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Abstract

The source coding problem with encoded side information is considered. A lower bound on the strong converse exponent has
been derived by Oohama, but its tightness has not been clarified. In this paper, we derive a tight strong converse exponent. For the
special case such that the side-information does not exists, we demonstrate that our tight exponent of the WAK problem reduces
to the known tight expression of that special case while Oohama’s lower bound is strictly loose. The converse part is proved by a
judicious use of the change-of-measure argument, which was introduced by Gu-Effros and further developed by Tyagi-Watanabe.
Interestingly, the soft Markov constraint, which was introduced by Oohama as a proof technique, is naturally incorporated into the
characterization of the exponent. A technical innovation of this paper is recognizing that the soft Markov constraint is a part of the
exponent, rather than a penalty term that should be vanished. In fact, via numerical experiment, we provide evidence that the soft
Markov constraint is strictly positive. The achievability part is derived by a careful analysis of the type argument; however, unlike
the conventional analysis for the achievable rate region, we need to derive the soft Markov constraint in the analysis of the correct
probability. Furthermore, we present an application of our derivation of strong converse exponent to the privacy amplification.

Index Terms

Source coding with side information, network information theory, strong converse theorem, exponent of correct probability,
change of measure argument.

I. INTRODUCTION

Fig. 1. WAK network

For source coding problems, the (weak) converse theorems state that, at transmission rates under the theoretical limit, there
is no error-free coding scheme as the block length tends to infinity, i.e. the error probability cannot go to 0. On the other hand,
the strong converse theorems state that, at transmission rates below the theoretical limit, the error probability converges to 1
as the block length tends to infinity.

The source coding problem with encoded side information, also known as the Wyner-Ahlswede-Körner (WAK) problem, is
one of fundamental problems in network information theory, and is described in Fig. 1. The WAK network consists of two
encoders φ(n)

1 , φ
(n)
2 and one decoder ψ(n). Both encoders are connected to the decoder by each channel, and the decoder aims

to reproduce the source observed by the first encoder. Under the condition of i.i.d. sources, this problem was solved by Wyner
[30], and Ahlswede and Körner [1] in the middle of 1970s. According to their results, the information theoretical limit involves
an auxiliary random variable with a Markov chain, which makes this problem difficult.

In this paper, we are interested in the strong converse theorem of WAK network. As described later, it is known that for
the WAK network, the error probability exponentially goes to 1 when a rate pair is outside the achievable rate region. On the
other hand, an explicit form of the exponent function has not been clear. Oohama [21] obtained a lower bound of the exponent
by using the recursive method. However, it was unknown whether Oohama’s bound is tight or not. Thus, we consider the
exponent for the WAK network by using another method called the change of measure argument. Furthermore, we discuss a
property of the exponent through a numerical experiment, and we present an application of our derivation of strong converse
exponent to one of the important concepts of cryptography: privacy amplification.

A. Related Work

Before stating our contribution, we would like to describe the history of exponential strong converse and change of measure
argument. For the WAK network, Ahlswede, Gács and Körner [2] proved that the correct probability goes to 0 if the rate
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pair is outside the rate region (strong converse). After that, Gu and Effros [9] showed that the correct probability decreases
exponentially by examining the proof of [2] (exponential strong converse). Since they just showed the convergence speed, they
did not clarify the explicit form of the correct probability exponent in terms of the rate pair (R1, R2). Recently, Oohama [21]
derived an explicit lower bound of this exponent function with parametric form. However, it is unknown whether that bound
is tight or not.

In 1973, Arimoto [4] analyzed the exponential strong converse for the point-to-point channel coding problem. After that, in
1976, Dueck and Körner [8] gave the strong converse exponent by using the type method. Also, exponential strong converse
has naturally been extended for multi-terminal networks. For the Slepian-Wolf problem, Oohama and Han [18] derived the
optimal exponent by using universal coding in 1994. Furthermore, as partially mentioned above, Oohama [19], [21] derived
the exponential strong converses for the WAK problem, the asymmetric broadcast channel problem [15] and the Wyner-Ziv
problem [31]. However, due to Markov chains and an auxiliary random variable, the analysis of exponential strong converse
for the WAK network is difficult and has not been studied much other than [21].

The change of measure argument introduced by Gu and Effros [9] is a useful technique for discussing the strong converses
for various problems. This enables us to prove strong converses using similar ways as those used for weak converses. Then,
it should be noted that Tyagi and Watanabe [25] enabled the change of measure argument to be applied to a lot of distributed
coding problems including the WAK network (see also an early attempt in [27]). After that, various coding problem (for
example, [24], [3]) has been analyzed by using the change of measure argument. More recently, Hamad, Wigger and Sarkiss
[10] further developed the change of measure argument so that the Markov constraint can be proved in a different manner
from [25]. In this paper, we derive a tight exponent of the correct probability for the WAK network by using the change of
measure argument. Particularly, our characterization clarifies a tight strong converse exponent for the problem such that there
are both an auxiliary random variable and the Markov chain in the rate region.

For strong converses, various approaches have been proposed. Kosut and Kliewer [16] proposed an association between edge
removal and strong converses, and also indicated that the capacity is not changed if an extra edge is removed. Another related
approach was proposed by Jose and Kulkarni [13], [14]. Their approach based on the linear programming (LP) analyzes and
improves the converse bound for coding problems by introducing the so-called LP relaxation. Furthermore, Liu, Handel and
Verdú [17] developed an method for non-asymptotic converses by using reverse hypercontractivity of Markov semigroups.

B. Main Contribution

Looking at the above related works and remaining issues, we are motivated to consider the strong converse exponent for
WAK network by judiciously using the change of measure argument. In this work, we establish a tight characterization of the
exponent. Our main contributions are detailed as follows.

First, we apply the change of measure argument to the exponential strong converse problem for the source coding problem
including the Markov chain and an auxiliary random variable. Originally, the change of measure argument has been used in
order to prove strong converses. We now enables this technique to be applied to the analysis of strong converse exponents by
focusing on the correct probability rather than achievable rates. As mentioned above, a main difficulty to derive tight exponent
is handling of the Markov chain constraint that appears in the characterization of the achievable rate region of the WAK
problem. Based on the idea of [20], [25] put the Markov penalty term in terms of the conditional mutual information in the
correct probability exponent. Rather than considering the Markov constraint as a penalty term that should be vanished, we
considered regard it as a part of the exponent, which succeeded in deriving a tight exponent. In fact, our numerical experiment
suggests that the soft Markov constraint term is strictly positive.

Second, even though achievability part is proved using manipulations of the standard type method, proving the matching
exponent is not trivial. Particularly, as mentioned in the previous paragraph, our (converse) characterization of exponent may
violate the Markov constraint. However, in the WAK problem, the second encoder’s coding can only depend on Y n. Thus, we
need to derive the Markov constraint term in the analysis of the correct probability.

Finally, our exponent is strictly tight compared to the previous bound [21] in a certain situation. In the channel coding, there
are two kinds of expressions for the strong converse exponent: the one by Arimoto [4] and the other by Dueck and Körner
[8], which corresponds to the parametric function and the optimization one, respectively. While the lower bound derived by
Oohama [21] is closer to the expression by Arimoto, our characterization of the exponent is along the lines of the expression
by Dueck and Körner. Therefore, we cannot directly compare our exponent with Oohama’s bound. By converting our exponent
expressed in an optimization problem into a parametric form, it become possible to analytically compare with the bound in
[21] for the special case of single user source coding.

C. Paper Organization

This paper is organized as follows. In Section II, after introducing notations, we define the problem that we treat. In Section
III, we state our main result and provides some discussion of them. In Section IV, we consider the comparison with Oohama’s
bound for the special case. In Section V, we give the proof of our result. In Section VI, we consider an application to privacy
amplification. In Section VII, we conclude the paper.
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II. PRELIMINARIES

A. Notations
Random variables are in capital case (e.g. X), and their realization are in lower case (e.g. x). All random variables take

values in some alphabets that are in calligraphic letters (e.g. X ). We shall restrict our attention to finite alphabets only. The
cardinality of X is denoted by |X |. The probability distribution of random variable X is denoted by PX . Random vectors and
their realizations in the nth Cartesian product Xn are denoted by Xn = (X1, . . . , Xn) and xn = (x1, . . . , xn), respectively.
Also, define P(X ) as the set of all distribution on X . For information quantities, we use the same notations as [7], such as
the entropy H(X), the mutual information I(X ∧ Y ) and the KL-divergence D(PX ||QX). For simplicity, we write TX for
the type class of type PX . Also, we define the total variation distance dvar between two discrete distributions P and Q on a
finite set X as

dvar(P,Q) =
1

2

∑
x∈X

|P (x)−Q(x)|.

In the following, the base of logarithm and exponentiation is 2.

B. WAK Network
We consider the network described in Fig. 1. For a given source PXY on a finite alphabet X ×Y , this coding system consists

of two encoders

φ
(n)
1 : Xn → M(n)

1 , φ
(n)
2 : Yn → M(n)

2 ,

and one decoder

ψ(n) : M(n)
1 ×M(n)

2 → Xn.

For simplicity, we write encoders and a decoder as φ1, φ2 and ψ, respectively. Input sequences Xn and Y n are encoded by
φ1 and φ2 separately, and the decoder outputs the estimation X̂n = ψ(φ1(X

n), φ2(Y
n)) of Xn.

For i.i.d. (Xn, Y n) ∼ PXnY n , the error probability of code Φn = (φ1, φ2, ψ) is defined as

Pe(Φn|PXnY n) := Pr(X̂n ̸= Xn).

A rate pair (R1, R2) is called an achievable rate pair if there exists a sequence of codes such that

lim sup
n→∞

1

n
log |M(n)

1 | ≤ R1, lim sup
n→∞

1

n
log |M(n)

2 | ≤ R2,

and

lim
n→∞

Pe(Φn|PXnY n) = 0.

Also, the achievable rate region RWAK is denoted by

RWAK = {(R1, R2) : (R1, R2) is achievable}.

Wyner [30], Ahlswede and Körner [1] determined RWAK as below.

Theorem 1. Consider the region

R =
⋃

X−Y−U
|U|≤|Y|+1

{(R1, R2) :R1 ≥ H(X|U), R2 ≥ I(Y ∧ U)}, (1)

where the Markov chain U − Y −X means

PUXY = PXPY |XPU |Y .

Then, it holds

RWAK = R. (2)

Our main purpose is to find an explicit form of the exponent function for the error probability converging to 1 as n → ∞
when (R1, R2) is not achievable. To achieve this aim, we define the correct probability Pc and the optimal exponent function
G:

Pc(Φn|PXnY n) = 1− Pe(Φn|PXnY n),

G(n)(R1, R2|PXnY n) = min
Φn

(
− 1

n

)
logPc(Φn|PXnY n)

G(R1, R2|PXY ) = lim
n→∞

G(n)(R1, R2|PXnY n).
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According to [21], the limit in the definition of G exists, and the exponent function G(R1, R2|PXY ) is a convex function of
(R1, R2).

Ahlswede, Gács and Körner [2] proved that the correct probability Pc goes to 0 as n→ ∞. Gu and Effros [9] showed that
the convergence speed of Pc is exponential. Also, Oohama [21] derived a lower bound on G. However, it was not clarified
whether the lower bound in [21] is tight or not. In the next section, we shall show our result.

III. MAIN RESULT

In this section, we show our main result. Before showing it, we set

F (R1, R2|PXY ) = min
PŨX̃Ỹ ∈P(U×X×Y)

{
D(PŨX̃Ỹ ||PŨ |Ỹ PXY ) +

∣∣∣I(Ũ ∧ Ỹ )−R2

∣∣∣+ : R1 ≥ H(X̃|Ũ), |U| ≤ |X ||Y|+ 2

}
,

(3)

where |a|+ = max{a, 0}.
Now we show our main theorem by using this quantity.

Theorem 2. For any PXY , we have

G(R1, R2|PXY ) = F (R1, R2|PXY ). (4)

The proof of this result can be found in Section V. As stated in Section I, there are two ways of expressing the exponent:
parametric [4] and optimization [8] function. Unlike Oohama’s bound with parametric notations [21], we derive the exponent
as an optimization function. Interestingly, although the Markov chain in the achievable rate region cannot be explicitly seen in
(3), the conditional mutual information in D(PŨX̃Ỹ ||PŨ |Ỹ PXY ) plays the role. In fact, we can break it into the KL-divergence
and the conditional mutual information as

D(PŨX̃Ỹ ||PŨ |Ỹ PXY ) = D(PX̃Ỹ ||PXY ) +D(PŨ |X̃Ỹ ||PŨ |Ỹ |PX̃Ỹ )
= D(PX̃Ỹ ||PXY ) + I(Ũ ∧ X̃|Ỹ ). (5)

Then, we get I(Ũ∧X̃|Ỹ ) = 0 if the Markov chain is satisfied, which corresponds to replacing the “hard” information constraint
with the “soft” cost introduced by Oohama [20], [21].

Moreover, the exponent F (R1, R2|PXY ) is strictly positive when the rate pair (R1, R2) is outside the achievable rate region
RWAK. Actually, we can verify this property by considering the contraposition that (R1, R2) is inside the achievable rate region
when F (R1, R2|PXY ) = 0 that is derived from the Markov constraint I(Ũ ∧ X̃|Ỹ ) = 0 and the fact PX̃Ỹ = PXY since
D(PX̃Ỹ ||PXY ) = 0.

In the following, we investigate our result to observe its properties.

A. Numerical Experiment

In this section, we make numerical calculation in a specific situation. Since our exponent has an auxiliary random variable,
it is not easy to obtain the optimal value. Even though it is difficult to exactly evaluate the characterization of our exponent,
in the following, we evaluate the exponent for a natural choice of auxiliary distribution to get some insight. We investigate the
properties of the exponent by considering a simple case, doubly symmetric binary source (DSBS).

Consider a DSBS with probability p ∈ (0, 1/2), whose distribution is denoted by DSBS(p). Then, let PXY = DSBS(p). In
other words, X is a Bernoulli random variable with parameter 1/2, and Y is the output of a binary symmetric channel BSC(p)
with crossover probability p when the input is X . Also, fix the auxiliary alphabet as |U| = 2. Furthermore, for the purpose of
numerical calculation, we choose PŨỸ = DSBS(β) and

PX̃|ŨỸ (x|u, y) =


q0 (u = y and x ̸= y),

1− q0 (u = y and x = y),

q1 (u ̸= y and x ̸= y),

1− q1 (u ̸= y and x = y),

for q0, q1 ∈ (0, 1/2). In this situation, we get

PX̃|Ũ (x|u) =

{
(1− β)(1− q0) + βq1 (u = x),

β(1− q1) + (1− β)q0 (u ̸= x).
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Therefore, we can see

H(X̃|Ũ) = h((1− β)(1− q0) + βq1),

I(Ũ ∧ Ỹ ) = 1− h(β),

D(PŨX̃Ỹ ||PŨ |Ỹ PXY ) = D(PỸ ||PY ) +D(PX̃|ŨỸ ||PX|Y |PŨỸ )
= (1− β)D(q0||p) + βD(q1||p),

where h(α) is a binary entropy function and D(x||y) = x log(x/y) + (1 − x) log((1 − x)/(1 − y)). Thus, we can derive an
upper bound of the strong converse exponent as

min
(β,q0,q1)∈[0,1]3

{(1− β)D(q0||p) + βD(q1||p) + |1− h(β)−R2|+ : h((1− β)(1− q0) + βq1) ≤ R1}. (6)

Note that the Markov chain Ũ − Ỹ − X̃ holds if and only if q0 = q1.

Fig. 2. Graphs of (6) for (p,R2) = (0.1, 1 − h(0.2)). The vertical axis shows the value of (6) and the horizontal axis shows the value of R1. The solid
line indicates the value without the Markov constraint for PŨX̃Ỹ , and the dashed line indicate the value with the constraint.

Now we compute (6) with numerical experiment. Figure 2 shows the plots of the values of (6) for (p,R2) = (0.1, 1−h(0.2))
in the range R1 ∈ [0, 1], where the vertical axis is the value of (6) and the horizontal axis is the value of R1. Also, the solid
line indicates the value without the Markov constraint for PŨX̃Ỹ , and the dashed line indicate the value with the constraint,
i.e., q0 = q1.

In Figure 2, we can see that the value are smaller when there is not the Markov constraint. We recall that I(Ũ ∧ X̃|Ỹ ) = 0
corresponds to a Markov constraint for our exponent. Furhermore, we recall that the auxiliary random variable must satisfy
the Markov constriant in the characterization of the achievable rate region. Therefore, one might expect that the optimal value
of (6) is attained when the Markov constraint is satisfied, i.e., when q0 = q1. However, Figure 2 indicates the different result,
which implies that the Markov constraint for PŨX̃Ỹ doesn’t necessarily yield the optimal exponent.

B. Network with Non-encoded side information

Fig. 3. Network with non-encoded side information

Let us consider a sub-problem of WAK coding (also Slepian-Wolf coding), a network with non-coded side information
described in Fig. 3. This network corresponds to the WAK network such that R2 ≥ log |Y|.

For this network, we define the optimal exponent function GNE:

Pc(Φn|PXnY n) = 1− Pe(Φn|PXnY n),

G
(n)
NE (R1|PXnY n) = min

Φn

(
− 1

n

)
logPc(Φn|PXnY n),

GNE(R1|PXY ) = lim
n→∞

G
(n)
NE (R1|PXnY n),
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and we set

FNE(R1|PXY ) = min
PX̃Ỹ ∈P(X×Y)

{
D(PX̃Ỹ ||PXY ) +

∣∣∣H(X̃|Ỹ )−R1

∣∣∣+}. (7)

Then, by using this quantity, we have the exponent. For any PXY , we can obtain the following corollary.

Corollary 3. For R2 ≥ log |Y|, we have

G(R1, R2|PXY ) = FNE(R1|PXY ). (8)

Proof: To prove Corollary 3, we shall show two inequalities:

G(R1, R2|PXY ) ≥ FNE(R1|PXY ), (9)
G(R1, R2|PXY ) ≤ FNE(R1|PXY ). (10)

For (9), let Ũ = Ỹ for F (R1, R2|PXY ) , and this derives

G(R1, R2|PXY ) = F (R1, R2|PXY )

≥ min
PŨX̃Ỹ ∈P(U×X×Y)

Ũ=Ỹ

{
D(PŨX̃Ỹ ||PŨ |Ỹ PXY ) +

∣∣∣I(Ũ ∧ Ỹ )−R2

∣∣∣+ : R1 ≥ H(X̃|Ũ), |U| ≤ |X ||Y|+ 2

}

= min
PX̃Ỹ ∈P(X×Y)

{
D(PX̃Ỹ ||PXY ) : R1 ≥ H(X̃|Ỹ )

}
.

= min
PX̃Ỹ ∈P(X×Y)

{
D(PX̃Ỹ ||PXY ) +

∣∣∣H(X̃|Ỹ )−R1

∣∣∣+}, (11)

where the last equality can be obtained by considering similarly to part of [7, Problem 2.6].
On the other hand, for (10), when R1 ≤ H(X̃|Ỹ ), the KL-divergence D(PŨX̃Ỹ ||PŨ |Ỹ PXY ) can be evaluated as

D(PŨX̃Ỹ ||PŨ |Ỹ PXY ) = D(PX̃Ỹ ||PXY ) + I(Ũ ∧ X̃|Ỹ )

= D(PX̃Ỹ ||PXY ) +H(X̃|Ỹ )−H(X̃|Ũ , Ỹ )

≥ D(PX̃Ỹ ||PXY ) +H(X̃|Ỹ )−R1

= D(PX̃Ỹ ||PXY ) +
∣∣∣H(X̃|Ỹ )−R1

∣∣∣+ , (12)

where the inequality is derived by the condition of R1:

R1 ≥ H(X̃|Ũ) ≥ H(X̃|Ũ , Ỹ ).

Also, when R1 ≥ H(X̃|Ỹ ), we can see

D(PŨX̃Ỹ ||PŨ |Ỹ PXY ) ≥ D(PX̃Ỹ ||PXY ),

= D(PX̃Ỹ ||PXY ) +
∣∣∣H(X̃|Ỹ )−R1

∣∣∣+ , (13)

and we combine (12) and (13), then we obtain

G(R1, R2|PXY ) ≥ min
PX̃Ỹ ∈P(X×Y)

{
D(PX̃Ỹ ||PXY ) +

∣∣∣H(X̃|Ỹ )−R1

∣∣∣+}, (14)

which completes the proof.

IV. COMPARISON TO OOHAMA’S BOUND

In this chapter, we now compare Oohama’s bound and our exponent for the simplest network, i.e., the single-user network.
Before showing it, we introduce Oohama’s expression as below [21].

Proposition 4. Set

P̃(PXY )={PŨX̃Ỹ : |U| ≤ |Y|, U − Y −X,PX|Y = PX̃|Ỹ }.
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For (µ, α) ∈ [0, 1]2 and for PŨX̃Ỹ ∈ P̃(PXY ), define

τ
(µ,α)

ŨX̃Ỹ |XY (x, y|u) = (1− α) log
PỸ (y)

PY (y)
+ α

(
µ log

PỸ |Ũ (y|u)
PY (y)

+ (1− µ) log
1

PX̃|Ũ (x|u)

)
,

ω(µ,α)(PŨX̃Ỹ |PXY ) = − log
∑

(u,x,y)

PŨX̃Ỹ (u, x, y) · exp(−τ
(µ,α)

ŨX̃Ỹ |XY (x, y|u)),

Ω(µ,α)(PXY ) = min
PŨX̃Ỹ

ω(µ,α)(PŨX̃Ỹ |PXY ),

f (µ,α)o (R1, R2|PXY )=
Ω(µ,α)(PXY )−α((1− µ)R1 + µR2)

2 + α(1− µ)

Fo(R1, R2|PXY ) = sup
(µ,α)∈[0,1]2

f (µ,α)o (R1, R2|PXY ).

Then, for any PXY , we have

Pc(Φn|PXnY n) ≤ 5 exp(−nFo(R1, R2|PXY )). (15)

Remark. Oohama showed that Fo(R1, R2|PXY ) is strictly positive if (R1, R2) is outside the rate region RWAK.

A. Application to expressions to the single-user network

Fig. 4. Single-user network

In this study, we consider two expressions for the single-user network (Fig. 4). This network corresponds to the WAK
network that the encoder φ2 sends nothing or |Y| = 1. In this case, we can simplify Oohama’s bound (Corollary 5) and our
exponent (Corollary 6) as follows.

Corollary 5. For (µ, α) ∈ [0, 1]2, define

τ̂
(µ,α)
X (x) = α(1− µ) log

1

PX(x)
,

Ω̂(µ,α)(PX) = − log
∑
x

PX(x) exp(−τ̂ (µ,α)X (x)),

f̂ (µ,α)o (R1|PX) =
Ω̂(µ,α)(PX)− α(1− µ)R1

2 + α(1− µ)

F̂o(R1|PX) = max
(µ,α)∈[0,1]2

f̂ (µ,α)o (R1|PX).

Then, for any PXY , we have

Fo(R1, R2|PXY ) = F̂o(R1|PX). (16)

Taking |Y| = 1 in Corollary 3, we have the following corollary.

Corollary 6. Set

F̂t(R1|PX) = min
PX̃∈P(X )

{
D(PX̃ ||PX) +

∣∣∣H(X̃)−R1

∣∣∣+}. (17)

Then, for any PXY , we have

F (R1, R2|PXY ) = F̂t(R1|PX). (18)

B. Comparison

In this section, we compare two expressions in Corollary 5 and Corollary 6. If we can verify Proposition 7 in the following,
our exponent is strictly tight for the single-user network.

Proposition 7. For the special case described in Fig. 4 and R1 < H(X), we have

F̂o(R1|PX) < F̂t(R1|PX). (19)
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As mentioned in Introduction, two expressions are different in characterization. Since we cannot compare them as they are,
we convert our exponent using [12, Exercise 2.41], which is stated in the following.

Lemma 8. We can rewrite F̂t(R1|PX) as

F̂t(R1|PX) = max
θ≤0

−s(θ) + θR1

1− θ
, (20)

where the function s(θ) is denoted as

s(θ) = log
∑
x

{PX(x)}1−θ.

Using this lemma, we prove the main result, Proposition 7.
Proof of Proposition 7: Putting θ = −α(1− µ) ∈ [−1, 0], we first see that

Ω̂(µ,α)(PX) = −s(θ), (21)

which can be derived from

s(θ) = log
∑
x

{PX(x)}1−θ

= log

(∑
x

PX(x)

(
1

PX(x)

)θ)

= log

(∑
x

PX(x) exp

(
θ log

1

PX(x)

))
= −Ω̂(µ,α)(PX). (22)

Then, we can rewrite F̂o(R1|PX) as

F̂o(R1|PX) = max
θ∈[−1,0]

−s(θ) + θR1

2− θ
. (23)

Now we show that for some θ ∈ [−1, 0), the numerator −s(θ) + θR1 is positive, i.e., −s(θ) + θR1 > 0. Considering the
condition of R1: R1 < H(X), we rewrite R1 ≤ H(X) − δ for a small positive number δ. Also, from the definition of
derivatives, we get

d

dθ
s(0) = lim

θ→0

s(θ)

θ
= H(X). (24)

Then, when we take θ0 ∈ [−1, 0) sufficiently close to 0, there exists δ such that

s(θ0)

θ0
≥ H(X)− δ

2
, (25)

which derives

R1 ≤ H(X)− δ ≤ s(θ0)

θ0
− δ

2
<
s(θ0)

θ0
. (26)

Therefore, noting that θ0 is a negative number, we have showed that −s(θ) + θR1 > 0 for some θ ∈ [−1, 0), which indicates
that there exists θ1 ∈ [−1, 0) such that

Fo(R1|PX) =
−s(θ1) + θ1R1

2− θ1
. (27)

Thus, we have

Fo(R1|PX) =
−s(θ1) + θ1R1

2− θ1

<
−s(θ1) + θ1R1

1− θ1

≤ max
θ≤0

−s(θ) + θR1

1− θ

= Ft(R1|PX), (28)

which implies Proposition 7.
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V. PROOF OF THE MAIN THEOREM

In this section, we shall prove Theorem 2.

A. Direct Part

In this section, we prove the direct part. Since we are interested in a lower bound on the correct probability Pc, it suffices
to construct a code such that sequences (xn, yn) in a fixed type class TX̄Ȳ can be decoded correctly. First, we fix PŨX̃Ỹ that
attains the minimum in (3) for (R1 − 2ϵ, R2) where ϵ is a small positive number. Let PŪX̄Ȳ be a joint type satisfying

dvar(PŪX̄Ȳ , PŨX̃Ỹ ) ≤
|U||X ||Y|

n
. (29)

Note that, by the continuity of entropy, we see

H(X̄|Ū) ≤ H(X̃|Ũ) + ϵ

≤ R1 − ϵ, (30)

for sufficiently large n. In order to prove the direct part, we use the following covering lemma.

Lemma 9. For a joint type PŪȲ , there exists a codebook C = {un1 , . . . , unL} ⊆ TŪ such that

L ≤ exp{nI(Ū ∧ Ȳ ) + (|U||Y|+ 4) log(n+ 1)}, (31)

and such that for any yn ∈ TȲ , there exists un ∈ C satisfying (un, yn) ∈ TŪȲ .

Proof: Since the strategy of proving this lemma is almost the same as [28, Lemma 4], we omit it.
We describe an overview of code construction. For this coding scheme, we want to evaluate the correct probability Pc. For

φ1, we use the standard random binning with rate R1. For φ2, we use the quantization using the test channel PŪ |Ȳ . However,
R2 may be smaller than I(Ū ∧ Ȳ ) that is needed to quantize sequences in TȲ via the test channel PŪ |Ȳ . In that case, φ2

assigns messages to a part of the quantization codebook, and assign a prescribed constant message to the remaining. The detail
of the coding scheme is described as follows.

a) Encoding of φ1: Randomly and independently assign an index m1 = F (xn) ∈ {1, 2, . . . , 2nR1} to each sequence
xn ∈ Xn. The set of sequences with the same index m1 forms a bin B(m1). Observing xn ∈ B(m1), φ1 sends the bin index
m1.

b) Encoding of φ2: Consider a codebook C given by Lemma 9 and function f : TȲ → {1, . . . , L} such that (unf(yn), y
n) ∈

TŪȲ . Without loss of generality, we assume that |f−1(1)| ≥ |f−1(2)| ≥ · · · ≥ |f−1(L)|. We define a function f̃ as

f̃(yn) =

{
f(yn) (f(yn) ≤ 2nR2),

1 (f(yn) > 2nR2).

Then, upon observing yn ∈ Yn, φ2 sends m2 = f̃(yn) if yn ∈ TȲ and m2 = 1 otherwise.
c) Decoding.: Observing (m1,m2) = (φ1(x

n), φ2(y
n)), ψ declares the estimate x̂n ∈ TX̄|Ū (u

n
m2

) if it is the unique
sequence satisfying F (x̂n) = m1; otherwise it declares a prescribed sequence.

d) Analysis of the correct probability.: We bound the correct probability Pc averaged over random bin assignments. We
lower bound the correct probability quite generously, and estimate the probability such that the following three events occur
consecutively.

1) The event E1 such that yn ∈ TȲ and f̃(yn) = f(yn): we denote the probability of this event by Pc,1 = Pr(E1).
2) The event E2 such that E1 occurs and xn is included in the conditional type class TX̄|ŪȲ (u

n
f(yn), y

n): we denote the
conditional probability of this event conditioned that E1 occurs by Pc,2 = Pr(E2|E1).

3) The event E3 such that E1 ∧ E2 occurs and there exists no sequence x̂n ∈ TX̄|Ū (u
n
f(yn)) satisfying x̂n ̸= xn and

F (x̂n) = F (xn): we denote the conditional probability of this event conditioned on the first and second events by
Pc,3 = Pr(E3|E1 ∧ E2).

By noting that TX̄|ŪȲ (u
n
f(yn), y

n) ⊆ TX̄|Ū (u
n
f(yn)), we can verify that the decoder ψ outputs the correct source sequence xn

if the three events occur E1, E2, and E3 consecutively. Thus, we can lower bound the correct probability as

Pc ≥
3∏
i=1

Pc,i. (32)

In the following, we shall calculate each probability Pc,i.
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When L ≤ 2nR2 , the second condition f̃(yn) = f(yn) of the event E1 is always satisfied. On the other hand, by noting
that |f−1(i)| is sorted in descending order, when L > 2nR2 , we have

1

2nR2

2nR2∑
i=1

|f−1(i)| ≥ 1

L

L∑
i=1

|f−1(i)| = |TȲ |
L

, (33)

which implies

2nR2∑
i=1

|f−1(i)|
|TȲ |

≥ 2nR2

L
. (34)

Therefore, by using [7, Lemma 2.6], we have

Pc,1 = Pr{Y n ∈ TȲ ∧ [f(Y n) ≤ 2nR2 ]}

= PY n(TȲ )
2nR2∑
i=1

|f−1(i)|
|TȲ |

≥ PY n(TȲ )min

{
1,

2nR2

L

}
≥ (n+ 1)−|Y|2−n(D(PȲ ||PY )+|(1/n) logL−R2|+)

≥ (n+ 1)−|Y|2−n(D(PȲ ||PY )+|I(Ū∧Ȳ )−R2+δn|+), (35)

where δn = (1/n)(|U||Y|+ 4) log(n+ 1).
By using [7, Lemma 2.6], we have

Pc,2 =
∑

yn∈TȲ

f̃(yn)=f(yn)

1

K
PXn|Y n(TX̄|ŪȲ (u

n
f(yn), y

n))

≥ (n+ 1)−|U||X ||Y|2−nD(PX̄|ŪȲ ||PX|Y |PŪȲ ), (36)

where K =
∑2nR2

i=1 |f−1(i)| is the number of yn ∈ TȲ satisfying f̃(yn) = f(yn). Also, since the decoding method searches
the unique sequence x̂n among TX̃|Ũ (u

n
f(yn)) such that the bin index coincides with xn, Pc,3 can be evaluated as

Pc,3 = 1−
∑

(xn,yn)

Pr{(Xn, Y n) = (xn, yn)|E1 ∧ E2}

· Pr{∃x̂n ̸= xn s.t. F (x̂n) = F (xn), x̂n ∈ TX̄|Ū (u
n
f(yn))}

≥ 1−
∑

(xn,yn)

Pr{(Xn, Y n) = (xn, yn)|E1 ∧ E2} ·
∑

x̂n∈TX̄|Ū (un
f(yn))

x̂n ̸=xn

Pr{F (x̂n) = F (xn)}

≥ 1−
∑

(xn,yn)

Pr{(Xn, Y n) = (xn, yn)|E1 ∧ E2} ·
∑

x̂n∈TX̄|Ū (un
f(yn))

x̂n ̸=xn

2−nR1

≥ 1− 2−n(R1−H(X̄|Ū))

≥ 1− 2−nϵ, (37)

where we use [7, Lemma 2.5], and a condition R1 − ϵ ≥ H(X̄|Ū) in the last inequality. Therefore, Pc can be evaluated as

Pc ≥
3∏
i=1

Pc,i

≥ (n+ 1)−|Y|2−n(D(PȲ ||PY )+|I(Ū∧Ȳ )−R2+δn|+)

· (n+ 1)−|U||X ||Y|2−nD(PX̄|ŪȲ ||PX|Y |PŪȲ )(1− 2−nϵ)

= (n+ 1)−(|U||X |+1)|Y|(1− 2−nϵ)

· 2−n(D(PŪX̄Ȳ ||PŪ|Ȳ PXY )+|I(Ū∧Ȳ )−R2+δn|+), (38)

where we used the following equality

D(PŪX̄Ȳ ||PŪ |Ȳ PXY ) = D(PX̄|ŪȲ ||PX|Y |PŪȲ ) +D(PȲ ||PY ),
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which is derived by the definition of the conditional KL-divergence.
Thus, by rearranging (38), we have

1

n
log

1

Pc
≤ D(PŪX̄Ȳ ||PŪ |Ȳ PXY )+|I(Ū ∧ Ȳ )−R2 + δn|+

+(|U||X |+ 1)|Y| log(n+ 1)

n
+

1

n
log

1

1− 2−nϵ
. (39)

Consequently, by taking the limit of n and by the continuity of the information quantities, we obtain

G(R1, R2|PXY ) ≤ F (R1 − 2ϵ, R2|PXY ). (40)

Finally, by the continuity of F with respect to R1, we obtain the desired result.

B. Converse Part

In this section, we prove the converse part by using the change of measure argument. Define C = {(xn, yn) :
ψ(φ1(x

n), φ2(y
n)) = xn} as the set of sequences without error, and define the changed probability measure

PX̃nỸ n(x
n, yn) = Pr{(Xn, Y n)=(xn, yn) : (Xn, Y n)∈C}

=
PXnY n(xn, yn)

PXnY n(C)
1[(xn, yn) ∈ C], (41)

where 1 is the indicator function. Then, we can verify

D(PX̃nỸ n ||PXnY n) = log
1

Pc
. (42)

First, define random variables M̃1 = φ1(X̃
n) and M̃2 = φ2(Ỹ

n). Since nR1 ≥ log |C| ≥ H(M̃1), we can write a chain of
inequalities

nR1 ≥ H(M̃1)

≥ H(M̃1|M̃2)

= H(M̃1|M̃2)−H(M̃1|M̃2, X̃
n)

= I(M̃1 ∧ X̃n|M̃2)

= H(X̃n|M̃2)−H(X̃n|M̃1, M̃2)

= H(X̃n|M̃2). (43)

Here, note that H(M̃1|M̃2, X̃
n) = 0 since M̃1 is generated from X̃n; and H(X̃n|M̃1, M̃2) = 0 since ψ observes M̃1 and M̃2,

then outputs the error-free estimation of X̃n. Also, we consider H(X̃n|M̃2). Denoting X−
j = (X1, . . . , Xj−1), we obtain

H(X̃n|M̃2) =

n∑
j=1

H(X̃j |M̃2, X̃
−
j )

≥
n∑
j=1

H(X̃j |M̃2, X̃
−
j , Ỹ

−
j )

= nH(X̃J |ŨJ , J), (44)

where J ∼ unif({1, . . . , n}) is the time-sharing random variable and is assumed to be independent of all the other random
variables involved. Also, we put ŨJ = (M̃2, X̃

−
J , Ỹ

−
J ).

Next, since I(M̃2 ∧ X̃n|Ỹ n) = 0, we have

D(PX̃nỸ n ||PXnY n) = D(PX̃nỸ n ||PXnY n) + I(M̃2 ∧ X̃n|Ỹ n)
= D(PX̃nỸ n ||PXnY n) +H(X̃n|Ỹ n)−H(X̃n|Ỹ n, M̃2). (45)

By applying [25, Proposition 1], we obtain

D(PX̃nỸ n ||PXnY n) +H(X̃n|Ỹ n) ≥ n(D(PX̃J ỸJ
||PXY ) +H(X̃J |ỸJ)). (46)
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Also,

H(X̃n|Ỹ n, M̃2) =

n∑
j=1

H(X̃j |Ỹ n, M̃2, X̃
−
j )

≤
n∑
j=1

H(X̃j |Ỹj , M̃2, X̃
−
j , Ỹ

−
j )

= nH(X̃J |ỸJ , ŨJ , J). (47)

Therefore, we obtain

D(PX̃nỸ n ||PXnY n) ≥ n(D(PX̃J ỸJ
||PXY ) + I(ŨJ , J ∧ X̃J |ỸJ)). (48)

Moreover, since nR2 ≥ H(M̃2), we have

nR2 ≥ H(M̃2)

= H(M̃2)−H(M̃2|X̃n, Ỹ n)

= I(M̃2 ∧ X̃n, Ỹ n)

= H(X̃n, Ỹ n)−H(X̃n, Ỹ n|M̃2). (49)

Then, we can consider the following inequality

D(PX̃nỸ n ||PXnY n) ≥ D(PX̃nỸ n ||PXnY n) +H(X̃n, Ỹ n)−H(X̃n, Ỹ n|M̃2)− nR2. (50)

A very similar argument in [25, Proposition 1] leads to

D(PX̃nỸ n ||PXnY n) +H(X̃n, Ỹ n) = n(D(PX̃J ỸJ
||PXY ) +H(X̃J , ỸJ)). (51)

Also,

H(X̃n, Ỹ n|M̃2) =

n∑
j=1

H(X̃j , Ỹj |M̃2, X̃
−
j , Ỹ

−
j )

= nH(X̃J , ỸJ |ŨJ , J). (52)

Therefore, we obtain

1

n
D(PX̃nỸ n ||PXnY n) ≥ D(PX̃J ỸJ

||PXY ) +H(X̃J , ỸJ)−H(X̃J , ỸJ |ŨJ , J)−R2

= D(PX̃J ỸJ
||PXY ) + I(ŨJ , J ∧ X̃J , ỸJ)−R2

= D(PX̃J ỸJ
||PXY ) + I(ŨJ , J ∧ X̃J |ỸJ) + I(ŨJ , J ∧ ỸJ)−R2. (53)

Combining (42), (48) and (53), we have

1

n
log

1

Pc
≥ D(PX̃J ỸJ

||PXY ) + I(ŨJ , J ∧ X̃J |ỸJ) +
∣∣∣I(ŨJ , J ∧ ỸJ)−R2

∣∣∣+ . (54)

Noting (43) and (44), we have a condition that R1 ≥ H(X̃J |ŨJ , J). As a consequence, we obtain

min
ψ,φ1,φ2

1

n
log

1

Pc
≥ min
PŨX̃Ỹ

{
D(PX̃Ỹ ||PXY ) + I(Ũ ∧ X̃|Ỹ ) +

∣∣∣I(Ũ ∧ Ỹ )−R2

∣∣∣+} , (55)

where the minimization of PŨX̃Ỹ is taken under the condition R1 ≥ H(X̃|Ũ). Note that we can see

D(PX̃Ỹ ||PXY ) + I(Ũ ∧ X̃|Ỹ ) = D(PŨX̃Ỹ ||PŨ |Ỹ PXY ). (56)

Consequently, we have

G(R1, R2|PXY ) ≥ F (R1, R2|PXY ), (57)

except the cardinality bound, which will be discussed in the next section.
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C. Cardinality Bound

By the support lemma [7, Lemma 15.4], we can restrict the cardinality of U to |U| ≤ |X ||Y| + 2 as follows. We set the
following functions on P(X × Y):

g1(PX̃Ỹ ) = H(X̃|Ỹ ),

g2(PX̃Ỹ ) = H(X̃),

g3(PX̃Ỹ ) = H(Ỹ ).

Then, observe that

PX̃Ỹ (x, y) =
∑
u

PŨ (u)PX̃Ỹ |Ũ (x, y|u),

H(X̃|Ũ , Ỹ ) =
∑
u

PŨ (u)g1(PX̃Ỹ |Ũ (·, ·|u)),

H(X̃|Ũ) =
∑
u

PŨ (u)g2(PX̃Ỹ |Ũ (·, ·|u)),

H(Ỹ |Ũ) =
∑
u

PŨ (u)g3(PX̃Ỹ |Ũ (·, ·|u)).

Note that I(Ũ ∧ X̃|Ỹ ) = H(X̃|Ỹ ) − H(X̃|Ũ , Ỹ ) and I(Ũ ∧ Ỹ ) = H(Ỹ ) − H(Ỹ |Ũ). Therefore, by the support lemma, it
suffices to take |U| ≤ |X ||Y| − 1 + 3 = |X ||Y|+ 2.

VI. APPLICATION TO PRIVACY AMPLIFICATION FOR BOUNDED STORAGE EAVESDROPPER

Now we consider the privacy amplification that is a technique to distill a secret key from a random variable by a (possibly
random) function so that the distilled key and eavesdropper’s random variable are statistically independent [6], [5].

It is well known that there is duality between source coding problems and random number generation (e.g. [11]). [29]
introduced a privacy amplification problem for bounded storage eavesdropper. In this situation, an eavesdropper can access a
data that is correlated with a secret key and stored in a bounded sized storage. This problem is interesting as a dual problem
for the WAK source coding problem and in order to analyze its security, we need an analysis that is equivalent to the strong
converse for the WAK network. Also, they analyzed the security using the results regarding the strong converse for the WAK
network by [2]. [23] analyzed the security using the analysis method of the exponential strong converse for the WAK network
by [21]. In this section, we provide our derivation of the tight exponent for the WAK network for a security analysis of this
problem.

A. Privacy Amplification for Bounded Storage Eavesdropper

Fig. 5. Privacy amplification for bounded storage eavesdropper

In this section, we introduce the privacy amplification for bounded storage eavesdropper illustrated in Fig. 5. Let (Xn, Y n)
be an i.i.d. correlated sources on Xn ×Yn and the alphabets X and Y are finite sets. Suppose that Alice (a sender) and Bob
(a receiver) have a random variable Xn on a set Xn and Eve (an eavesdropper) has a random variable Y n on Yn that is
correlated with Xn. Note that Y n is encoded and stored in a storage, since the storage does not have enough space to store
Y n directly. In the privacy amplification, a secret key Kn is distilled by a function

fn : Xn → Kn = {0, 1}nR1

so that they and Eve’s information Sn are statically independent and the key Kn is uniformly distributed on the key alphabet
Kn. Eve’s random variable Sn is stored in a storage, which is obtained as a function value of i.i.d. source Y n through a
function, and the rate of the storage size is bounded. Eve has a function value En of some function

gn : Yn → Sn = {0, 1}nR2 .
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For privacy amplification, Alice and Bob try to distill a secret key as long as possible. In this paper, since we use the total
variational distance as a security criterion, we require the quantity

∆ = dvar(PKnSnF , Punif × PSn
× PF )

to be small, where Punif is the uniform distribution on Kn and F is a random mapping F : Xn → Kn. Usually, we choose F
from the universal hash family (e.g. see [26, Chapter 7]).

B. Privacy Amplification and WAK Network

In this section, we evaluate the security criterion for the privacy amplification for bounded storage eavesdropper by using our
derivation of the tight exponent for the WAK network. Before we state our argument, we give a well-known lemma regarding
the security criterion [22] (see also [26, Chapter 7]).

Lemma 10. For a given distribution PXSn and a number τ ∈ R, let

T̃ =

{
(xn, s) :

1

PXn|Sn
(xn|sn)

≥ τ

}
.

Then, we have

∆ ≤ Pr

(
log

1

PXnSn(X
n|Sn)

< τ

)
+

1

2

√
2−τ+nR1 . (58)

One of the goals of privacy amplification is to evaluate a security criterion. We are interested in the trade-off between the key
rate R1 and Eve’s storage size R2 under the condition that the key Kn and Eve’s information Sn are statistically independent.
Now, by using our derivation of the strong converse exponent, we evaluate the first term on the right-hand side of (58) for the
privacy amplification illustrated in Fig. 5. In the following theorem, we show the evaluation for the security criterion with our
exponent.

Theorem 11. Setting τ = nR′
1 where R′

1 = R1 + δ for a positive number σ, the security criterion ∆ can be evaluated as

∆ ≤ 2−nF (R′
1,R2|PXY ) +

1

2

√
2−nδ, (59)

where F (R′
1, R2|PXY ) is defined by (3). Recall that the function F (R′

1, R2|PXY ) is positive if and only if (R′
1, R2) /∈ RWAK.

Proof. In this proof, we evaluate Pr(log(1/PXn|Sn
(Xn|Sn)) < nR′

1). First, let P ′
c be a number such that

P ′
c = Pr

(
1

n
log

1

PXn|Sn
(Xn|Sn)

< R′
1

)
. (60)

Also, we define

T c =

{
(xn, yn) :

1

n
log

1

PXn|Sn
(xn|gn(yn))

< R′
1

}
, (61)

PX̃nỸ n = Pr((Xn, Y n) = (xn, yn)|(Xn, Y n) ∈ T c)

=
PXnY n(xn, yn)

PXnY n(T c)
1[(xn, yn) ∈ T c]. (62)

Then, we can calculate

D(PX̃nỸ n ||PXnY n) = log
1

P ′
c
, (63)

which corresponds to (42) of the converse part in Section V. This means that our converse proof method for the exponent can
be also applied to the consideration of the privacy amplification for bounded storage eavesdropper.

Next, defining a random variable S̃n = gn(Y
n), we evaluate R′

1 as

nR′
1 ≥ E

[
log

1

PXn|Sn
(X̃n|S̃n)

]

= E

[
log

1

PX̃n|S̃n
(X̃n|S̃n)

]
+ E

[
log

PX̃n|S̃n
(X̃n|S̃n)

PXn|Sn
(X̃n|S̃n)

]
= H(X̃n|S̃n) +D(PX̃n|S̃n

||PXn|Sn
|PS̃n

)

≥ H(X̃n|S̃n), (64)
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where E[·] denotes the expectation of PX̃n|S̃n
. Single-letterization in the similar way as in Section V yields

R′
1 ≥ H(X̃|Ũ), (65)

where Ũ is a similar random variable to the one that appears in the process of single-letterization in the converse of Section
V. Also, in the same manner, we can obtain

R2 ≥ I(Ỹ ∧ Ũ). (66)

According to the proof of the converse for our main theorem, we have

P ′
c ≤ 2−nF (R′

1,R2|PXY ). (67)

Thus, for any PXY , we obtain

Pr

(
1

n
log

1

PXn|Sn
(Xn|Sn)

< R′
1

)
≤ 2−nF (R′

1,R2|PXY ). (68)

As a conclusion, by Lemma 10, the security criterion for the privacy amplification for a bounded storage eavesdropper ∆ can
be bounded as

∆ ≤ 2−nF (R′
1,R2|PXY ) +

1

2

√
2−nδ. (69)

When (R1, R2) is not in the achievable rate region for the WAK network, we can take δ > 0 so that (R′
1, R2) is not

achievable as well. Then, Theorem 11 states that the security criterion ∆ exponentially converges to 0.

VII. CONCLUSION

In this paper, we derived the tight strong converse exponent for the WAK network. The rate region of the WAK network
has two characteristics: an auxiliary random variable and the Markov chain. Because of these characteristics, deriving the
tight strong converse exponent of the WAK network has been regarded as a challenging problem. Also, we obtained that the
numerical experiment suggests that a better result can be obtained when the Markov constraint does not hold for the arguments
of the optimization function PŨX̃Ỹ . We believe that our proof methods can be also applied for other multi-terminal network
problems.
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