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Abstract—For spectral efficiency, higher order modulation
symbols confer information on more than one bit. As soft detec-
tion forward error correction decoders assume the availability
of information at binary granularity, however, soft demappers
are required to compute per-bit reliabilities from complex-valued
signals. Here we show that the recently introduced universal
soft detection decoder ORBGRAND can be adapted to work
with symbol-level soft information, obviating the need for energy
expensive soft demapping. We establish that doing so reduces
complexity while retaining the error correction performance
achieved with the optimal demapper.

Index Terms—Error Correction, Soft Decision, ORBGRAND,
Higher Order Modulation

I. INTRODUCTION

To enable a receiver to detect or correct errors, prior to
transmission each collection of k information bits is coded to
a n > k bit code-word cn = (c1, . . . ,cn)∈ {0,1}n. For example,
CRC-Assisted Polar (CA-Polar) codes will be used for all
control channel communications in 5G New Radio, while Low
Density Parity Check codes will be used for all data transmis-
sions [1]. For spectral efficiency, most communication systems
employ high-order modulation, such as Quadrature Amplitude
Modulation (QAM), where each transmitted symbol communi-
cates multiple bits of information [2]. If a modulation scheme
is employed with a complex constellation of size |χ| = 2ms ,
the n coded bits are translated into ns = n/ms symbols by
sequentially mapping each collection of ms bits to the corre-
sponding higher order symbol, resulting in the transmission of
the higher order sequence mod(cn) = xns = (x1, . . . ,xns) ∈ χns .

Transmissions are impacted by noise and channel effects
resulting in the received signal sequence being perturbed.
If these effects are written as Nns = (N1, . . . ,Nns) ∈ Cns ,
then the complex received vector can be expressed as Y ns =
(Y1, . . . ,Yns) = xns +Nns . As essentially all soft detection for-
ward error correction decoders require binary input and per-bit
reliability information [3], the existing paradigm is to process
the complex received signals, Y ns , and so evaluate a sequence
of per-bit reliability metrics, γn ∈ Rn, via a soft demapper.

Extracting bit-level soft information from higher order
signals is a computational complex and energy expensive
process, even in the simplest setting where noise is additive
and a symbol level interleaver is employed so that the noise
effects can be assumed to be independent and identically

distributed at the level of symbols. To grasp why, consider
the conventional log-domain Maximum a posteriori (Log-
MAP) demapping algorithm [4]. With χ

( j)
l representing the

subset of constellation symbols where the l-th bit in their
binary representation, l ∈{1, . . . ,ms}, takes the value j∈{0,1}
and fY |X (Y |x) being the conditional probability of observing
the signal Y ∈ C given x ∈ C was transmitted, then the log-
likelihood ratio (LLR) for bit position i in the original code-
word, whose information is contained in the symbol xdi/mse, is
determined by the following demapping:

γi = log
fY |X

(
Ydi/mse|x ∈ χ

(1)
i−(di/mse−1)ms

)
fY |X

(
Ydi/mse|x ∈ χ

(0)
i−(di/mse−1)ms

)

= log


∑

x∈χ
(1)
i−(di/mse−1)ms

fY |X (Ydi/mse|x)

∑

x∈χ
(0)
i−(di/mse−1)ms

fY |X (Ydi/mse|x)

 . (1)

The evaluation of eq. (1) requires order |χ| operations per
transmitted bit and involves the computation of a logarithm
as well as exponentials, assuming the usual additive Gaussian
noise model, resulting in determination of a LLR for each the
n demodulated bits. As demapping is an essential element of
soft detection error correction decoding systems, substantial
ongoing research seeks to identify more energy-efficient ap-
proximate LLR calculations, e.g. [5], [6], [7], [8], [9], [10].

While traditional soft detection decoding algorithms for
binary codes can only work with binary soft information, here
we establish that a soft detection variant of Guessing Random
Additive Noise Decoding (GRAND) is capable of operating
directly with soft information at the level of symbols, obviating
the need for costly soft demapping. Moreover, in the process
of demapping, information about which bits are coupled to
each other in a symbol is irretrievably lost, and making use
of that information is shown to enable reduced complexity.

II. GUESSING RANDOM ADDITIVE NOISE DECODING

GRAND is a recently established approach that can be
used to efficiently decode any moderate redundancy code.
Originally considered for hard decision demodulation systems
[11], [12], soft detection variants that assume the availability
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Inputs: Code-book membership function C : {0,1}n 7→
{0,1}; demodulated bits yn; optional information Φ.
Output: Decoding c∗,n.
d← 0.
while d=0 do

zn← next most likely binary noise effect sequence (which
may depend on Φ)
if C(yn	 zn) = 1 then

c∗,n← yn	 zn & d← 1
return c∗,n.

end if
end while

Fig. 1. Guessing Random Additive Noise Decoding. Inputs: a demodulated
channel output yn; a code-book membership function such that C(yn) = 1 if
and only if yn is in the code-book; and optional statistical noise characteristics
or soft information, Φ. Output: decoded element c∗,n.

of per-bit soft information from demappers have since been
developed [13], [14], [15], [16]. Such is GRAND’s practical
promise that implementations have already been published for
both the hard detection [17], [18], [19], [20], [21] and soft
detection settings [22], [23], [24].

GRAND’s operation is readily understood, and pseudo-
code for it can be found in Fig. 1. As a descriptor of a
code, GRAND solely requires a function that, given a string,
reports whether it is in the codebook. GRAND algorithms can
be used to decode standard and non-standard linear codes,
such as Cyclic Redundancy Check (CRC) and Random Linear
Codes (RLCs) [25], [26], as well as entirely new non-linear
codes constructed from cryptographic functions [27]. Based on
the statistical description of the channel or soft information,
GRAND algorithms generate discrete noise-effect patterns in
order from most likely to least likely. By sequentially sub-
tracting these patterns from the received signal and querying if
what remains is an element of the codebook, the first identified
codeword is an optimally accurate Maximum Likelihood (ML)
decoding.

Hard detection GRAND variants assume statistical knowl-
edge of channel characteristics and recently variants have been
established that leverage higher order modulation information
to enhance their noise effect query order [12], [28]. Consistent
with conventional paradigms, all published soft detection vari-
ants of GRAND assume the availability of per-bit demapped
soft information to inform the order of production of binary
noise effect patterns. Using that information, Soft GRAND
(SGRAND) [13] produces optimally accurate decodings in an
algorithm that is suitable for implementation in software, and
so for code benchmarking purposes, but does not lend itself
to implementation in circuits due to its need for dynamic
memory. ORBGRAND [14], [16] is an approximation to
SGRAND that is suitable for implementation in hardware by
design and has already resulted in published circuits [22],
[23], [24]. Here we show that ORBGRAND can be adapted to
directly avail of soft information at the symbol level. In doing
so, costly demapping is avoided.

III. ORBGRAND FOR HIGHER ORDER MODULATIONS

When working with binary soft information obtained from
a receiver, ORBGRAND first determines the permutation that
rank orders the n hard demodulated bits in increasing relia-
bility, which can be efficiently achieved with one of a broad
range of algorithms, e.g. [29], [30]. A piece-wise linear model
is then used to approximate the resulting reliability curve. The
engineering merit of the approach is that within the context
of the statistical model it is possible to efficiently sequentially
construct putative noise effect patterns in decreasing order of
likelihood [16]. These sequences can then be used within the
GRAND framework, Fig. 1, to identify accurate decodings.
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Fig. 2. An illustration of 16 QAM, where the likelihood that a symbol was
transmitted given the received signal is a monotonically decreasing function
of their distance.

When working with binary sequences, reliabilities are in-
terpreted as relating to the likelihood that a bit is flipped, but
they could, alternatively, be interpreted as the likelihood that
the alternative possibility is correct. When working with higher
order symbols, it is the latter interpretation that persists. That
is, instead of searching for noise sequences by their likelihood,
we construct symbol substitution sequences from reliability-
ordered candidates. As in the hard-detection setting [12],
[28], symbols neighbouring a received hard-detected signal are
much more likely than those that are further away. As with
soft detection binary decoding, the challenge is to efficiently
and accurately incorporate symbol level soft information into
a decoding process.

In an additive complex white Gaussian noise (AWGN)
channel with equally likely input sumbols, the probability of
a candidate sequence tns is

pXns |Y ns (tns |Y ns) =
fY ns |Xns (Y ns |tns)pXns (tns)

fY ns (Yns)

∝

ns

∏
i=1

e−|ti−Yi|2/N0 . (2)



where |Yi− ti|2 is the Euclidean distance between a candidate
constellation symbol and the received signal in the complex
plane, as illustrated in Fig. 2.

The closest symbols to the received signals form the hard-
detection sequence, which we denote ϒns . As a result of Eq.
(2), to rank order the likelihood of received sequences, it
suffices to rank order by ∑

ns
i=1 |ti−Yi|2 or, equivalently by

δi = |ti−Yi|2−|ϒi−Yi|2, (3)

as the term |ϒi−Yi|2 is common to all sequences. We call δi
the exceedance distance. Note that δi is positive owning to
the fact that the hard-detected symbol ϒi is defined to have
the minimum distance to the received signal Yi. Replacing
any symbol in the hard-detected sequence ϒns corresponds
to generating a new candidate sequence leads to the increase
of exceedance distance. Therefore, the likelihood of a candi-
date sequence is determined by summing up its exceedance
distances, ∑

ns
i=1 δi. One can verify that exceedance distance

becomes log-likelihood reliability in BPSK modulation.
For each received signal, its µ closest neighbours are

considered for candidate symbol sequence construction. If
µ = 1, then we are in the hard demodulated setting. Soft
decoding occurs if µ > 1, in which case the hard-detected
symbol sequence is always the first to be checked for code-
book membership. Other candidate sequences are constructed
in the order of their exceedance distances values based on the
statistical reliability model as in binary ORBGRAND. This
results in a total of ns(µ − 1) = n(µ − 1)/ms symbol level
reliabilities that are rank ordered from least to greatest. If
µ ≤ ms, as will be seen to be sufficient to extract optimal
decoding performance in practice, the collection of reliabilities
to be sorted is shorter than in the binary case.

Fig. 3 plots empirical rank ordered symbol reliabilities in
term of exceedance distance for 1024-bit code-word with 256-
QAM modulation and µ = 3, as simulation in section IV will
show that is sufficient for optimal decoding of [1024, 1002]
codes. As in the binary case, a piece-wise linear statistical
model provides a good description of the resulting data.
Consequently, the original methodology for producing binary
noise sequences of length n that indicate which bits should be
flipped [16] can be retained, but reinterpreted. With symbol
level information, they instead produce binary sequences of
length ns that indicate which symbols are to be to substitutes,
that are interpreted as identifying symbols to be substituted
for each noise-effect query. One issue arises in the higher
order case of µ ≥ 3 that does not occur in the binary setting
where, for example, two or more neighboring symbols of
a hard-detected symbol are selected for its substitution. If
ORBGRAND’s pattern generator proposes substituting both
simultaneously, that sequence is invalid and so skipped. Oth-
erwise, the algorithm proceeds as before.

IV. PERFORMANCE EVALUATION

For simulated performance evaluation, we consider 256-
QAM modulation, corresponding to ms = 8 bits per symbol,
and additive complex white Gaussian noise. For noise-effect
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Fig. 3. Rank ordered liabilities in term of exceedance distance for code-word
length of 1024; With 256-QAM modulation and µ = 3, only 256 neighboring
symbols are to be rank-ordered, as compared to 1024 soft bits to be rank-
ordered after the demapper.

pattern generation, we use 3-line ORBGRAND [16]. For
error correcting codes, we use CA-Polar codes as they are
the state-of-the-art short code with a dedicated binary soft
detection decoder in CA-SCL [31], [32], [33], [34], [35],
[36], [37], [38]. We also consider codes for which there is no
dedicated soft detection decoder exists, CRC codes and RLCs,
demonstrating that they provide comparable error correction
capability.
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Fig. 4. BLER for a CA-Polar[1024,1002] code over 256-QAM decoded with:
CA-SCL with soft demapped bits; 3-line ORBGRAND with soft-demapped
bits; 3-line ORBGRAND with symbol soft information and µ neighbours.

Fig. 4 presents block-error rate versus Eb/N0 for a CA-
Polar[1024,1002] code. When operating with binary soft in-
formation ORBGRAND decoding outperforms CA-SCL as
the latter does not fully avail of error correcting capability
of the CRC aspect of the code, as previously reported [16].
By rank ordering the symbol-level reliabilities of as few as
µ = 3 nearest neighbours per recevied symbol, i.e. a total
of n(µ − 1)/ms = 256 reliabilities rather than n = 1024,
ORBGRAND operating on symbols obtains the same BLER



performance as ORBGRAND operating on soft demapped bits,
but without the need for computationally involved demapping.
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Fig. 5. Complexity performance (average number of code-book queries to
decoding) for a CA-Polar[1024,1002] code over 256-QAM decoded with 3-
line ORBGRAND over symbol soft information and µ neighbours.

As checking code-book membership is a computational
simple operation for linear code-books, a standard metric for
the complexity of GRAND algorithms is the number of code-
book queries they make before identifying a decoding [15],
[12]. As SNR increases, the complexity of GRAND algorithms
typically decreases precipitously, making it highly energy
efficient in standard operating regimes [19]. For the the setup
used in Fig. 4, Fig. 5 reports the associated complexity where it
can be seen that the average number of code-book queries until
a correct decoding is identified is nearly identical regardless
of whether binary or symbol level information is used. At
a standard operational BLER of 10−3, ORBGRAND makes
approximately 3000 queries, consistent with the GRAND
complexity observations reported in [12], [16].
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Fig. 6. BLER for a CA-Polar[256,234] code over 256-QAM decoded with:
CA-SCL with soft demapped bits; 3-line ORBGRAND with soft-demapped
bits; 3-line ORBGRAND with symbol soft information and µ neighbours.
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Fig. 7. Complexity performance (average number of code-book queries to
decoding) of a CA-Polar[256,234] code over 256-QAM decoded with 3-line
ORBGRAND with symbol soft information and µ neighbours.

Fig. 6 and Fig. 7 report equivalent results, but for a shorter,
lower-rate CA-Polar[256,234] code. Here, with as few as µ = 4
nearest neighbours per received signal, ORBGRAND with
symbol level soft information performs as well as its binary
counterpart. In the symbol level version, this necessitates
that 96 exceedance distances be rank ordered rather than
256 reliabilities as in the binary setting, yet performance is
ultimately the same. This comes about as by operating on
symbols, the decoupling of bits that occurs with demapping is
avoided.
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Fig. 8. BLER for CA-Polar, RLC and BCH codes: CA-SCL with soft
demapped bits; 3-line ORBGRAND with soft-demapped bits for CA-
Polar[256,234]; 3-line ORBGRAND with symbol soft information and µ =
4 neighbours for CA-Polar[256,234], RLC[256,234], CRC[256,234] and
BCH[255,231].

Modern applications, including augmented and virtual real-
ity, vehicle-to-vehicle communications, the Internet of Things,
and machine-type communications, have driven demand for
Ultra-Reliable Low-Latency Communication (URLLC) [39],
[40], [41], [42], [43]. To enable these technologies requires



the use of shorter, higher-rate codes. This has placed renewed
focus on conventional codes [44], [45] as well as CA-Polar
codes. Results from GRAND algorithms with binary soft in-
formation have found that most code-structures provide similar
block error performance, [25], [26]. This finding translates to
the setting where soft symbol level reliability information is
used in the decoding, as demonstrated by the results for an
RLC and a CRC shown in Fig. 8, which corresponds to the
CA-Polar setting in Fig. 6. A BCH is also presented with
a slightly different setting due to its code rate limitation.
This suggests that a much larger palette of codes is available
through which URLLC can be delivered.

V. DISCUSSION

Existing soft detection decoders rely on receivers providing
per-bit reliability information as evaluated through a com-
putationally costly process that must be performed for each
received symbol. Here we establish that soft decoding without
soft demapping is possible with ORBGRAND. By retaining
symbol level information, a shorter list of reliabilities is needed
to provide identical decoding performance. Moreover, as the
approach is suitable for decoding any moderate redundancy
code and similar performance is extracted from a broad range
of code-structures, this offers one possible approach in the
delivery of URLLC.
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