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Abstract—We study the Chernoff-Stein exponent of the fol-
lowing binary hypothesis testing problem: Associated with each
hypothesis is a set of channels. A transmitter, without knowledge
of the hypothesis, chooses the vector of inputs to the channel.
Given the hypothesis, from the set associated with the hypothesis,
an adversary chooses channels, one for each element of the input
vector. Based on the channel outputs, a detector attempts to
distinguish between the hypotheses. We study the Chernoff-Stein
exponent for the cases where the transmitter (i) is deterministic,
(ii) may privately randomize, and (iii) shares randomness with
the detector that is unavailable to the adversary. It turns out that
while a memoryless transmission strategy is optimal under shared
randomness, it may be strictly suboptimal when the transmitter
only has private randomness.

1. INTRODUCTION

In binary hypothesis testing the goal is to distinguish be-

tween two distributions (sources) [1], [2]. When n independent

and identically distributed (i.i.d.) observations from the source

are available, the Chernoff-Stein lemma [3, Theorem 11.8.3]

states that for a fixed false alarm (type-1 error) probability,

the optimal missed detection (type-2 error) probability decays

exponentially in n with the exponent given by the relative

entropy between the distributions.

A variation on this problem is where each observation is

from an arbitrarily varying source [4]. There is a set of distribu-

tions associated with each hypothesis. Given a hypothesis, the

observations are independent, but each observation could be

arbitrarily distributed according to any one of the distributions

belonging to the set of distributions corresponding to the

hypothesis. We may view the choice of distribution as being

made by an adversary who is aware of the detection scheme

used. Fangwei and Shiyi [5] studied this problem where the

adversary’s choice may be stochastic. Recently, Brandão, Har-

row, Lee, and Peres [6] considered the case with an adaptive

adversary who has feedback of the past observations and may

use this to choose the distribution of the next observation.

In another variation on the binary hypothesis testing prob-

lem, instead of distinguishing between sources, the objective
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is to distinguish between two channels with the same input

and output alphabets [7], [8]. Here, a transmitter, which is

unaware of the hypothesis, may choose the inputs to the

channels. It can be shown that the optimal Chernoff-Stein error

exponent may be attained using a deterministic transmission

strategy which sends the input letter for which the relative

entropy between the channel output distributions under the two

hypotheses is maximized [7]. Hayashi [8] studied the adaptive

case where the transmitter has feedback of the channel output

when the block length is fixed and showed that feedback

does not improve the optimal error exponent. Polyanskiy and

Verdú [9] considered the same problem with variable-length

transmissions and showed that feedback may improve the error

exponent in general.

In this work we study the Chernoff-Stein exponent of the

binary hypothesis testing problem for arbitrarily varying chan-

nels [10]. Associated with each hypothesis is a set of channels.

All channels have the same input and output alphabets. The

transmitter, without knowledge of the hypothesis, chooses the

vector of inputs to the channel. Given the hypothesis, the

adversary chooses a vector of channels where each element

belongs to the set of channels associated with the hypothesis.

The adversary is aware of the strategy of the transmitter and

detector, but not necessarily the choice of channel inputs.

The detector observes the outputs resulting from applying the

inputs chosen by the transmitter element-wise independently

to the channels selected by the adversary. We consider three

different settings depending on the nature of randomness

unknown to the adversary which is available to the transmitter

and detector1: (i) deterministic schemes (Section 4), (ii) ran-

domness shared between transmitter and detector (Section 3),

and (iii) private randomness at the transmitter (Section 5). We

also comment on the role of adaptivity both of the transmitter

(under a fixed block length) and of the adversary (Section 6).

When the channels are not arbitrarily varying, randomiza-

tion (and adaptivity in the fixed length case) do not change

the optimal Chernoff-Stein exponent which is achieved by

the deterministic transmitter strategy of repeating the input

symbol for which the channel output distributions under the

two hypotheses have the largest relative entropy [7], [8].

1We allow the adversary to randomize in all cases. The optimal exponent
is unaffected by the availability of common randomness known also to the
adversary, nor by additional private randomness at the detector.
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Chernoff-Stein exponent Condition for the exponent to be non-zero

Shared randomness sup
PX

min
W∈conv(W),W∈conv(W)

D(W‖W |PX) conv(W) ∩ conv(W) = ∅

Deterministic transmitter max
x

min
Wx∈conv(Wx),Wx∈conv(Wx)

D(Wx‖W x) conv(Wx) ∩ conv(Wx) = ∅ for some x

Private randomness Open (see Theorem 6) conv(W) ∩ conv(W) = ∅ and (W ,W) is not trans-symmetrizable

With arbitrarily varying channels, we see that randomization

improves the exponent in general (Remark 1 and Example 2).

This is analogous to the usefulness of randomization in

communication over arbitrarily varying channels [11]. We

also demonstrate that the optimal exponents under the three

different settings are different in general. Our results also show

the following interesting phenomenon: When the transmitter

has private randomness which is unknown to the adversary,

but shares no randomness with the detector, it turns out that

a memoryless transmission strategy is strictly sub-optimal in

general (Section 5). This is in contrast to the optimality of

a memoryless transmission scheme when the transmitter and

detector share randomness. Another related work, especially to

Section 5 on the private randomness case, is [12] as we discuss

there. It considered communication and testing in a similar

model though error exponents for testing were not considered

there.

2. PRELIMINARIES

Adversarial Hypothesis Testing. Our achievability proofs

use the adversarial Chernoff-Stein lemma from [6] which we

briefly describe here. Let Z be a finite set. Let P ,Q ⊆
R

Z be closed, convex sets of probability distributions. The

adaptive adversary is specified by p̂i : Zi−1 → P and

q̂i : Zi−1 → Q for i ∈ [1 : n]. For any zn ∈ Zn, let

p̂(zn) :=
∏n

i=1 p̂i(z
i−1)(zi) and q̂(zn) :=

∏n
i=1 q̂i(z

i−1)(zi).
Let An ⊆ Zn be an acceptance region for P . For ǫ > 0, the

type-I and type-II errors are defined to be

αn
def
= sup

(p̂i)
n
i=1

p̂(Ac
n), βǫ

n
def
= min

An:αn≤ǫ
sup

(q̂i)
n
i=1

q̂(An),

and the adversarial Chernoff-Stein exponent is given by

Eǫ
adv(P ,Q)

def
= lim

n→∞
− 1

n
log βǫ

n.

For any pair p ∈ P , q ∈ Q, since the adversary may (non-

adaptively) choose p̂i = p and q̂i = q for all i ∈ [1 : n],
by the Chernoff-Stein lemma [3, Theorem 11.8.3] it is clear

that Eǫ
adv(P ,Q) ≤ min

p∈P,q∈Q
D(p‖q). In [5] it was shown that

this upper bound is achievable if the adversary is non-adaptive.

The following theorem states that this remains true even when

the adversary is adaptive.

Theorem 1 (Adversarial Chernoff-Stein Lemma [6]). Let Z
be a finite domain. For any pair of closed, convex sets of

probability distributions P ,Q ⊆ R
Z ,

Eǫ
adv(P ,Q) = min

p∈P,q∈Q
D(p‖q). (1)

Problem Setup. Let X and Y be finite sets. A discrete

memoryless channel W (.|.) takes an input symbol x ∈ X and

outputs a symbol y ∈ Y with probability W (y|x). Consider

two finite sets of channels W = {W (.|., s) : s ∈ S},

W = {W (.|., s̄) : s̄ ∈ S̄}. The goal is to distinguish between

the two sets of channels. In particular, we study the asymmetric

hypothesis test between the null hypothesis H0 : W and

the alternative hypothesis H1 : W . There are three entities

involved: (a) the transmitter, (b) the adversary, and (c) the

detector. The transmitter is unaware of which hypothesis has

been realized and chooses the input symbols. The adversary,

depending on which hypothesis is realized, chooses the state

symbols (from S under H0 and S̄ under H1). The detector

decides between H0 and H1 based on everything it knows.

We will elaborate this in the coming sections.

3. SHARED RANDOMNESS

In this setting, the transmitter and detector share randomness

which is unknown to the adversary. The input Xn to the

channel, which is a function of this randomness, is known

to the detector. For a transmitter strategy PXn and a pair of

adversary strategies PSn and PS̄n , the distribution induced on

Xn × Yn under H0 is given by

Qn
sh(x

n, yn) =
∑

sn∈Sn

PXn(xn)PSn(sn)

n
∏

i=1

W (yi|xi, si).

(2)

A similar expression is obtained for Q̄n
sh under H1 where

instead of PSn and W we have PS̄ and W respectively. The

detector uses a (possibly privately randomized) decision rule

fsh : Xn × Yn → {0, 1}. Let An be the (possibly random)

acceptance region for H0, i.e., An = {(xn, yn) ∈ Xn × Yn :
fsh(x

n, yn) = 0}. For a given transmitter and detector strategy,

the type-I error is given by

αsh
n = sup

PSn

E [Qn
sh(A

c
n)] ,

where the expectation is over the random choice of An. For

ǫ > 0, when the type-I error αsh
n is at most ǫ, the optimal

type-II error is given by

βǫ,sh
n

def
= inf

PXn

inf
An:αsh

n≤ǫ
sup
PS̄n

E
[

Q̄n
sh(An)

]

,

where the expectation is over the random An set by the inner

inf . The Chernoff-Stein exponent is then defined to be

Eǫ
sh(W ,W)

def
= lim inf

n→∞
− 1

n
log βǫ,sh

n , ǫ > 0.

Let conv(W) and conv(W) be the convex hulls of the

channel sets W and W respectively. i.e.,

conv(W)
def
=

{

∑

s∈S

PS(s)W (.|., s) : PS ∈ ∆S

}

,



where ∆S is the set of all probability distributions over S.

conv(W) is defined similarly with S̄,W instead of S,W . Let

D∗
sh

def
= sup

PX

min
W∈conv(W)

W∈conv(W)

D(W‖W |PX). (3)

Since conv(W), conv(W) are closed, convex sets and D(.‖.)
is lower semi-continuous, the minimum exists.

Theorem 2. Let W and W be two sets of discrete memoryless

channels which map X to Y . For any ǫ ∈ (0, 1), we have

D∗
sh ≤ Eǫ

sh(W ,W) ≤ D∗
sh

1− ǫ
. (4)

Proof. Achievability (Eǫ
sh(W ,W) ≥ D∗

sh): We argue the

achievability for the (stronger) adaptive adversary who has

access to previous channel inputs and outputs. The transmitter

transmits Xn chosen i.i.d. according to PX using the shared

randomness. This reduces the problem to the adversarial hy-

pothesis testing problem studied in [6]. For any fixed choice of

PX , invoking Theorem 1 with P = {PXW : W ∈ conv(W)}
and Q = {PXW : W ∈ conv(W)},

Eǫ
sh(W ,W) ≥ min

W∈conv(W)

W∈conv(W)

D(W‖W |PX).

Optimizing over PX completes the proof of achievability.

Weak Converse (Eǫ
sh(W ,W) ≤ D∗

sh

1−ǫ
): We show this converse

result for an adaptive transmitter who has feedback of the out-

puts. Given an adaptive transmitter, we construct an adversarial

strategy to show the upper bound on the exponent. Specifically,

we consider a memoryless strategy (not necessarily i.i.d.) for

the adversary, i.e. PSn =
∏n

i=1 PSi
and PS̄n =

∏n
i=1 PS̄i

where PSi
and PS̄i

will be specified in course of the proof.

Let Qn and Q̄n denote the joint distributions on Xn × Yn

under H0 and H1 respectively. They are given by

Qn(xn, yn) =
n
∏

i=1

~Qi(xi|xi−1, yi−1)

(

∑

si∈S

PSi
(si)W (yi|xi, si)

)

(5)

and

Q̄n(xn, yn) =

n
∏

i=1

~Qi(xi|xi−1, yi−1)





∑

s̄i∈S̄

PS̄i
(s̄i)W (yi|xi, s̄i)



 . (6)

Here, ~Qi(xi|xi−1, yi−1) denotes the transmitter strategy at the

ith timestep. We now try to get an upper bound on D(Qn‖Q̄n).

D(Qn‖Q̄n) =
n
∑

i=1

D(QXi,Yi|(X,Y )i−1‖Q̄Xi,Yi|(X,Y )i−1 |Qi−1)

=

n
∑

i=1

(

D( ~Qi‖ ~Qi|Qi−1)

+D(QYi|Xi,Y i−1‖Q̄Yi|Xi,Y i−1 |Qi−1 ~Qi)
)

Observe that all the D( ~Qi‖ ~Qi|Qi−1) terms are zero. Further-

more, from (5), (6), we can see that QYi|Xi,Y i−1 = QYi|Xi
,

Q̄Yi|Xi,Y i−1 = Q̄Yi|Xi
. Thus,

D(Qn‖Q̄n) =
n
∑

i=1

D(QYi|Xi
‖Q̄Yi|Xi

|Qi−1 ~Qi)

=

n
∑

i=1

D(QYi|Xi
‖Q̄Yi|Xi

|QXi
) (7)

It is easy to see that (PS1
, PS̄1

) can be chosen such that

D(QY1|X1
‖Q̄Y1|X1

| ~Q1) ≤ D∗
sh. We then recursively specify

(PSi
, PS̄i

) such that each term in (7) is upper bounded by D∗
sh.

Thus,

D(Qn‖Q̄n) ≤ nD∗
sh. (8)

With this upper bound in place, we may follow a standard

approach via the data processing inequality to complete the

proof (e.g., see [8, Section VI]). See Appendix A where we

complete these steps.

A similar approach of choosing a memoryless (not neces-

sarily i.i.d.) adversary strategy also allows us to use the proof

technique of [8, Section VI], [13] to obtain the following

strong converse (see Appendix B for a proof). For distributions

µXY , νXY on X × Y and t ∈ R, let

φt(µY |X‖νY |X |µX)
def
= log E

X∼µX

[

∑

Y

µ1−t
Y |XνtY |X

]

.

Theorem 3. If

lim
t→0−

sup
PX

inf
W∈conv(W)

W∈conv(W)

φt(W‖W |PX)

−t

= sup
PX

inf
W∈conv(W)

W∈conv(W)

lim
t→0−

φt(W‖W |PX)

−t
, (9)

then

Eǫ
sh(W ,W) ≤ D∗

sh. (10)

The following theorem characterizes the pairs of (W ,W)
for which Eǫ

sh > 0.

Theorem 4. Eǫ
sh(W ,W) > 0 ⇐⇒ conv(W)∩ conv(W) = ∅.

Proof. The if (⇐) part follows from Theorem 2. To see the

(contrapositive of the) only if (⇒) direction, notice that under

hypothesis H0 (resp., H1), the adversary may induce any

channel from conv(W) (resp., conv(W)) from the transmitter

to the detector. Hence, when the intersection is non-empty, the

adversary may induce the same channel under both hypotheses

so that no transmission strategy (including an adaptive one)

can distinguish between the hypotheses.
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Fig. 1. An example in which, for a privately randomized transmitter, the
hypotheses cannot be distribguished using memoryless transmission schemes,
but a scheme with 2-step memory yields a positive Chernoff-Stein exponent.

4. DETERMINISTIC TRANSMITTER

In this setting, the transmitter strategy is completely deter-

ministic and is defined by a fixed tuple (x1, x2, . . . , xn). The

distribution on Yn under H0 and H1 are similar to (2) with

PXn as a point mass on (x1, x2, . . . , xn). The definitions of

decision rule fdet and acceptance region An are similar to those

in Section 3 except that the observation space is Yn instead

of Xn × Yn. The definitions of αdet
n , βǫ,det

n and Eǫ
det are also

similar except that the inf is over the input symbols in the

expression for βǫ,det
n .

For x ∈ X , let conv(Wx) and conv(Wx) be the convex

hulls of the conditional distributions W (.|x, s) and W (.|x, s̄).

conv(Wx)
def

=

{

∑

s∈S

PS(s)W (.|x, s) : PS ∈ ∆S

}

,

conv(Wx) is defined similarly with S̄,W instead of S,W .

Define D∗
det to be

D∗
det := max

x
min

Wx∈conv(Wx)

Wx∈conv(Wx)

D(Wx‖Wx) (11)

Theorem 5. Let W and W be two sets of discrete memoryless

channels which map X to Y . For any ǫ ∈ (0, 1), we have

D∗
det ≤ Eǫ

det(W ,W) ≤ D∗
det

1− ǫ
. (12)

The proof (Appendix C) is on similar lines as Theorem 2.

We also show that (12) holds when both the transmitter and

the adversary are adaptive (Appendix D). A strong converse

and characterization theorem analogous to Theorems 3 and 4

can also be shown. We omit these in the interest of space.

5. PRIVATE RANDOMNESS

We now consider the case where the transmitter may choose

the channel input Xn randomly, but the realization of Xn is

unavailable to the detector and the adversary. We may define

the optimal Chernoff-Stein exponent Eǫ
pvt(W ,W) along the

same lines as earlier sections. Note that the decision function

is now a (possibly random) partition of Yn. By the discussion

leading up to Theorem 1, if the transmitter adopts an i.i.d. PX

strategy, the best possible exponent (irrespective of whether

the adversary is adaptive or not) is

Dpvt,iid = sup
PX

min
QY ∈Q
Q̄Y ∈Q̄

D(QY ‖Q̄Y ),

where Q (resp. Q̄) is the set of (single-letter) channel output

distributions that can be induced by the adversary when

the input is distributed as PX under hypothesis H0 (resp.

H1), i.e., Q def
=
{

∑

x,s PS(s)PX(x)W (.|x, s) : PS ∈ ∆S

}

. It

turns out that in general the optimal exponent Eǫ
pvt(W ,W)

could be strictly larger that Dpvt,iid. In the following example,

Eǫ
pvt(W ,W) > 0 for all ǫ > 0 even though Dpvt,iid = 0.

Example 1. H0 : W = {W (.|.)} consists of a binary

erasure channel (BEC) with parameter p < 1 and H1 :
W = {W (.|., 0),W (.|., 1)} consists of two modified BEC(p)

channels where one of the symbols flips with probability

(1− p)r, r > 0 as shown in Figure 1. Here, X = {0, 1},Y =
{0, 1, e},S = {0}, S̄ = {0, 1}. Note that Q is a singleton.

It is easy to verify that, under H1, if the adversary sets

PS̄(0) = 1 − PX(0), the induced channel output distribution

will be the same as the one under H0. Hence, Q ⊂ Q̄ and

therefore Dpvt,iid = 0.

Now to see that Eǫ
pvt(W ,W) > 0, consider a transmission

scheme with 2-step memory: n/2 i.i.d. pairs are sent where

each pair is distributed as PX1,X2
(0, 0) = PX1,X2

(1, 1) = 0.5.

The effective channel is now a random map from X 2 to

Y2. The new state space for the (non-adaptive) adversary

under H0 is S2 (which is still a singleton), and S̄2 under

H1. Let Q2 (resp. Q̄2) be the set of (two-letter) channel

output distributions that can be induced by the adversary when

the input is distributed according to PX1,X2
under H0 (resp.

H1). Since Q2 is a singleton, let the member be denoted by

QY1,Y2
. If we show that QY1,Y2

/∈ Q̄2, we may conclude

that Eǫ
pvt(W ,W) > 0. Assume for contradiction that this is

not the case, i.e., suppose there exists PS̄1,S̄2
such that the

resulting Q̄Y1,Y2
is the same as QY1,Y2

. Since the marginals

also have to be equal, we have QY1
= Q̄Y1

. This forces PS1

to be uniform. Now, observe that QY1,Y2
(0, 1) = 0 while,

irrespective of PS2|S1
, we have Q̄Y1,Y2

(0, 1) > 0 since r > 0.

This is a contradiction and hence QY1,Y2
/∈ Q̄2. Therefore,

Eǫ
pvt(W ,W) > 0 by Theorem 1.

The above argument does not account for an adaptive

adversary. In Appendix E we show that even with an adaptive

adversary the above transmission scheme leads to a positive

exponent.

Remark 1. For the above example, Eǫ
det

(

W ,W
)

<
Eǫ

pvt(W ,W). This follows from D∗
det ≤ Dpvt,iid which is a

consequence of the fact that for PX such that PX(x) = 1
for some x ∈ X , the corresponding Q and Q̄ are conv(Wx)
and conv(Wx) respectively.

In the rest of this section, we give an achievable lower bound

on the error exponent Eǫ
pvt(W ,W) and characterize the pairs



(

W ,W
)

for which it is positive2. If conv(W)∩conv(W) 6= ∅,

then Eǫ
pvt(W ,W) = 0 (by Theorem 4). This follows from the

fact that the adversary can choose Sn and S̄n i.i.d. so that a

channel in the intersection may be induced which renders the

hypotheses indistinguishable irrespective of the transmission

scheme. It turns out that when the transmitter only has

private randomness, a more carefully chosen adversary strategy

which now depends on the transmission scheme may render

Eǫ
pvt(W ,W) = 0 for a larger class of

(

W ,W
)

pairs.

Definition 1 ([12, eq. (2)]). The pair
(

W ,W
)

is

trans-symmetrizable if there exist conditional distributions

PS|X , PS̄|X such that, for every x, x̃ ∈ X and y ∈ Y ,

∑

s∈S

PS|X(s|x)W (y|x̃, s) =
∑

s̄∈S̄

PS̄|X(s̄|x̃)W (y|x, s̄). (13)

Consider a trans-symmetrizable pair
(

W ,W
)

and a (non-

adaptive3) transmission scheme P̂ . We will demonstrate (non-

adaptive) adversary strategies under which the detector is un-

able to distinguish between the hypotheses. Under hypothesis

H1, the adversary, independent of the transmitter, samples a

X̃n according to P̂ and passes it through the (memoryless)

channel PS̄|X of Definition 1 to produce its S̄n. This induces

the following distribution on the channel output vector:

∑

xn,s̄n

P̂ (xn)

[

∑

x̃n

P̂ (x̃n)

n
∏

i=1

(

PS̄|X(s̄i|x̃i)
)

]

Wn(yn|xn, s̄n)

=
∑

xn,x̃n

P̂ (xn)P̂ (x̃n)

n
∏

i=1





∑

s̄i∈S̄

PS̄|X(s̄i|x̃i)W (yi|xi, s̄i)





(a)
=
∑

x̃n,xn

P̂ (x̃n)P̂ (xn)

n
∏

i=1

[

∑

si∈S

PS|X(si|xi)W (yi|x̃i, si)

]

=
∑

x̃n,sn

P̂ (x̃n)

[

∑

xn

P̂ (xn)
n
∏

i=1

(

PS|X(si|xi)
)

]

Wn(yn|x̃n, sn)

where (a) follows from (13). This is identical to the chan-

nel output distribution under hypothesis H0 if the adversary

samples from P̂ (independent of the transmitter) and passes

through the channel PS|X of Definition 1 to produce its Sn.

Thus, Eǫ
pvt(W ,W) = 0 if

(

W ,W
)

is trans-symmetrizable. The

example below establishes a separation between shared and

private randomness.

Example 2 ([12, Example 1]). Let X = S = S̄ =
{0, 1} and Y = {0, 1}2. Suppose W deterministically out-

puts Y = (X,S) while W̄ outputs Y = (S̄, X). Clearly,

conv(W) ∩ conv(W) = ∅. Hence, by Theorem 4, Eǫ
sh > 0.

However,
(

W ,W
)

is trans-symmetrizable since PS|X(x|x) =
PS̄|X(x|x) = 1 for all x ∈ X satisfies (13). Hence

Eǫ
pvt(W ,W) = 0.

2This characterization is implicit in [14, Corollary 1]. Note that the
“deterministic coding” transmitter there has access to the message which
serves as a source of private randomness for the testing problem.

3This discussion can be modified to handle an adaptive transmission scheme
if the adversary is also adaptive. This is omitted in the interest of space.

Our lower bound on Eǫ
pvt(W ,W) is in terms of the following

quantitative measure of how far the pair
(

W ,W
)

is from being

trans-symmetrizable and/or having a non-empty intersection

of their convex hulls; Lemma 1 and its proof in Appendix F

makes this connection concrete.

Definition 2. For a distribution P over X , we define η(P ) as

the set of triples (η1, η2, η3) for which there exists δ > 0 such

that there is no joint distribution PXX′S̄SY with PX = PX′ =
P satisfying

1) I(X ; S̄) < η1,

2) I(X ′;S) < δ,

3) D(PXS̄Y ||PXS̄W ) < η2,

4) D(PX′SY ||PX′SW ) < δ, and

5) if PXX′(X ′ 6= X) > 0,

(i) I(X ′;XY |S̄) < η3, and

(ii) I(X ;X ′Y |S) < δ.

Our main theorem for this section is the following:

Theorem 6. Let ǫ > 0.

Eǫ
pvt(W ,W) = 0 if

(

W ,W
)

is trans-symmetrizable or

conv(W) ∩ conv(W) 6= ∅

Eǫ
pvt(W ,W) ≥

max

{

max
P,(η1,η2,η3)∈η(P )

min
{

η1, η2,
η3
3

}

, D∗
det

}

Lemma 1. If
(

W ,W
)

is not trans-symmetrizable and

conv(W) ∩ conv(W) = ∅, there exists an input distribution

P with (η1, η2, η3) ∈ η(P ) such that η1, η2, η3 > 0.

Corollary 1. Eǫ
pvt(W ,W) > 0 if and only if

(

W ,W
)

is not

trans-symmetrizable and conv(W) ∩ conv(W) = ∅.

This recovers [14, Corollary 1] which gave the same

characterization for
(

W ,W
)

which allow hypothesis testing

with vanishing probability of error when the transmitter has

private randomness (in the form a random message). Our

proof (in Appendix F) of the lower bound to Eǫ
pvt(W ,W)

in Theorem 6, which is inspired by [14], entails significant

careful modifications to the detector and the error analysis

there.

6. ON THE ROLE OF ADAPTIVITY

1) With shared randomness: It turns out that our results

hold even if the transmitter and/or adversary is adaptive. We

proved the achievability part of Theorem 2 assuming that

the adversary is adaptive and the converse assuming the

transmitter is adaptive.

2) Deterministic schemes: Here the optimal exponent re-

mains unchanged even if the adversary is adaptive (irrespective

of whether the transmitter is adaptive or not). This is also the

case if both the adversary and the transmitter are adaptive.

These follow from our achievability proof which is shown

assuming an adaptive adversary and the converse which is



shown when (a) both the transmitter and adversary are non-

adaptive and (b) when both are adaptive (see Appendix D). It

is also easy to see that, in general, if the transmitter is adaptive

and the adversary is not, the exponent could be improved.

The transmitter and detector may extract some randomness

unknown to the adversary from the channel output feedback

of, say, the first half of the block, and use this to implement a

scheme with shared randomness during the second half. Since

there are channels for which deterministic exponent is zero

while the exponent under shared randomness is positive (for

instance, see Example 2), these (possibly augmented by an

independent random channel output component which provide

additional shared randomness) serve as examples where such

an improvement is feasible.

3) With private randomness: If the adversary is non-

adaptive and the transmitter is adaptive, improved exponents

are possible along the lines of the above discussion. This

follows from the fact that there are channels where the

exponent with shared randomness is positive, while that with

private randomness is zero (specifically, trans-symmetrizable

but with conv(W) ∩ conv(W) = ∅; see Example 2). We also

showed that memoryless schemes may be strictly sub-optimal

even if the adversary is adaptive (Appendix E). Also, the

impossibility result in Theorem 6 can be shown when both

the transmitter and adversary are adaptive.
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APPENDIX A

PROOF OF THEOREM 2

The transmitter applies a (possibly randomized) deci-

sion rule fsh on its observations (Xn, Y n) which are

distributed according to Qn under H0 and Q̄n under

H1. The rule maps these observations to {0,1}. Let

α̃n
def
=
∑

xn,yn Qn(xn, yn)Pr[fsh(x
n, yn) = 1] and β̃n

def
=

∑

xn,yn Q̄n(xn, yn)Pr[fsh(x
n, yn) = 0] be the type-1 and

type-2 errors respectively. Observe that the distribution of the

decision is Bern(α̃n) under H0 and Bern(1 − β̃n) under H1.

By data processing inequality,

D(Bern(α̃n)‖Bern(1− β̃n)) ≤ D(Qn‖Q̄n).

Expanding out the L.H.S and using (8), we have

−h(α̃n)− (1 − α̃n) log β̃n − α̃n log(1− β̃n) ≤ nD∗
sh,

where h(α̃n) := −α̃n log α̃n − (1 − α̃n) log(1 − α̃n). Since

α̃n log(1− β̃n) ≤ 0, it follows that

− 1

n
log β̃n ≤ D∗

sh +
h(α̃n)

n

1− α̃n

.

Since we require α̃n ≤ ǫ, taking lim inf
n→∞

on both sides,

lim inf
n→∞

− 1

n
log β̃n ≤ D∗

sh

1− ǫ
.

It follows that

Eǫ
sh(W ,W) ≤ D∗

sh

1− ǫ
.

APPENDIX B

PROOF OF THEOREM 3

Let µXY , νXY be distributions on X × Y , t ∈ R.

Φt(µY ‖νY ) def
=
∑

Y

µ1−t
Y νtY

Φt(µY |X‖νY |X |µX)
def
= EX∼µX

[

Φt(µY |X‖νY |X)
]

φt is defined to be log of the corresponding Φt quantity.

We again construct a memoryless adversary strategy. Let

PSn =
∏n

i=1 PSi
, PS̄n =

∏n
i=1 PS̄i

where PSi
and PS̄i

will

be specified in course of the proof. Qn and Q̄n are the joint

distributions on Xn × Yn as defined in (5), (6).

Define Qi−1
tilt to be

Qi−1
tilt =

(Qi−1)1−t(Q̄i−1)t

Φt(Qi−1‖Q̄i−1)
. (14)



From the definition of Φt(.‖.), we can see that Qi−1
tilt is a

distribution on X i−1 ×Yi−1. Let Q̃Xi
be the marginal on Xi

induced by Qi−1
tilt · ~Qi,

Q̃Xi
(xi) =

∑

xi−1,yi−1

Qi−1
tilt (xi−1, yi−1) · ~Qi(xi|xi−1, yi−1).

Thus, we have

Φt(Q
n‖Q̄n) =

∑

Xn×Yn

(Qn)1−t(Q̄n)t

(a)
= Φt(Q

n−1‖Q̄n−1)
∑

Xn×Yn

Qn−1
tilt

~Qn(QYn|Xn
)1−t(Q̄Yn|Xn

)t

= Φt(Q
n−1‖Q̄n−1) · Φt(QYn|Xn

‖Q̄Yn|Xn
|Q̃Xn

),

where (a) follows from the factorizing Qn as Qn = Qn−1 ·
~Qn · QYn|Xn

and using (14). We break down the term

Φt(Q
n−1‖Q̄n−1) in a similar manner. Repeating this process

and finally taking log on both sides, we get

φt(Q
n‖Q̄n) = logΦt(Q

n‖Q̄n)

=

n
∑

i=1

φt(QYi|Xi
‖Q̄Yi|Xi

|Q̃Xi
)

Define φ∗
sh(t) to be

φ∗
sh(t)

def
= sup

PX

min
W∈conv(W)

W∈conv(W)

φt(W‖W |PX). (15)

We now specify (PSi
, PS̄i

) in a manner similar to the one in

the proof of the weak converse. Consider the first term in the

sum. By the definition of φ∗
sh(t) in (15),

min
PS1

,PS̄1

φt(QY1|X1
‖Q̄Y1|X1

|Q̃X1
) ≤ φ∗

sh(t).

Recall that φt(.‖.) = −tD1−t(.‖.) for t < 0, where D1−t(.‖.)
is the Rényi divergence of order 1 − t. Since P = {PXW :
W ∈ conv(W)}, Q = {PXW : W ∈ conv(W)} are closed,

convex sets and D1−t(.‖.) is lower semi-continuous [15, The-

orem 15], such a minimum exists. We choose (PS1
, PS̄1

) such

that φt(QY1|X1
‖Q̄Y1|X1

|Q̃X1
) ≤ φ∗

sh(t). We now recursively

specify all the (PSi
, PS̄i

) in a similar manner. Thus, we have

φt(Q
n‖Q̄n) = logΦt(Q

n‖Q̄n) ≤ nφ∗
sh(t). (16)

We now follow the approach of [8, Section VI], [13]. Let α̃n

and β̃n be the type-1 and type-2 errors once the strategies

of transmitter, detector and adversary are fixed. They are as

defined in the Appendix B. Let

r
def
= lim inf

n→∞

−1

n
log β̃n

Our goal is to show that if r > D∗
sh, then then the type-1

error probability α̃n goes to 1 exponentially fast. As before

the distribution of the decision is Bern(α̃n) under H0 and

Bern(1−β̃n) under H1. Since data processing inequality holds

for D1−t(.‖.) for t < 0 [15, Theorem 9], we can apply it for

φt(.‖.).
Φt(Bern(α̃n)‖Bern(1− β̃n)) ≤ Φt(Q

n‖Q̄n) = eφt(Q
n‖Q̄n)

Expanding out the L.H.S. and using (16), we have

(1 − α̃n)
1−t

(β̃n)
t
+ (α̃n)

1−t
(1− β̃n)

t ≤ enφ
∗
sh(t).

Since α̃1−t
n (1− β̃n)

t ≥ 0, it can be dropped while retaining

the inequality. Taking log followed by lim inf on both sides,

we get

lim inf
n→∞

− 1

n
log(1 − α̃n) ≥

−tr − φ∗
sh(t)

1− t

≥ sup
t<0

−t

1− t

(

r − φ∗
sh(t)

−t

)

.

We now show that the L.H.S. > 0 for some choice of t < 0.

lim
t→0−

φ∗
sh(t)

−t

(a)
= sup

PX

min
W∈conv(W)

W∈conv(W)

lim
t→0−

φt(W‖W |PX)

−t

(b)
= sup

PX

min
W∈conv(W)

W∈conv(W)

D(W‖W |PX)
(d)
= D∗

sh.

where (a) is by the definition of φ∗
sh in (15) and the assump-

tion in (9), (b) follows from the fact that
φt(W‖W |PX)

−t
=

D1−t(W‖W |PX) when t < 0 and by the continuity D1−t

in t [15], (d) by the definition of D∗
sh (3). Since r > D∗

sh, we

have r − φ∗
sh(t

′)
−t′

> 0 for some t′ < 0.

lim inf
n→∞

− 1

n
log(1− α̃n) > 0

This inequality holds true for all possible transmitter and de-

tector strategies ( ~Q,An). Thus, the probability of correctness

under H0 decays exponentially.

APPENDIX C

PROOF OF THEOREM 5 (NO FEEDBACK)

a) Achievability (Eǫ
det(W ,W) ≥ D∗

det): We apply the

same argument given in the achievability proof of Theorem 2

for a fixed choice of x. We then optimize over x to complete

the proof.

b) Converse (Eǫ
det(W ,W) ≤ D∗

det

1−ǫ
): Recall that trans-

mitter strategy is a fixed tuple (x1, x2, . . . , xn). Consider a

memoryless adversary strategy. Let Qn (resp. Q̄n) be the

distribution induced on Y under H0 (resp. H1). They are

similar in form to (5), (6) with ~Qi as a point mass on xi.

Under this setting, D(Qn‖Q̄n) =
∑n

i=1 D(QYi
‖Q̄Yi

). It is

easy to see that each term in the sum is upper bounded by

D∗
det. Thus, D(Qn‖Q̄n) ≤ nD∗

det. The rest of the proof is

similar to Theorem 2.

APPENDIX D

PROOF OF THEOREM 5 (FEEDBACK TO TRANSMITTER AND

ADVERSARY)

The proof of achievability is same as Appendix C.



a) Converse (Eǫ
det(W ,W) ≤ D∗

det

1−ǫ
): We restrict the adver-

sary to choose the next state independently conditioned on the

previous outputs of the channel, i.e. PSi|Si−1,Y i−1 = PSi|Y i−1 ,

PS̄i|S̄i−1,Y i−1 = PS̄i|Y i−1 where PSi|Y i−1 and PS̄i|Y i−1 will

be specified in course of the proof. The transmitter strategy is

given by a set of deterministic functions {gi : Yi−1 → X},

where g1 is a constant function with value x1. Let Qn and

Q̄n denote the joint distributions on Yn under H0 and H1

respectively. Qn is given by

Qn(yn) =
n
∏

i=1

(

∑

si∈S

PSi|Y i−1(si|yi−1)W (yi|gi(yi−1), si)
)

. (17)

Q̄n is defined similarly with S̄,W . We again try to upper

bound D(Qn‖Q̄n).

D(Qn‖Q̄n) =
n
∑

i=1

D(QYi|Y i−1‖Q̄Yi|Y i−1 |QY i−1) (18)

Consider the ith term in (18). For each tuple (yi−1), by the

definition of D∗
det in (11), we have

min
P

Si|Y
i−1(.|y

i−1)

P
S̄i|Y

i−1(.|y
i−1)

D(QYi|Y i−1(.|yi−1)‖Q̄Yi|Y i−1(.|yi−1))

≤ D∗
det. (19)

For each tuple (yi−1), we specify PSi|Y i−1(.|yi−1)
and PS̄i|Y i−1(.|yi−1) such that they satisfy (19). Since

D(QYi|Y i−1‖Q̄Yi|Y i−1 |QY i−1) is an averaging over yi−1, it

is upper bounded by D∗
det as well. Repeating this argument

for each term in the sum (18), we get D(Qn‖Q̄n) ≤ nD∗
det.

The rest of the proof is similar to Theorem 2.

APPENDIX E

ROLE OF MEMORY FOR A PRIVATELY RANDOMIZED

TRANSMITTER: ADAPATIVE ADVERSARY CASE

Continuing the discussion from Example 1, we now allow

the adversary access to feedback, i.e. its choice of state can

depend on the outputs of the previous transmission. The new

state spaces for the adversary are S2 = {0} and S̄2 = S̄ × Σ
where Σ = {σ : Y → {0, 1}}. Observe that Σ accounts for

feedback. Note that |S̄2| = 2 × |Σ| = 16. The problem can

now be thought of as a new hypothesis test between

H0 : W2 = {W 2(.|.)} where

W 2((y1, y2)|(x1, x2)) = W (y1|x1)W (y2|x2)

and H1 : W2
= {W 2

(.|., (s̄, σ)) : (s̄, σ) ∈ S̄ × Σ} where

W
2
((y1, y2)|(x1, x2), (s̄, σ))

= W (y1|x1, s̄)W (y2|x2, σ(y1))

Recall that the transmitter strategy was PX1,X2
(0, 0) =

PX1,X2
(1, 1). The adversary strategy is given by PS̄,σ . Let Q

(resp. Q̄) be the set of all possible (double-letter) distributions

that can be induced on Y2 under H0 (resp. H1). Since Q is a

singleton, let the member be denoted by QY1,Y2
. If Q∩Q̄ = ∅,

then by Theorem 1, we get a positive exponent. Assume

for contradiction that this is not the case, i.e. there exists

PS̄,σ such that the resulting Q̄Y1,Y2
is same as QY1,Y2

. Since

the marginals have to be equal, we have QY1
= Q̄Y1

. This

forces PS̄ to be uniform. Now, observe that QY1,Y2
(0, 1) = 0.

Examine the term corresponding to x1 = x2 = 1, s̄1 = 1 in

the expansion of Q̄Y1,Y2
(0, 1).

PX1,X2
(1, 1)PS̄(1)

∑

σ2∈Σ

Pσ|S̄(σ2|1)W (0|1, 1)W (1|1, σ2(0))

It cannot be zero since W (0|1, 1) > 0, W (1|1, σ2(0)) > 0 for

all σ2 when 0 < r < 1. Thus, we have a contradiction. This

scheme gets us a positive exponent even when the adversary

is adaptive.

APPENDIX F

PROOF OF LEMMA 1 AND THEOREM 6

We use bold faced letters to denote n-length vectors, for

example, x denotes a vector in Xn and X denotes a random

vector taking values in Xn. For a random variable X , we

denote its distribution by PX and use the notation X ∼ PX

to indicate this. For an alphabet X , let Pn
X denote the set of

all empirical distributions of n length strings from Xn. For a

random variable X ∼ PX such that PX ∈ Pn
X , let T n

X be the

set of all n-length strings with empirical distribution PX . For

x ∈ Xn, the statement x ∈ T n
X defines PX as the empirical

distribution of x and a random variable X ∼ PX . For PXY ∈
Pn
X×Y and y ∈ Yn, let T n

X|Y (y) = {x : (x,y) ∈ T n
XY }. We

denote 2a by exp (a).

Proof of Lemma 1. We first prove Lemma 1 and show that

show that if a pair of channels
(

W ,W
)

is not trans-

symmetrizable and conv(W)∩conv(W) = ∅, then for any full

support input distribution P , there exist (η1, η2, η3) ∈ η(P )
such that η1, η2, η3 > 0.

Note that if conv(W)∩conv(W) = ∅, there exists a constant

ζ1 > 0 such that for every PS̄ on W̄ and PS on W ,

max
x,y

∣

∣

∣

∣

∣

∑

s̄

PS̄(s̄)W̄ (y|x, s̄)−
∑

s

PS(s)W (y|x, s)
∣

∣

∣

∣

∣

> ζ1.

(20)

Also, if
(

W ,W
)

is not trans-symmetrizable, there exists

ζ2 > 0 such that for every PS|X(s|x′), s ∈ S, x′ ∈ X and

PS̄|X(s̄|x), s̄ ∈ S̄, x ∈ X

max
x,x′,y

∣

∣

∣

∣

∣

∣

∑

s∈S

PS|X(s|x′)W (y|x, s)−
∑

s̄∈S̄

PS̄|X(s̄|x)W (y|x′, s̄)

∣

∣

∣

∣

∣

∣

> ζ2. (21)

We consider a full support input distribution P . That is,

minx P (x) ≥ α for some α > 0. We will show that there

exists (η1, η2, η3) ∈ η(P ) such that η1, η2, η3 > 0 for some

δ > 0. These choices only depend on α, ζ1 and ζ2.



Firstly, suppose there exists PXX′S̄SY such that for

(X,X ′) ∼ PXX′ , PXX′ (X 6= X ′) > 0 and conditions 1), 2),

3), 4) and 5) hold in Definition 2. We will show a contradiction

using these conditions. We have, for W̄ = WY |X,S̄ ,

η1 + η2 + η3 > I(X ; S̄) +D(PXS̄Y ||PXS̄W̄ ) + I(X ′;XY |S̄)
= D(PXX′S̄Y ||PXPX′S̄WY |XS̄)

≥ D(PXX′Y ||
∑

s̄

PXPX′PS̄|X′(s̄|·)WY |X,S̄(·|·, s̄)).

Using Pinsker’s inequality, for some c > 0, this implies that
∑

x,x′,y

∣

∣

∣PXX′Y (x, x
′, y)

−
∑

s̄

PX(x)PX′ (x′)PS̄|X′(s̄|x′)WY |X,S̄(y|x, s̄)
∣

∣

∣

≤ c
√
η1 + η2 + η3. (22)

Similarly, from the remaining conditions in Definition 2, we

can write
∑

x,x′,y

∣

∣

∣PXX′Y (x, x
′, y)−

−
∑

s

PX(x)PX′ (x′)PS|X(s|x)WY |X′,S(y|x′, s)
∣

∣

∣ ≤ c
√
3δ.

(23)

Combining (22) and (23), we obtain
∑

x,x′,y

PX(x)PX′(x′)
∣

∣

∣

∑

s̄

PS̄|X′(s̄|x′)WY |X,S̄(y|x, s̄)−
∑

s

PS|X(s|x)WY |X′,S(y|x′, s)
∣

∣

∣ ≤ c
√
η1 + η2 + η3 + c

√
3δ.

(24)

This implies that

max
x,x′,y

∣

∣

∣

∑

s̄

PS̄|X′(s̄|x′)WY |X,S̄(y|x, s̄)

−
∑

s

PS|X(s|x)WY |X′,S(y|x′, s)
∣

∣

∣ ≤ c
√
η1 + η2 + η3 + c

√
3δ

α2

(25)

which is a contradiction to (21) for

c
√
η1 + η2 + η3 + c

√
3δ

α2
≤ ζ2. (26)

Next, suppose that there exists PXX′S̄SY such that for

(X,X ′) ∼ PXX′ , PXX′ (X = X ′) = 1 such that conditions

1), 2), 3) and 4) hold in Definition 2. Setting X ′ = X and

proceeding in a similar manner, one can show that

max
x,y

∣

∣

∣

∣

∣

∑

s̄

PS̄(s̄)WY |X,S̄(y|x, s̄)−
∑

s

PS(s)WY |X,S(y|x, s)
∣

∣

∣

∣

∣

≤ c
√
η1 + η2 + c

√
2δ

α

which is a contradiction to (20) for

c
√
η1 + η2 + c

√
2δ

α
≤ ζ1. (27)

Since, ζ1 and ζ2 are both positive, we can choose

η1, η2, η3 > 0 such that for some δ > 0, (27) and (26) hold.

Note that such a choice only depends on α, ζ1 and ζ2.

Proof of Theorem 6. We already discussed (after Definition 1)

how trans-symmetrizability implies Eǫ
pvt(W ,W) = 0. Here we

provide the proof of the lower bound on the exponent. The

proof uses the method of types (See [16]). For a distribution

P , (η1, η2, η3) ∈ η(P ) and R = η3/3, we first show that we

can obtain an exponent γ for the probability of error under

Hypothesis H1.

γ ≥ min

{

min
PXS̄ :

I(X;S̄)≥η1

A1, η2 − ǫ, min
PXS̄X′SY :

I(X′;XY |S̄)≥η3

A2

}

(28)

where A1 = R −
∣

∣R− I(X ; S̄)
∣

∣

+ − ǫ and (29)

A2 = max
{

I(X ;X ′S̄)−
∣

∣R− I(X ′; S̄)
∣

∣

+ − ǫ,

I(Y ;X ′|XS̄)−
∣

∣R− I(X ′;XS̄)
∣

∣

+ − 2ǫ
}

(30)

For N = exp (nR), let C(P ) = {x1, . . . ,xN} be a set of

sequences of type P given by Lemma 2 (proved later).

Lemma 2. For any ǫ > 0, large enough n, N := 2nR for

R ≥ ǫ, and type P , there exist sequences x1, . . . ,xN ∈ Xn

of type P , such that for every x ∈ Xn, s ∈ Sn ∪ S̄n and

every joint type PXX′S , we have

|{j : (x,xj , s) ∈ T n
XX′S}|

≤ exp
{

n
(

|R− I(X ′;XS)|+ + ǫ
)}

, (31)

1

N
|{i : (xi, s) ∈ T n

XS}|

≤ exp
{

n
(

|R− I(X ;S)|+ −R+ ǫ/2
)}

, and (32)

1

N
|{i : (xi,xj , s) ∈ T n

XX′S for some j 6= i}|

≤ exp
{

n
(

|R− I(X ′;S)|+ − I(X ;X ′S) + ǫ/2
)}

(33)

The transmitter sends a an input sequence selected uni-

formly at random (using its private randomness) from

x1,x2, . . . ,xN .

Definition 3 (Detector). Given sequences {x1, . . . ,x}, each

of type P , and for (η1, η2, η3) ∈ η(P ) and δ > 0 given by

Definition 2, φ(y) = H1 if and only if i ∈ [1 : N ] and

s̄ ∈ S̄n exist s.t. for the joint empirical distribution PXS̄Y of

(xi, s̄,y),

1) I(X ; S̄) < η1
2) D(PXS̄Y ||PXS̄W̄ ) < η2, and

3) for each j such that the joint empirical distribution

PXS̄X′SY of (xi, s̄,xj , s,y) for some s ∈ Sn satisfies

I(X ′;S) < δ and D(PX′SY ||PX′SW ) < δ, we have

I(X ′;XY |S̄) < η3.

Suppose the active hypothesis is H1. Firstly, notice that

the probability of error under any randomized attack can be



written as an average over deterministic attacks and is thus

maximized by a deterministic attack. So, it is sufficient to

consider only deterministic attacks by the adversary. Suppose

the adversary attack sequence is s̄ ∈ S̄n.

Let PXY (xi,y) = 1
N
Wn(y|xi, s̄) for

xi ∈ C(P ) y ∈ Yn and PXY (x,y) = 0 for

x /∈ C(P ). Let (X,Y ) ∼ PXY . Define events

E1 :=
{

(X, s̄) ∈ T n
XS̄

such that I(X ; S̄) ≥ η1
}

, E2 :=
{

(X, s̄,Y ) ∈ T n
XS̄Y

such that D(PXS̄Y ||PXS̄ × W̄ ) ≥ η2
}

,

E3 :=
{

(X, s̄,Y ) ∈ T n
XS̄Y

such that I(X ; S̄) < η1,
D(PXS̄Y ||PXS̄ × W̄ ) < η2, ∃xj 6= X such that (xj , s,Y ) ∈
T n
X′SY for some s ∈ Sn for which I(X ′;S) < δ
and D(PX′SY ||PX′SW ) < δ, but I(X ′;XY |S̄) ≥ η3

}

,

and E4 :=
{

∃s ∈ Sn such that (X, s̄, s,Y ) ∈
T n
XS̄SY

for which I(X ; S̄) < η1, D(PXS̄Y ||PXS̄ × W̄ ) <
η2, I(X ;S) < δ and D(PXSY ||PXSW ) < δ

}

. Then,

PXY (φ(Y ) = H0) ≤ PXY (E1 ∪ E2 ∪ E3 ∪ E4)
≤ PXY (E1) + PXY (E2) + PXY (E3) + PXY (E4)

We first note that PXY (E4) = 0 because for (η1, η2, η3) ∈
η(P ) and δ > 0 given by Definition 2, there is no distribution

T n
XX′S̄SY

(with X ′ = X) satisfying the conditions in E4. Next,

we evaluate PXY (E1),

PXY

(

(X, s̄) ∈ T n
XS̄

, I(X ; S̄) ≥ η1
)

=

∣

∣i : (xi, s̄) ∈ T n
XS̄

, I(X ; S̄) ≥ η1
∣

∣

N

=
∑

PXS̄∈Pn
X×S̄

:I(X;S̄)≥η1

∣

∣i : (xi, s̄) ∈ T n
XS̄

∣

∣

N

(a)

≤
∑

PXS̄ :I(X;S̄)≥η1

exp
{

n
(

∣

∣R− I(X ; S̄)
∣

∣

+ −R+ ǫ/2
)}

(b)

≤ max
PXS̄ :I(X;S̄)≥η1

exp
{

−n
(

R−
∣

∣R− I(X ; S̄)
∣

∣

+ − ǫ
)}

(34)

Here, (a) holds because of (32) and (b) holds for large n as

the number of joint types is at most polynomial in n. Next,

we evaluate PXY (E2),

PXY

({

(X, s̄,Y ) ∈ T n
XS̄Y

, D(PXS̄Y ||PXS̄ × W̄ ) ≥ η2
})

= PXY

(

∪ PXS̄Y ∈Pn
X×S̄×Y

:

D(PXS̄Y ||PXS̄×W̄ )≥η2

{

(X, s̄,Y ) ∈ T n
XS̄Y

}

)

=
∑

PXS̄Y ∈Pn
X×S̄×Y

:

D(PXS̄Y ||PXS̄×W̄ )≥η2

PXY

(

(X, s̄,Y ) ∈ T n
XS̄Y

)

For any PXS̄Y ∈ Pn
X×S̄×Y

such that D(PXS̄Y ||PXS̄ × W̄ ) ≥
η2, we have

PXY

({

(X, s̄,Y ) ∈ T n
XS̄Y

})

=
1

N

∑

xi∈T n
X|S̄

(s̄)

∑

y∈T n
Y |XS̄

(xi,s̄)

Wn(y|xi, s̄)

≤ 1

N

∑

xi∈T n
X|S̄

(s̄)

exp
{

−nD(PXS̄Y ||PXS̄ × W̄ )
}

≤ exp (−nη2) .

Thus,

PXY (E2) ≤
∑

PXS̄Y ∈Pn
X×S̄×Y

:

D(PXS̄Y ||PXS̄×W̄ )≥η2

exp (−nη2)

≤ exp (−n (η2 − ǫ)) . (35)

In order to evaluate the probability of E3, let P ⊆
Pn
X×S̄×Y×X×S

be such that for each PXS̄Y X′ ∈ P
we have I(X ; S̄) < η1, D(PXS̄Y ||PXS̄ × W̄ ) < η2,

I(X ′;XY |S̄) ≥ η3 and for some S distributed over S,

I(X ′;S) < δ,D(PX′SY ||PX′SW ) < δ .

PXY (E3) ≤
∑

PXS̄Y X′∈P

1

N

∑

i:(xi,xj ,s̄)∈T n
XX′S̄

for some j 6=i

∑

y∈T n
Y |X′XS̄

(xj ,xi,s̄)

Wn(y|xi, s̄) (36)

≤
∑

PXS̄Y X′∈P

1

N

∣

∣i : (xi,xj, s̄) ∈ T n
XX′S̄

for some j 6= i
∣

∣

(a)

≤
∑

PXS̄Y X′∈P

exp
{

n
(

∣

∣R− I(X ′; S̄)
∣

∣

+ − I(X ;X ′S̄) + ǫ/2
)}

(b)

≤ exp
{

−n
(

I(X ;X ′S̄)−
∣

∣R− I(X ′; S̄)
∣

∣

+ − ǫ
)}

(37)

where (a) follows from (33) and (b) holds for large n. (36) is

also upper bounded by

∑

PXS̄Y X′∈P

1

N

∑

xi:xi∈T n
X|S̄

(s̄)

∑

xj∈T n
X′|XS̄

(xi,s̄)

∑

y∈T n
Y |X′XS̄

(xj,xi,s̄)

Wn(y|xi, s̄)

(a)

≤
∑

PXS̄Y X′∈P

1

N

∑

xi:
xi∈T n

X|S̄
(s̄)

exp
{

n
(

∣

∣R− I(X ′;XS̄)
∣

∣

+
+ ǫ
)}

exp
{

−nI(X ′;Y |XS̄)
}

(b)

≤ exp
{

−n
(

I(X ′;Y |XS̄)−
∣

∣R− I(X ′;XS̄)
∣

∣

+ − 2ǫ
)}

(38)

where (a) follows from (31) and
∑

y∈T n
Y |X′XS̄

(xj ,xi,s̄)
Wn(y|xi, s̄) ≤ exp

(

−nI(X ′;Y |XS̄)
)

and (b) holds for large n. The exponent in (28) follows from

(34), (35), (37) and (38).

Next, we show the exponent in Theorem 6.

For R ≥ I(X ; S̄), A1 = I(X ; S̄) − ǫ ≥ η1 − ǫ. When

R < I(X ; S̄), A1 = R − ǫ. Next, we evaluate A2. When

I(X ;X ′S̄) −
∣

∣R− I(X ′; S̄)
∣

∣

+ − ǫ ≥ t for some t (TBD),

A2 ≥ t. Otherwise, when I(X ;X ′S̄) −
∣

∣R− I(X ′; S̄)
∣

∣

+ ≤



ǫ + t, we consider two cases. When R ≤ I(X ′; S̄), we have

I(X ;X ′|S̄) ≤ I(X ;X ′S̄) ≤ ǫ+ t. Thus,

I(Y ;X ′|XS̄)−
∣

∣R− I(X ′;XS̄)
∣

∣

+ − 2ǫ

= I(Y ;X ′|XS̄)− 2ǫ

= I(Y X ;X ′|S̄)− I(X ;X ′|S̄)− 2ǫ

≥ η3 − t− 3ǫ because I(Y X ;X ′|S̄) > η3.

Thus, A2 ≥ η3 − t− 3ǫ in this case. When R > I(X ′;S),

R ≥ I(X ;X ′S̄) + I(X ′; S̄)− ǫ− t

≥ I(X ′;XS)− ǫ − t.

This implies that
∣

∣R− I(X ′;XS̄)
∣

∣

+ ≤ R−I(X ′;XS)+ǫ+t.
In this case,

I(Y ;X ′|XS̄)−
∣

∣R− I(X ′;XS̄)
∣

∣

+ − 2ǫ

≥ I(Y ;X ′|XS̄)−R+ I(X ′;XS̄)− ǫ− t− 2ǫ

= I(XS̄Y ;X ′)−R− t− 3ǫ

= I(XY ;X ′|S̄) + I(X ′; S̄)−R− t− 3ǫ

≥ η3 − R− t− 3ǫ.

With this, the exponent γ

γ ≥ min
{

min {η1 − ǫ, η3/3− ǫ} , η2 − ǫ,

max {t,min {η3 − t− ǫ/4, η3 −R − t− 3ǫ}}
}

.

For R = t = η3/3 and ǫ → 0 (note that ǫ > 0 may be

arbitrarily small as long as R ≥ ǫ as required by Lemma 2),

the exponent γ can me made arbitrarily close to

min {η1, η2, η3/3} . (39)

Next, we will show under Hypothesis H0 too, the probability

of error is arbitrarily small. Suppose the adversary’s

attack is s ∈ Sn. For each xj ∈ C(P ) and y ∈ Yn, let

PX′Y (xj ,y) = 1
N
Wn(y|xj , s). Let (X ′,Y ) ∼ PX′Y . De-

fine Ẽ1 := {(X ′, s) ∈ T n
X′S such that I(X ′;S) ≥ δ}, Ẽ2 :=

{(X ′, s,Y ) ∈ T n
X′SY such that D(PX′SY ||PX′S ×W ) ≥ δ},

Ẽ3 :=
{

(X ′, s,Y ) ∈ T n
X′SY such that I(X ′;S) < δ,

D(PX′SY ||PX′S ×W ) < δ, ∃xi 6= X ′ such that (xi, s̄,Y ) ∈
T n
XS̄Y

for some s̄ ∈ S̄n for which I(X ; S̄) < η1
and D(PXS̄Y ||PXS̄W̄ ) < η2, but I(X ;X ′Y |S) ≥ δ

}

,

and Ẽ4 :=
{

∃s̄ ∈ S̄n such that (X ′, s̄, s,Y ) ∈
T n
X′S̄SY

for which I(X ; S̄) < η1, D(PXS̄Y ||PXS̄ × W̄ ) <
η2, I(X

′;S) < δ and D(PX′SY ||PX′SW ) < δ
}

.

These events are analogous to the events E1, E2, E3 and E4
defined under H1, except that (η1, η2, η3) is exchanged with

(δ, δ, δ). Following a similar line of argument, one can show

that PX′Y

(

Ẽ1 ∪ Ẽ2 ∪ Ẽ3 ∪ Ẽ4
)

≤ exp (−nδ/3) (see (39)).

We will next argue that conditioned on the event Ẽc
1 ∩ Ẽc

2 ∩
Ẽc
3 ∩ Ẽc

4 , the detector will not output H1. This is because

Definition 2 ensures that for (η1, η2, η3) ∈ η(P ) and δ given

by definition 2,

• There does not exist xi, s̄ ∈ S̄n and such

that for (xi,X
′, s̄, s,Y ) ∈ T n

XX′S̄SY
, I(X ; S̄) <

η1, D(PXS̄Y ||PXS̄W̄ ) < η2, I(X ′;S) < δ,

D(PX′SY ||PXSW ) < δ, and for X 6= X ′,

I(X ′;XY |S̄) < η3 and I(X ;X ′Y |S) < δ.

This implies that the error will happen only under Ẽ1 ∪ Ẽ2 ∪
Ẽ3 ∪ Ẽ4 which happens with probability at most exp (−nδ).
This can be made arbitrarily small for large n.

Proof of Lemma 2. The proof of the lemma follows from

the proof of [17, Lemma 3]. (31) is the same as [17,

eq. (3.1)]. (32) can be obtained from the proof of [17,

eq. (3.2)], specifically by replacing PX′S with PXS and

ǫ with ǫ/2 in [17, eq. (A8)]. Equation (33) is obtained

from the proof of [17, eq. (3.3)], where for a = (n +

1)|X | exp
{

n
(

|R− I(X ′;S)|+ − I(X ;X ′S) + ǫ/4
)}

, we

choose t = exp
{

n
(

|R− I(X ′;S)|+ − I(X ;X ′S) + ǫ/2
)}

.

Note that for large enough n, t > a log e as required by [17,

eq. (A2)].
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