)h(ba)p−h, (ba)h(ab)p−h

}
for

some h ∈ [p] and a, b ∈ Σq where a 6= b. That is, either π−1
p (Q × {z}) is a singleton, or all elements x ∈ π−1

p (Q × {z})
agree on all coordinates except, in the notation of Definition 8, x(i,j) for some 0 ≤ i < ⌊ npℓ⌋, 0 ≤ j < ⌊ ℓ2⌋, and x(i,j) ∈{
(ab)h(ba)p−h, (ba)h(ab)p−h

}
for some h ∈ [p]. That is, x(i,j,k) = ab (ba) for all 0 ≤ k < h, and x(i,j,k) = ba (respectively,

ab) for all h ≤ k < p. By Theorem 2, it holds that dH(R(x1),R(x2)) = 2 for all x1,x2 ∈ π−1
p (Q × {z}).

Finally, we can obtain a lower bound on the redundancy of a single-substitution (ℓ, 1; 1)-read code from the following result.

Lemma 7.

|Qp| = qn
[(

1−

(
q

2

)
2p

q2p

)m

+
1

p

(
q

2

)(
1−

(
1−

2p

q2p

)m
)]

,

where m = ⌊ ℓ2⌋⌊
n
pℓ⌋.

Proof: Since the number of singletons is given by

|Λ̃m
p | =

(
q2p −

(
q

2

)
2p

)m

,

while the number of cliques of size p evaluates to

2|Γ| = 2

(
q

2

) m∑

i=1

|Λ̃p,a,b|
i−1 · q2p(m−i)

= 2

(
q

2

) m∑

i=1

(q2p − 2p)i−1q2p(m−i)

= 2q2p(m−1)

(
q

2

) m∑

i=1

(
1−

2p

q2p

)i−1

= q2pm
1

p

(
q

2

)(
1−

(
1−

2p

q2p

)m
)
.

Hence,

|Q(m, p)| = q2pm
[(

1−

(
q

2

)
2p

q2p

)m

+
1

p

(
q

2

)(
1−

(
1−

2p

q2p

)m
)]

,

and the claim follows.

By using
(
1− 2p

q2p

)
≥

(
1−

(
q
2

)
2p
q2p

)
, it readily follows that for any positive integer p,

logq|Qp| ≤ n− logq(p) + logq

(
p
(
1−

2p

q2p

)m

+

(
q

2

))
.

Based on m ≥ ⌊ n
2p⌋ − ⌊

ℓ
2⌋ we may further bound

logq|Qp| ≤ n− logq(p) + logq

(
p
(
1−

2p

q2p

)⌊n/2p⌋−⌊ℓ/2⌋

+

(
q

2

))
.

By employing the non-binary extension of [8, Lemma 9], as stated in Appendix B, we find that letting p = ⌈ 12 (1− ǫ) logq(n)⌉

for any 0 < ǫ < 1 yields p
(
1− 2p

q2p

)⌊n/2p⌋
= o(1), hence based on Theorem 3 we arrive at the following theorem.

Theorem 5. The redundancy of any 1-substitution (ℓ, 1; 1)-read code is bounded from below by

logq logq(n)− logq

(
q

2

)
− o(1).
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IV. SINGLE SUBSTITUTION READ CODES

It is already implied by Corollary 2 that a redundancy of t logn symbols suffices to correct at most t substitutions in the

(ℓ, 1)-read vector. However, according to Theorem 5, a more efficient code may exist for the t = 1 case. This section introduces

such a construction that is of optimal redundancy up to an additive constant.

We define a specific permutation for any x ∈ Σn
q as well as its (ℓ, 1)-read vector Rℓ,δ(x) as

xπ , C0
ℓ,1(x) ◦ C

1
ℓ,1(x) ◦ · · · ◦ C

ℓ−1
ℓ,1 (x),

Rπ(x) , R0(x) ◦ R1(x) ◦ · · · ◦ Rℓ−1(x),

where Ri−1(x) = (R(x)i,R(x)i+ℓ, . . . ,R(x)i+kℓ) where k = ⌊n+ℓ−1−i
ℓ ⌋ for all i ∈ [ℓ]. Recall from Definition 4 that

Cα
ℓ,1(x) refers to a subsequence of x.

Example 8. Reconsidering x = (1, 2, 0, 1, 2, 2), we may verify from Examples 1 and 2 that

xπ = (1, 1, 2, 2, 0, 2),

Rπ(x) = (1, 012, 22, 12, 012, 2, 012, 122).

To simplify presentation, we also define the following.

Definition 10. Let a-RLLq(n) be the set of all length-n q-ary vectors whose runs are of length at most a.

Definition 11. For n, a > 0, let Hq(n, a) be the q-ary linear code of length n, defined by the parity-check matrix
[
Ha Ha · · · Ha

]
︸ ︷︷ ︸

n(q−1)
qa−1 times

,

where Ha represents the parity-check matrix of a Hamming code of order a, i.e., Ha forms a projective representative (up to

a scalar multiple) of all non-zero vectors in Σa
q .

Finally, we propose the following code to correct a single substitution in (ℓ, 1)-read vectors for ℓ ≥ 3.

Construction 1.

C(n, ℓ) = {x ∈ Σn
q : Ci

ℓ,1(x) ∈ (logq qn)-RLLq(ki) ∀ i ∈ Σℓ,

|Rπ(x)|1mod q∈Hq

(
n+ ℓ−1, logq(2(q − 1) logq(q

2n)+1
)
},

where ki = ⌊
n−i−1

ℓ ⌋+ 2.

Remark: Note that for q = 2, the above construction is similar to that defined in Construction 1 of the conference version

of this work.

Lemma 8. The redundancy of C(n, ℓ) is at most

logq logq n+ logq

(
2(q − 1) +

4q − 3

logq n

)
+ 1.

Proof: Observe that the a-RLLq(n) constraint as specified in Definition 10 is equivalent to the (d, k)-RLL constraint

[10], i.e., restricting each zero run to be of length at least d = 0 and at most k = a − 1. Now since the first constraint in

Construction 1 implies that C0
ℓ,1(x) ◦ · · · ◦C

ℓ−1
ℓ,1 (x) belongs to a superset of (log qn)-RLL(n), we deduce that this run-length

restriction necessitates a redundancy of under one symbol, as indicated by [11, Section III-B].

Next, the second constraint in Construction 1, designed to correct a single substitution error in any contiguous window of

length 2 log(qn) + 2 symbols in |Rπ(x)|1 mod q, corresponds to a parity-check matrix composed of
(n+ℓ−1)(q−1)

qa−1 copies of

Ha, which has 2 log(qn) + 2 = 2 log(q2n) columns. Hence,

qa − 1

q − 1
= 2 log(q2n)

=⇒ a = log
(
2(q − 1) log(q2n) + 1

)

= log
(
2(q − 1) logn+ 4(q − 1) + 1

)

= log logn+ log
(
2(q − 1) +

4q − 3

logn

)
.

Finally, using the pigeonhole principle, we conclude that C(n, ℓ), which lies in the intersection of the two codebooks

corresponding to each of the aforementioned constraints respectively, requires at most a+ 1 redundant symbols, thus proving

the statement of the lemma.
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To prove that C(n, ℓ) is a 1-substitution (ℓ, 1; 1)-read code, we first show how the inherent characteristics of read vectors

reveal some information on the substitution error.

Lemma 9. If a substitution error affects the (ℓ, 1)-read vector of some x ∈ Σn
q where ℓ ≥ 3, thus producing a noisy copy

R(x)′, then there exist α, β ∈ Σℓ where α ≡ (β + 1) mod ℓ, such that
∏

i ∆
β(x)′i =

(∏
i ∆

α(x)′i
)−1
6= c(φ), and for all

γ 6∈ {α, β},
∏

i∆
γ(x)′i = c(φ). This implies that

1) the composition error is
∏

i

(
R(x)′i · R(x)−1

i

)
=

∏

i

∆β(x)′i =
(∏

i

∆α(x)′i
)−1

;

2) the error occurred at an index k ∈ [n+ ℓ − 1], where k ≡ α (mod ℓ).

Proof: Suppose the concerned substitution error occurs at index k ∈ [n + ℓ − 1]. Thus, the noisy read vector can be

expressed as R(x)′ = (R(x)′1, . . . ,R(x)′n−ℓ+1), where R(x)′k 6= R(x)k and R(x)′p = R(x)p for all p 6= k.

Denoting α , k mod ℓ, β , (k − 1) mod ℓ, observe that ∆β(x)′ and ∆α(x)′ no longer uphold Lemma 2. Instead,
∏

i

∆β(x)′i =
∏

i

∆α(x)
′−1
i

= R(x)′k · R(x)−1
k ,

which is the composition error. The preceding equation suggests that the error occurred somewhere in Rβ(x)′, which is a

subsequence of R(x)′. Alternatively, we say that the decoder can only infer the the error position up to the modulo class of k.

Next, we show that some composition substitutions are trivial to correct.

Lemma 10. Say a composition substitution corrupts the i-th index of R(x) to R(x)′i. This error is readily correctable if any

of the following conditions holds

1) DenotingR(x)′i = 0i0 · · · (q−1)iq−1 , if it does not hold that 0 ≤ ij ≤ ℓ for all j ∈ Σq , and
∑q−1

j=0 ij = min{i, ℓ, n−i+1}.

2) At least one of R(x)′iR(x)−1
i−1 or R(x)i+1R(x)

′−1
i is neither φ nor of the form a · b−1 for any a, b ∈ Σq .

Proof: Suppose the error occurred at index k. Then, we may express the noisy read vector asR(x)′ = (R(x)′1, . . . ,R(x)′n+ℓ−1),
where R(x)′k 6= R(x)k and R(x)′p = R(x)p for all p 6= k.

Since in the first case it follows directly from Definition 1 that the error can be detected and corrected by Corollary 2,

we direct our attention to the second case. On account of δ = 1, we know that for any p ∈ [n + ℓ − 2], it should hold that

R(x)p+1 · R(x)−1
p = xp+1x

−1
p+1−ℓ, which is either evaluates to φ or stays in the form a · b−1, where a, b ∈ Σq and a 6= b.

Say R(x)′iR(x)−1
i−1 violates this. As a result, we immediately infer that k ∈ {i− 1, i}. However, since R(x)′i · R(x)−1

i−1 and

i mod ℓ can be deduced due to Lemma 9, we are able to conclude that k = i, and thereby correct the error.

Example 9. R3,1(v)
′ = (1, 12, 012, 012, 23, 122, 22, 2) arises from a single substitution in the (3, 1)-read vector of some

v ∈ Σ6
3. Since R(v)′5R(v)

′−1
4 = 0−1221−1, we know that either R(v)′4 or R(v)′5 is erroneous. Also, since

∏
i∆

1(v)′i =(∏
i ∆

2(v)′i
)−1

= 0−11−122, we use Lemma 9 to conclude that the composition error is 0−11−122 and that the error location,

say k, satisfies k mod ℓ = 2. Thus, we can reverse the substitution error by applying R(v)5 ← R(v)′5 · (0
−11−122)−1, to

finally obtain R3,1(v) = (1, 12, 012, 012, 012, 122, 22, 2), which corresponds to v = (1, 2, 0, 1, 2, 2).

Due to Lemma 10, we focus for the rest of the section on proving that C(n, ℓ) can correct a single substitution that is not

readily correctable by Lemma 10. Next, we demonstrate that the index of such substitutions may be narrowed down.

Example 10. R3,1(v)
′ = (1, 12, 012, 022, 012, 122, 22, 2) arises from a substitution in the (3, 1)-read vector of some v ∈ Σ6

3.

As
∏

i ∆
0(v)′i =

∏
i∆

1(v)
′−1
i = 1−12, Lemma 9 suggests that the erroneous composition differs from the true composition by

a factor of 1−12 and occurred somewhere in (R(v)′1,R(v)′4,R(v)′7). Now assigning R(v)′1 ←R(v)′1 · 12
−1 yields an invalid

read vector since by definition, R(x)1 ∈ Σq. On the contrary, assigning R(v)′4 ←R(v)′4 · 12
−1 or R(v)′7 ←R(v)′7 · 12

−1

alters R(v)′ into the (3, 1)-read vector of v = (1, 2, 0, 1, 2, 2) or v = (1, 2, 0, 2, 1, 2) respectively.

Henceforth, we represent the subsequence reconstructed using Corollary 1 from left to right with a noisy read sub-derivative,

say ∆β(x)′, as x̂
(β)

, (x̂β+1, x̂β+1+ℓ, . . . , x̂β+1+⌊n−β−1
ℓ

⌋ℓ). Analogously, x̃
(β)

corresponds to right to left reconstruction.

Lemma 11. Let a substitution at index k on (ℓ, 1)-read vector of x ∈ Σn
q where ℓ ≥ 3, produce R(x)′. For β , (k − 1) mod ℓ,

if there exists i > 0 such that R(x)′k+iℓ 6= R(x)′k+iℓ−1, then {x̂k, x̂k+iℓ} 6⊆ Σq, where x̂k, x̂k+iℓ are elements of x̂
(β)

.

Proof: Since R(x)′k alone is erroneous, we infer that (x̂β+1, x̂β+ℓ+1, . . . , x̂k−ℓ) = (xβ+1, xβ+ℓ+1, . . . , xk−ℓ) and x̂k+iℓ ·
x−1
k+iℓ = R(x)′k ·R(x)−1

k for all i ≥ 0. In the following, let e , R(x)′k ·R(x)−1
k . Recall that we consider only such substitution

errors that are not readily correctable by Lemma 10.
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Assume x̂k ∈ Σq and i > 0 is minimal such thatR(x)′k+iℓ 6= R(x)′k+iℓ−1; Note that, equivalently,R(x)k+iℓ 6= R(x)k+iℓ−1

; i.e., for all 0 < j < i,

∆β
ℓ,δ(x)

′
k−β−1

ℓ
+j+1

= ∆β
ℓ,δ(x) k−β−1

ℓ
+j+1 = c(φ)

and ∆β
ℓ,δ(x)

′
k−β−1

ℓ
+i+1

= ∆β
ℓ,δ(x) k−β−1

ℓ
+i+1 = xk+iℓx

−1
k , where xk+iℓ 6= xk. It follows that

x̂k+iℓ =

k−β−1
ℓ

+i+1∏

j=1

∆β
ℓ,δ(x)

′
j

= x̃k ·
i∏

j=1

∆β
ℓ,δ(x)

′
k−β−1

ℓ
+j+1

= x̃k · (xk+iℓx
−1
k ),

and since by assumption x̃k ∈ Σq \ {xk} and xk 6= xk+iℓ, we have x̂k+iℓ 6∈ Σq .

Corollary 3. Let R(x)′ arise from a substitution at index k on (ℓ, 1)-read vector of x ∈ Σn
q where ℓ ≥ 3. For β ,

(k − 1) mod ℓ, if there exists j > 0 such that R(x)′k−jℓ 6= R(x)′k−jℓ−1, then {x̃k, x̃k−jℓ} 6⊆ Σq , where x̃k, x̃k−jℓ are

elements of x̃
(β)

.

A consequence of Lemma 9 and the preceding results is that reconstruction with any corrupted read subderivative from left

to right and right to left, might help us narrow in on the position of the substitution error. This is stated more formally as

follows.

Lemma 12. For ℓ ≥ 3, let R(x)′ be a noisy (ℓ, 1)-read vector of x ∈ Σn
q , such that for some α, β ∈ Σℓ, where

α ≡ β + 1 (mod ℓ),
∏

i∆
β(x)′i =

∏
i∆

α(x)
′−1
i 6= c(φ). Reconstruction by Corollary 1 with ∆β(x)′ from left to right

(respectively, right to left) yields x̂
(β)

(x̃
(β)

) for which we define i (j) as the minimum (maximum) index at which x̂β+iℓ+1 6∈ Σq

(x̃β+jℓ+1 6∈ Σq), or i = ⌊n−β−1
ℓ ⌋ + 1 (j = −1) if no such index exists. Then, it holds that for all j + 1 < h < i,

R(x)′β+hℓ+1 = R(x)′β+hℓ and the error position in R(x)′, say k, satisfies k−β−1
ℓ ∈ {j + 1, j + 2, . . . , i}.

Example 11. We reconsider R3,1(v)
′ from Example 10. From ∆0(v)′ = (1, 1−12, 1−1), we reconstruct v̂

(0) = (1, 2) and

ṽ
(0) = (122−1, 1). Since v̂

(0) ∈ Σ2
3 and ṽ1 6∈ Σ3, we set i = 2 and j = 0 in accordance with Lemma 12. Thus, either R(x)′4

or R(v)′7 is noisy, implying that v = (1, 2, 0, 1, 2, 2) or v = (1, 2, 0, 2, 1, 2) respectively.

Lemma 12 essentially suggests that attempting reconstruction with a noisy read sub-derivative may help to narrow down the

error location even further. This finally allows us to arrive at

Theorem 6. For ℓ ≥ 3, C(n, ℓ) is a 1-substitution (ℓ, 1; 1)-read code.

Proof: Let R(x)′ arise from a single substitution on (ℓ, 1)-read vector of some x ∈ C(n, ℓ). In light of Lemma 10, this

proof is dedicated to composition errors of the form ab−1.

Upon identifying α, β ∈ Σℓ where α ≡ β + 1 (mod ℓ), such that
∏

i∆
β(x)′i =

∏
i ∆

α(x)
′−1
i 6= c(φ), we attempt recon-

struction with ∆β(x)′ from left to right and from right to left to obtain x̂
(β)

and x̃
(β)

respectively, and define indices i

and j according to Lemma 12. Since for all j + 1 < h < i, R(x)′β+hℓ+1 · R(x)
′−1
β+hℓ = φ, and a run of ‘φ’s in ∆β(x)′ can

be of length at most 2 logq(qn) − 1 as a consequence of the run-length constraint in C(n, ℓ) and Lemma 1,we infer that

i− j − 2 ≤ 2 logq(qn)− 1.

From Lemma 12, we know that the error exists somewhere in (R(x)′β+(j+1)ℓ+1,R(x)′β+(j+2)ℓ+1, . . . ,R(x)′β+iℓ+1), which

is evidently a substring of Rπ(x)′ and has a length of at most 2 logq(qn) + 1. Since an error of the form ab−1, where a 6= b,
surely reflects as a single substitution in |Rπ(x)′|1 mod q, which belongs to a code that corrects a substitution error localized

to a window of 2 log(qn) + 2 symbols, we can uniquely recover |Rπ(x)|1 mod q, and by Corollary 2, also x.

V. ERROR CORRECTION WITH MULTIPLE READS

We first consider the following lemma to see if and how multiple noisy reads might be leveraged to construct more efficient

codes for correcting errors in (ℓ, δ)-read vectors.

Lemma 13. Exactly one of the following conditions holds for ℓ ≥ 3 and any two distinct x,y ∈ Σn
q .

1) dH(R(x),R(y)) = 2 and |B1(R(x)) ∩B1(R(y))| = 2; or

2) dH(R(x),R(y)) > 2 and |B1(R(x)) ∩B1(R(y))| = ∅.
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Proof: Since Theorem 1 already precludes the possibility of dH(R(x),R(y)) = 1 and the case of dH(R(x),R(y)) > 2
follows from the triangle inequality, we proceed to prove the remaining case wherein dH(R(x),R(y)) = 2, i.e., x,y satisfy

the conditions stated in Theorem 2.

More specifically, there exist distinct i, j ∈ [n + ℓ − 1] such that R(x)i · R(y)−1
i = R(y)j · R(x)−1

j 6= φ and for all

k 6∈ {i, j}, R(x)k = R(y)k. This implies that B1(R(x)) ∩B1(R(y)) is exactly the following.

{(R(x)1, . . . ,R(x)i−1,R(y)i,R(x)i+1, . . . ,R(x)n+ℓ−1),

(R(x)1, . . . ,R(x)j−1,R(y)j ,R(x)j+1, . . . ,R(x)n+ℓ−1)}

= {(R(y)1, . . . ,R(y)j−1,R(x)j ,R(y)j+1, . . . ,R(y)n+ℓ−1),

(R(y)1, . . . ,R(y)i−1,R(x)i,R(y)i+1, . . . ,R(y)n+ℓ−1)}.

Hence, the first case directly follows.

As for the case of t = 1, M = 1 in Section III, we wish to derive a lower bound on the redundancy required by a t-
substitution (ℓ, 1; 2)-read code by constructing a clique cover over a graph G(n) that contains qn vertices, each corresponding

to a specific vector in Σn
q . Two vertices representing the binary vectors x,y ∈ Σn

q in G(n) are considered to be adjacent if

and only if |B1(R(x)) ∩B1(R(y))| ≥ 2.

Since Lemma 13 suggests that G(n) is identical to G(n) as defined in Section III-B, we infer that for any positive integer

p, the clique-cover Qp for G(n) from Theorem 4, also acts as a clique-cover for G(n). As a consequence, we arrive at the

following lemma.

Lemma 14. The redundancy of a 1-substitution (ℓ, 1; 2)-read code is bounded from below by

logq logq(n)− logq

(
q

2

)
− o(1).

Thus, C(n, ℓ) is also a 1-substitution (ℓ, 1; 2)-read code that is of optimal redundancy up to an additive constant.

Evidently, given three distinct noisy copies of the (ℓ, 1)-read vector of any x ∈ Σn
q , one can uniquely reconstruct R(x) and

thereby x.

VI. CONCLUSION

The primary objective of this work was to initiate a line of research dedicated to error-correcting codes that attempt to

incorporate the dominant physical aspects of nanopore sequencing. The channel model we adopted incorporates the intersymbol

interference aspect of the sequencer as a window that slides over the incoming DNA strand and outputs the composition of the

corresponding substrings in this strand. The measurement noise in the current readout is modeled as substitution errors in the

resulting vector of compositions. We observed how, in doing so, the correction of a single substitution can be accomplished

with logq logq n+O(1) redundant symbols, instead of logq n symbols necessitated by the standard case, i.e., when the decoder

is agnostic to the channel model. This result understandably encourages us to further investigate this channel model under

multiple substitution errors as well as more error settings, e.g., deletions and duplications. Examining this channel in the context

of Levenshtein’s sequence reconstruction problem is also an exciting avenue to pursue.
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APPENDIX

A. Proof of Lemma 6, non-binary extension of [8, Lemma 7]

Proof: Since all singletons are cliques, we endeavor to show that for all γ = (u,w, a, b) ∈ Γ, Q
(0)
γ is a clique. The proof

for Q
(1)
γ follows similarly.

For any two vectors in Q
(0)
γ , say x = u(ab)i(ba)p−iw and y = u(ab)j(ba)p−jw, we may assume i < j without loss of

generality, and observe that

x = u(ab)i(ba)j−i(ba)p−jw,

y = u(ab)i(ab)j−i(ba)p−jw.

By Definition 7, x and y are clearly adjacent, implying that Q
(0)
γ is a clique.

Now to show that each vector x ∈ Σ2pm
q belongs to at least one clique in Q(m, p), note that we either have x ∈ Λ̃m

p , or one

of the m subblocks of x lies in Λp,a,b, for some a, b ∈ Σq . In the former case, x constitutes a singleton and is accounted for

by Q(m, p), while in the latter case, assuming that the ith subblock is the first that lies in Λp,a,b, we deduce that x belongs

to the clique Q
(0)
(u,w,a,b) where x

2p(i−1)
1 = u ∈ Λ̃i−1

p,a,b, while x
2pm
2pi+1 = w ∈ Σ

2p(m−i)
q .

B. Non-binary extension of [8, Lemma 9]

Lemma 15. For p = ⌈ 12 (1− ǫ) logq(n)⌉, we have limn→∞ p
(
1− 2p

q2p

)⌊ n
2p ⌋

= 0.

Proof: Based on 1− x ≤ e−x we observe

p
(
1−

2p

q2p

)⌊n/2p⌋

≤ p exp

(
−

2p

q2p

( n

2p
− 1

))

= p exp

(
−

n− 2p

q2⌈
1
2 (1−ǫ) log(n)⌉

)

≤ p exp

(
−
n− 2p

q2n
nǫ

)

≤ log(n) · exp

(
−
n− log(n)

q2n
nǫ

)
n→∞
−−−−→ 0.
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