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Abstract—In this paper, we consider a multiple-input multiple-
output (MIMO) radar system for localizing a target based on its
reflected echo signals. Specifically, we aim to estimate the random
and unknown angle information of the target, by exploiting
its prior distribution information. First, we characterize the
estimation performance by deriving the posterior Cramér-Rao
bound (PCRB), which quantifies a lower bound of the estimation
mean-squared error (MSE). Since the PCRB is in a complicated
form, we derive a tight upper bound of it to approximate the
estimation performance. Based on this, we analytically show that
by exploiting the prior distribution information, the PCRB is al-
ways no larger than the Cramér-Rao bound (CRB) averaged over
random angle realizations without prior information exploitation.
Next, we formulate the transmit signal optimization problem to
minimize the PCRB upper bound. We show that the optimal
sample covariance matrix has a rank-one structure, and derive
the optimal signal solution in closed form. Numerical results show
that our proposed design achieves significantly improved PCRB
performance compared to various benchmark schemes.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) radar can enhance
the localization performance via exploiting the waveform
diversity [1], thus has attracted significant research attention
over the years. Specifically, a MIMO radar can transmit
noncoherent known signals and receive the reflected signals
(echoes) via multiple antennas. The opportunity to harvest
waveform diversity offers high resolution and sensitivity, good
parameter identifiability, and direct applicability of adaptive
array techniques [2]. To take full advantage of the degrees-of-
freedom (DoFs) brought by multiple antennas, transmit signal
design is of paramount importance for MIMO radar systems.

Generally speaking, the existing literature on MIMO radar
transmit signal design can be categorized into two classes:
beampattern approximation and direct design for localiza-
tion performance optimization. In the first class, the trans-
mit signals are designed to approximate a desired and pre-
designed beampattern [3]–[5]. The localization performance
is implicitly reflected by the difference between the desired
beampattern and the approximated beampattern, which cannot
be explicitly quantified. On the other hand, in the second class,
the mean-squared error (MSE) is a commonly adopted metric
to assess the performance of localization. However, since the
minimum possible MSE is generally difficult to characterize,
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Fig. 1. Illustration of target localization via a MIMO radar system.

some lower bounds of the MSE have been proposed, among
which the most well-known one is the Cramér-Rao bound
(CRB) [6]. For MIMO radar systems, the expressions of CRB
for angle estimation [7] and velocity estimation [8] have been
derived. With CRB as the performance metric, various works
have studied the transmit signal optimization, e.g., [9], [10].

The vast majority of the existing literature focused on
the case where the location parameters to be estimated are
deterministic. However, in practice, the location parameters
can be random, for which the distributions can be known a
priori. For example, for a mobile vehicle or pedestrian, the
location parameters at the upcoming time slots are generally
functions of the location parameters at the current and previous
time slots, for which the distributions can be obtained based on
the previous localization results and/or by exploiting empirical
data. With the prior information exploited, a so-called poste-
rior Cramér-Rao bound (PCRB) can be derived to characterize
the lower bound of MSE [11]. Nevertheless, to the best of
our knowledge, how to optimize the MIMO radar transmit
signals for optimizing the estimation performance of random
parameters by exploiting its prior distribution information is
still an open problem, which motivates our study in this paper.

This paper studies the target localization via a MIMO radar
system with co-located transmit and receive antennas. The
angular location of the target is modeled as a random variable,
which is estimated via the signals sent from the MIMO radar
transmitter, reflected by the target, and received back at the
MIMO radar receiver. To characterize the angle estimation per-
formance exploiting its prior distribution information, we first
characterize the PCRB of the MSE, which is in a complicated
form. We then derive a tractable and tight upper bound for the
PCRB. Based on this, we analytically show that by exploiting
prior distribution information, the PCRB is always no larger
than the average CRB without exploiting the prior information.
Then, we formulate an optimization problem for the sample
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covariance matrix of the transmit signal, with the objective
of minimizing the PCRB upper bound. The optimal solution
to the problem is derived in closed form. Finally, numerical
results verify the tightness of the proposed PCRB upper bound
and validate the performance gain of the proposed transmit
signal design over various benchmark schemes.

II. SYSTEM MODEL

We consider a MIMO radar system with Nt ≥ 1 transmit
antennas and Nr ≥ 1 co-located receive antennas. We aim
to estimate the unknown and random location parameter of
a point target via exploiting the prior information of its
distribution. Specifically, we consider a two-dimensional (2D)
polar coordinate system with the reference point of the MIMO
radar system being the origin, as illustrated in Fig. 1. For the
purpose of drawing essential insights, we assume that every
possible target location has the same distance r ≥ 0 in meters
(m) and a different angle with respect to the origin, where the
common distance (range) information r is known a priori.1

Thus, the only unknown and random parameter is the target’s
angle denoted by θ ∈ [0, 2π). Motivated by practical scenarios
where the target’s angle distribution is typically concentrated
around one or multiple nominal angles, we assume that the
probability density function (PDF) of θ follows a Gaussian
mixture model, which is the weighted summation of K ≥ 1
Gaussian PDFs, with each k-th Gaussian PDF having mean
θk ∈ [0, 2π), variance σ2

k,2 and carrying a weight of pk ∈ [0, 1]

that satisfies
∑K
k=1 pk = 1. Hence, the PDF of θ is given by

pΘ(θ) =

K∑
k=1

pk
1√
2πσk

e
− (θ−θk)2

2σ2
k . (1)

Note that the considered Gaussian mixture model can charac-
terize a wide range of practical scenarios by choosing different
parameters. For example, when K is sufficiently large, the
PDF will tend to be uniform; while when K = 1, the PDF
will reduce to the Gaussian PDF.

To estimate the unknown random location parameter θ, the
MIMO radar transmitter sends a sequence of probing signals,
which will be reflected by the target back to the MIMO
radar receiver; θ is then estimated by processing the received
echo signals. We consider a line-of-sight (LoS) propagation
environment where no obstruction/scatter exists between the
MIMO radar tranceiver and each possible target location. The
overall channel from the MIMO radar transmitter to the MIMO
radar receiver via target reflection is given by

G(θ) = hR(θ)ψh
H
T (θ). (2)

Specifically, ψ ∈ C denotes the radar cross-section (RCS)
coefficient, which is an unknown and deterministic param-
eter. hR(θ) =

√
β0

r b(θ) and hHT (θ) =
√
β0

r a
H(θ) de-

note the target-receiver and transmitter-target channel vec-
tors, respectively, where β0 denotes the reference channel

1The range information can be either known as prior information of the
target, or estimated efficiently via e.g., time-of-arrival (ToA) methods.

2We consider σ2
k’s that are sufficiently small such that the probability for θ

under the Gaussian mixture model to exceed the [0, 2π) region is negligible.

power at reference distance 1 m; aH(θ) and b(θ) denote
the transmit/receive antenna array steering vectors given
by ai(θ) = e

−jπd(Nt−2i+1) sin θ
λ , i = 1, ..., Nt, bm(θ) =

e
−jπd(Nr−2m+1) sin θ

λ , m = 1, ..., Nr, with d denoting the
antenna spacing in m and λ denoting the wavelength in m.
For simplicity, we define α ∆

= β0

r2 ψ = αR+ jαI as the overall
reflection gain containing both the two-way channel gain and
RCS, which yields G(θ) = αb(θ)aH(θ). It is worth noting
that in general, α is an unknown deterministic parameter.

Let L ≥ 1 denote the number of samples of the transmit
probing signal used for the estimation of θ. Let xl ∈ CNt×1

denote the baseband equivalent probing signal vector at the l-th
sample. The collection of probing signals over L samples is de-
noted byX = [x1, ...,xL], for whichRX = 1

L

∑L
l=1 xlx

H
l =

1
LXX

H denotes the sample covariance matrix. Let P denote
the total power constraint among all the MIMO radar transmit
antennas, which yields tr(RX) ≤ P . The received signal
vector at the l-th sample is given by

yl = G(θ)xl + nl, l = 1, ..., L, (3)

where nl ∼ CN (0, σ2INr ) denotes the circularly symmetric
complex Gaussian (CSCG) noise at the MIMO radar receive
antennas, with σ2 denoting the average noise power. The
collection of received signal vectors over L samples is thus
given by

Y = [y1, ...,yL] = G(θ)X + [n1, ...,nL]. (4)

Note that the received signals in Y and consequently the
performance of estimating θ are critically determined by the
MIMO radar transmit signal design, particularly for the case
considered in this paper where prior distribution information
about θ is available for exploitation. For example, the transmit
signals should be designed such that the radiated signal power
is more concentrated over the possible target angles with high
probabilities, to optimally utilize the available transmit power.
In this paper, we will first characterize the performance of
estimating θ by exploiting the prior distribution information,
based on which we will then investigate the optimization of
the MIMO radar transmit signals.

III. ESTIMATION PERFORMANCE CHARACTERIZATION VIA
PCRB

Conventionally, CRB has been widely adopted to charac-
terize the estimation performance of unknown deterministic
parameters, which is a lower bound of the MSE. In this section,
by exploiting the prior distribution information of the unknown
random parameter θ, i.e., pΘ(θ) in (1), we propose to derive
the PCRB of the MSE as the estimation performance metric.

A. Derivation of PCRB

We aim to estimate θ from the collection of MIMO radar
received signals Y , which is a function of both the unknown
random parameter θ and the unknown deterministic parameter
α. Hence, α needs to be jointly estimated with θ to obtain an
accurate estimation of θ. For ease of exposition, we define ζ =
[θ, αR, αI ]

T as the collection of all the unknown parameters.



The joint distribution of the observation Y and unknown
parameter ζ can be expressed as

f(Y , ζ) = f(Y |ζ)pZ(ζ), (5)

where f(Y |ζ) denotes the conditional PDF of Y given ζ;
pZ(ζ) denotes the marginal distribution of ζ.

Note that since ζ consists of a random parameter θ for
which the distribution is known, the information of ζ can be
extracted by jointly exploiting the conditional PDF f(Y |ζ)
of the observation Y and the prior information of θ. Specif-
ically, based on (5), the Fisher information matrix (FIM) for
estimating ζ is given by [12]:

F = Fo + Fp, (6)

where Fo represents the FIM from observation given as

Fo = EY ,ζ

[
∂ ln(f(Y |ζ))

∂ζ

(
∂ ln(f(Y |ζ))

∂ζ

)H]
; (7)

Fp represents the FIM from prior information given as

Fp = Eζ

[
∂ ln(pZ(ζ))

∂ζ

(
∂ ln(pZ(ζ))

∂ζ

)H]
. (8)

In the following, we derive more tractable expressions of the
FIMs in (7) and (8). First, for Fo, the log-likelihood function
for estimating ζ from the observation Y is expressed as [6]:

ln(f(Y |ζ)) = 2

σ2
Re{tr(XHGH(θ)Y )}

− ‖Y ‖
2
F + ‖G(θ)X‖2F

σ2
−NrL ln(πσ2). (9)

Since G(θ) is a function of a(θ) and b(θ), Fo is a function of
the derivatives of a(θ) and b(θ) denoted by ȧ(θ) and ḃ(θ), re-
spectively, with ȧi(θ) =

−jπd(Nt−2i+1) cos θ
λ ai(θ), i=1, ..., Nt

and ḃm(θ) = −jπd(Nr−2m+1) cos θ
λ bm(θ),m= 1, ..., Nr. Note

that aH(θ)ȧ(θ) = 0 and bH(θ)ḃ(θ) = 0. By leveraging this
property, the FIM Fo in (7) can be derived as [13]:

Fo =

[
Jθθ Jθα
JHθα Jαα

]
. (10)

Specifically, Jθθ, Jθα, and Jαα are given by

Jθθ =
2|α|2L
σ2

tr(A1RX) +
2|α|2LNr

σ2
tr(A2RX), (11)

Jθα =
2LNr
σ2

tr(A3RX)[αR, αI ], (12)

Jαα =
2LNr
σ2

tr(A4RX)I2, (13)

where A1 =
∫
‖ḃ(θ)‖2a(θ)aH(θ)pΘ(θ)dθ, A2 =∫

ȧ(θ)ȧH(θ)pΘ(θ)dθ, A3 =
∫
ȧ(θ)aH(θ)pΘ(θ)dθ, and

A4 =
∫
a(θ)aH(θ)pΘ(θ)dθ.

On the other hand, for Fp, since αR and αI are deterministic

parameters, we have ∂ ln(pZ(ζ))
∂ζ =

[
∂ ln(pΘ(θ))

∂θ , 0, 0
]T

, which

yields [Fp]1,1 = Eθ
[(

∂ ln(pΘ(θ))
∂θ

)2
]

and [Fp]m,n = 0 for any

(m,n) 6= (1, 1). Let fk(θ) = 1√
2πσk

e
− (θ−θk)2

2σ2
k denote each k-

th Gaussian PDF in the Gaussian mixture model. Then, [Fp]1,1
can be expressed as

[Fp]1,1 =

∫ (
∂ ln(pΘ(θ))

∂θ

)2

pΘ(θ)dθ (14)

=

K∑
k=1

pk
σ2
k

−
∫ K∑

k1=1

K∑
k2=1

pk1
pk2
fk1

(θ)fk2
(θ)

(
θ−θk1

σ2
k1

−θ−θk2

σ2
k2

)2

2
K∑
k=1

pkfk(θ)

dθ

︸ ︷︷ ︸
ρ

.

Note that [Fp]1,1 =
∑K
k=1

pk
σ2
k
−ρ ≥ 0 holds according to (14).

Therefore, the overall FIM for ζ is given by

F = Fo + Fp =

 Jθθ +
K∑
k=1

pk
σ2
k
− ρ Jθα

JHθα Jαα

. (15)

Note that the overall PCRB for estimating ζ is determined by
F−1 expressed as

F−1 =

[
S−1 D
DH E

]
, (16)

where S ∈ C, D ∈ C1×2, and E ∈ C2×2. Particularly, S is
the Schur complement of block Jαα, which is given by

S
∆
= Jθθ +

K∑
k=1

pk
σ2
k

− ρ− JθαJ−1
ααJ

H
θα. (17)

In this paper, we aim to derive the PCRB for estimating
the target’s angle θ, which is only dependent on S, as given
below:

PCRBθ = [F−1]1,1 = S−1

=
σ2

2|α|2L

/(
σ2

2|α|2L

(
K∑
k=1

pk
σ2
k

− ρ

)
+ tr(A1RX)

+Nrtr(A2RX)− Nr|tr(A3RX)|2

tr(A4RX)

)
. (18)

B. Tractable Bound of PCRB

Note that the exact PCRB in (18) has a complicated
expression, which is difficult to analyze and draw insights
from; moreover, it can be shown to be a non-convex function
over the sample covariance matrix RX of the transmit signal,
which makes it difficult to be used as an optimization objective
function. To overcome these challenges, we propose an upper
bound of the exact PCRB PCRBθ, whose tightness will be
verified numerically in Section VI.

Proposition 1 PCRBθ is upper bounded as

PCRBθ ≤ PCRBUθ
∆
=

σ2

2|α|2L

σ2

2|α|2L

(
K∑
k=1

pk
σ2
k
− ρ
)
+ tr(A1RX)

.

(19)



Proof: Please refer to Appendix A.
Notice that the PCRB upper bound in (19) is in a much

simpler form compared to the exact PCRB in (18). In the
following, we will leverage this upper bound for discussing
the effect of exploiting prior information in the estimation of
θ, and for optimizing the sample covariance matrix RX .

C. Effect of Exploiting Prior Information

In this subsection, we aim to investigate the effect of
exploiting prior distribution information on the estimation per-
formance. Specifically, when the prior distribution information
of θ is unknown, CRB can be adopted to characterize a lower
bound of the estimation MSE corresponding to each realization
of θ, which is given as

CRBθ(θ)=
1

Jθθ−JθαJ−1
ααJHθα

=

σ2

2|α|2L

‖ḃ(θ)‖2tr(a(θ)aH(θ)RX)
.

(20)

Moreover, by taking the expectation of CRBθ(θ) over the
random angle realizations, the average (expected) CRB is
given by

CRBθ = Eθ[CRBθ(θ)] =
∫

CRBθ(θ)pΘ(θ)dθ, (21)

which can be viewed as a lower bound of the long-term MSE
performance without exploiting prior information. Note that
based on Jensen’s inequality and

∑K
k=1

pk
σ2
k
− ρ ≥ 0, we have

CRBθ =Eθ

 σ2

2|α|2L

‖ḃ(θ)‖2tr(a(θ)aH(θ)RX)


≥ 1

Eθ
[
‖ḃ(θ)‖2tr(a(θ)aH(θ)RX)

σ2

2|α|2L

] =

σ2

2|α|2L

tr(A1RX)

≥PCRBUθ ≥ PCRBθ. (22)

The above result indicates that exploiting the prior distri-
bution information can achieve a decreased lower bound on
the estimation MSE. Since the CRB/PCRB is generally tight
in the moderate-to-high signal-to-noise ratio (SNR) regime,
this further implies that the estimation performance can be
improved via the exploitation of prior information. Moreover,
according to the properties of Jensen’s inequality [14], the
gap between CRBθ and PCRBθ generally increases as the
variance of θ increases. Hence, for scenarios where the pos-
sible target locations are more dispersed, the performance
gain via exploiting prior distribution information will be more
significant.

IV. PROBLEM FORMULATION

In this section, we formulate the problem of optimizing
the sample covariance matrix of the MIMO radar transmit
signals for estimation performance optimization exploiting
prior distribution information. Specifically, since the exact
PCRB is in a complicated form, we aim to minimize the
upper bound of PCRB derived in (19), subject to a total

power constraint at the MIMO radar transmit antennas. The
optimization problem is formulated as

(P1) minimize
RX

PCRBUθ (23)

subject to tr(RX) ≤ P, (24)
RX � 0. (25)

Note that RX only affects the denominator in PCRBUθ
shown in (19), the maximization of which is equivalent to
the maximization of tr(A1RX). Hence, Problem (P1) is
equivalent to Problem (P2), which is given by:

(P2) maximize
RX

tr(A1RX) (26)

subject to tr(RX) ≤ P, (27)
RX � 0. (28)

In the following, we will obtain the optimal solution to (P1)
via solving (P2).

V. OPTIMAL SOLUTION

Problem (P2) is a semi-definite program (SDP), for which
the optimal solution can be obtained via the interior-point
method or existing software, e.g., CVX. To draw more useful
insights, we present the optimal solution in closed form.

First, since there is only one linear constraint in (P2), there
exists a rank-one optimal solution to (P2) denoted by R?

X =
w?w?H [15]. This implies that using a constant probing signal
w? for all the samples is already optimal. Consequently, (P2)
can be equivalently transformed into the following problem
for optimizing the constant probing signal denoted by w ∈
CNt×1:

(P3) maximize
w

wHA1w (29)

subject to ‖w‖2 ≤ P. (30)

To solve (P3), we express the eigenvalue decomposi-
tion (EVD) of A1 as A1 = QΛQH , where Λ =
diag{λ1, ..., λNt}, with λ1 ≥ λ2 ≥ ... ≥ λNt ≥ 0; Q =
[q1, ..., qNt ] is a unitary matrix with QQH = QHQ = INt .
Define g , QHw. The objective function of (P3) can be
further rewritten as wHA1w = wHQΛQHw = gHΛg.
The constraint can be represented as ‖w‖2 = ‖g‖2 ≤ P .
Hence, (P3) can be equivalently transformed into the following
problem:

(P4) maximize
g

gHΛg (31)

subject to ‖g‖2 ≤ P. (32)

Note that for any feasible solution w to (P3), g = QHw is a
feasible solution to (P4) with the same objective value; while
for any feasible solution g to (P4), w = Qg is a feasible
solution to (P3) with the same objective value. Thus, (P4) is
equivalent to (P3) and consequently (P2) and (P1).

Based on (P4), we have the following proposition.

Proposition 2 An optimal solution to (P1) is R?
X = Pq1q

H
1 .



Proof: The objective value of (P4) is upper bounded as

gHΛg =

Nt∑
i=1

|gi|2λi ≤
Nt∑
i=1

|gi|2λ1 ≤ Pλ1. (33)

The above equalities hold when g = [
√
P , 0, ..., 0]T , which is

thus the optimal solution to (P4). Hence, the optimal constant
probing signal in (P3) is given by w? = Qg =

√
Pq1, where

q1 is the eigenvector corresponding to the largest eigenvalue
(i.e., λ1) of A1. Thus, R?

X = Pq1q
H
1 is optimal to (P1).

Note that the complexity for obtaining the optimal solution
to (P1) via Proposition 2 can be shown to be O(N3

t ) [16],
which is lower than that via the interior-point method for SDP,
i.e., O(N7

t ) [17].
Based on Proposition 2, the minimum value of the PCRB

upper bound with optimized transmit signals is obtained as

PCRBU
?

θ =
1

K∑
k=1

pk
σ2
k
− ρ+ 2P |α|2L

σ2 qH1 A1q1

. (34)

It is worth noting that the PCRB upper bound decreases as
the term P |α|2L

σ2 increases, which denotes the overall SNR at
the MIMO radar receiver.

VI. NUMERICAL RESULTS

In this section, we provide numerical results to evaluate
the performance of the proposed MIMO radar transmit signal
design. We consider a MIMO radar system with Nt = 10
transmit antennas and Nr = 12 receive antennas, where the
antenna spacing is set as d = λ

2 . The number of signal samples
is set as L = 25. The transmit power is set as P = 30 dBm.
The average noise power is set as σ2 = −120 dBm. For the
PDF of angle θ, we set K = 5; θ1 = 0.52, θ2 = 0.82, θ3 =
0.87, θ4 = 2.6, θ5 = 2.7; σ2

1 = 10−4, σ2
2 = 10−4, σ2

3 =
10−3, σ2

4 = 10−3, σ2
5 = 10−4; p1 = 0.15, p2 = 0.32, p3 =

0.17, p4 = 0.2, p5 = 0.16. For comparison, we consider the
following benchmark schemes for the transmit signal design:
• Benchmark Scheme 1: Heuristic signal design. In this

scheme, we design RX as a diagonal matrix with signal
power allocated to the first transmit antenna, i.e., RX =
diag{P, 0, ..., 0} and xl = [

√
P , 0, ..., 0]T ,∀l.

• Benchmark Scheme 2: Highest-probability angle
based signal design. In this scheme, we design RX

to minimize the CRB in (20) corresponding to the an-
gle with highest probability, i.e., CRBθ(θmax) where
θmax = argmax pΘ(θ). It can be shown in a similar
manner as that in Section V that the optimal solution is
RX = P

Nt
a(θmax)a

H(θmax) and xl =
√

P
Nt
a(θmax),∀l.

First, we show in Fig. 2 the radiated power pattern at
distance r with different transmit signal designs and the prior
PDF of θ over different angles. We set β0

r2 = −20 dB. It is
observed that the proposed scheme achieves higher radiation
power at all the angles with non-zero probability densities
compared to Benchmark Scheme 1, since the latter yields
an omni-directional radiation pattern with the power wasted
on the angles with zero probability density. Moreover, the
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proposed scheme outperforms Benchmark Scheme 2 for most
angles with non-zero probability densities, at the cost of
only a small power loss around the highest-probability angle.
This shows that the proposed scheme is able to achieve a
more balanced power distribution over the possible angles, by
judiciously designing the transmit signals based on the prior
distribution information.

Next, in Fig. 3, we evaluate the PCRB achieved by different
transmit signal design schemes. We also show the PCRB
upper bound achieved via our proposed scheme. It is observed
that our proposed PCRB upper bound is tight for all SNR
regimes, which verifies the effectiveness of using this upper
bound as the estimation performance metric. Moreover, it is
observed that the proposed scheme outperforms both Bench-
mark Scheme 1 and Benchmark Scheme 2, due to the smart
exploitation of the prior distribution information.

VII. CONCLUSIONS

Considering a MIMO radar system, this paper studied the
angle estimation of a target exploiting its prior distribution
information. The PCRB of the angle estimation MSE was
first derived, for which a more tractable and tight upper bound
was proposed. It was analytically shown that by exploiting the
prior information, the PCRB is guaranteed to be no larger than
the average CRB without exploiting prior information. Next,
the problem of transmit signal optimization was formulated,
with the objective of minimizing the PCRB upper bound.
The optimal sample covariance matrix was revealed to have a
rank-one structure, based on which the optimal solution was
derived in closed form. It was shown via numerical results that



the proposed transmit signal design significantly outperforms
various benchmark schemes.

APPENDIX A
PROOF OF PROPOSITION 1

By noting that the sample covariance matrix is given by
RX = 1

L

∑L
l=1 xlx

H
l , we have the following inequality:(

tr(A2RX)tr(A4RX)− |tr(A3RX)|2
)
L2

=

∫ L∑
l=1

|ȧH(θ)xl|2pΘ(θ)dθ

∫ L∑
l=1

|aH(θ)xl|2pΘ(θ)dθ

−

∣∣∣∣∣
∫ L∑

l=1

aH(θ)xlx
H
l ȧ(θ)pΘ(θ)dθ

∣∣∣∣∣
2

=

∫ ∫ (
−

(
L∑
l=1

aH(θa)xlx
H
l ȧ(θa)

)(
L∑
l=1

aH(θb)xlx
H
l ȧ(θb)

)

+
1

2

(
L∑
l=1

|ȧH(θa)xl|2
)(

L∑
l=1

|aH(θb)xl|2
)

+
1

2

(
L∑
l=1

|aH(θa)xl|2
)(

L∑
l=1

|ȧH(θb)xl|2
))
pΘ(θa)pΘ(θb)dθadθb

=

∫ ∫ L∑
n=1

L∑
l=1

(
1

2

∣∣ȧH(θa)xnxla
H(θb)

∣∣2
−
(
ȧH(θa)xnxla

H(θb)
)(
aH(θa)xnxlȧ

H(θb)
)

+
1

2

∣∣aH(θa)xnxlȧ
H(θb)

∣∣2)pΘ(θa)pΘ(θb)dθadθb

=

∫ ∫ L∑
n=1

L∑
l=1

1

2

∣∣ȧH(θa)xnxla
H(θb)

− aH(θa)xnxlȧ
H(θb)

∣∣2pΘ(θa)pΘ(θb)dθadθb

≥0. (35)

By applying (35) on the denominator of (18), the proof of
Proposition 1 is completed.
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