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Abstract—We consider the problem of designing a Private Infor-
mation Retrieval (PIR) scheme on m files replicated on k servers
that can collude or, even worse, can return incorrect answers.
Our goal is to correctly retrieve a specific message while keeping
its identity private from the database servers. We consider the
asymptotic information-theoretic capacity of this problem defined
as the maximum ratio of the number of correctly retrieved symbols
to the downloaded one for a large enough number of stored files.
We propose an achievable scheme with a small file size and prove
that such a file size is minimal for the fixed number of retrieved
symbols, solving the problem pointed out by Banawan and Ulukus.

I. INTRODUCTION

A Private Information Retrieval (PIR) scheme is a tool to

retrieve a given file fι from a database x = (f (1), . . . , f (m)),
while keeping its identity ι ∈ [m] private for the database

servers [1], [2]. The setup has many related practical applica-

tions, including protecting the identity of stock market records

reviewed by investment funds because showing specific interest

may negatively affect the stock price. The first PIR scheme

was proposed in the pioneering paper by Chor et. al. [3]. In

the case of a single server, the authors also showed that to

guarantee information-theoretical privacy of retrieved file index,

it is necessary for the user to download the entire database.

Thus, to reduce the communication cost in an information-

theoretical setting, we have to move to a multi-server setup.

In this model, the client queries each of k servers once, while

keeping the identity of the retrieved file private from up to

t honest-but-curious servers. In PIR literature, such a scheme

is called t-private k-server PIR scheme and such property is

known as t-privacy.

The computer science formulation of the PIR problem as-

sumes files of size one and measures the performance by the

sum of the lengths of queries (upload cost) and the sum of

the length of responses (download cost) [4]–[6]. Motivated

by practical applications, in which the size of the message

can be arbitrarily large, the problem of PIR was revisited by

the information-theory community. Download cost became the

dominant performance metric, and the maximum achievable

download rate, defined as a ratio of the retrieved file size to

the amount of information downloaded by the user, became a

focus of the pleiad of the research papers [7]–[10].

Most of the current PIR schemes assume that servers are

honest-but-curious and provide correct answers. However, such

an assumption cannot be guaranteed in the cloud environment.

This fact poses an interesting question about responses to wrong

server answers. Here we provide three different interpretation

of this question and their formal definition.

• s-verifiability [referred as s-security in [11]]. The client

can detect the presence of up to s servers that persuade

the client to output a wrong result ([11]–[14]).

• a-accountability. The client can identify each of up to a

servers that persuade the client to output a wrong result

([15], [16]).

• b-byzantine resistance/b-byzantine robustness. The client

can retrieve the correct result in presence of up to b servers

that persuade the client to output a wrong result ([17]–

[20]).

It is clear that a-accountability implies a-verifiability, while

b-byzantine resistance implies both b-accountability and b-
verifiability [11]. However, in some practical applications, the

user needs to be able to correctly reconstruct the desired

message irrespective of the adversarial actions of servers. This

fact motivates us to consider the strongest notion of b-byzantine

resistant PIR [17]–[20].

The capacity of b-byzantine resistant PIR scheme for the case

of 2b+ t < k is shown in [17] to be equal to

Cm(t, b, k) =
k − 2b

k
·

1− t
k−2b

1−
(

t
k−2b

)m . (1)

Authors of [17] also proposed a general achievable scheme

based on MDS codes. It utilizes the division of each file

into multiple sub-packets whose number is denoted as sub-

packetization. In [17], the scheme has sub-packetization value

(k − 2b)m, while the problem of obtaining its minimum

capacity-achieving quantity is left as an open one. We do

note that each sub-packet usually corresponds to some finite

field element, and the size of the latter drastically affects the

implementation costs [21]. Thus, in this paper, we focus on

the total file size. Since the number of files is high, we are

interested in asymptotic capacity values, where the size of the

file in scheme from [17] is tremendous. So, we let m → ∞,

and for the case of 2b+ t < k we have

C(t, b, k) , lim
m→∞

Cm(t, b, k) =
k − 2b

k
·

(

1−
t

k − 2b

)

. (2)

There has been considerable research on reducing sub-

packetization levels and file sizes for different PIR setups,

including 1-colluding replicated PIR [22], 1-colluding MDS-

coded PIR [23]–[25] and t-colluding replicated PIR [26]. How-

ever, to the best of our knowledge, there are no papers that

consider a similar problem for Byzantine-resistant PIR. To close

this gap, in this paper, we propose non-universal b-byzantine

resistant k-server PIR with optimal download rate and small file
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size for asymptotically large number of files. We also formally

prove that the latter is minimal among all capacity-achieving

schemes. The key ingredients of our method are the recently

proposed communication-efficient secret sharing scheme based

on trace recovery framework [27] and the technique to repair

Reed-Solomon code in presence of erroneous traces [28].

II. PRELIMINARIES

A. Notations

For any integer n > 0 we denote [n] = {1, . . . , n}. For

any prime power q, we denote an extended finite field with qs

elements as Fqs . The base field with q elements is denoted

as Fq. For any ξ ∈ Fqs we define the trace function from

Fqs to Fq as Tr(ξ) =
∑s−1

i=0 ξ
qi . We note that it is Fq-linear

function. By Fqs [ξ] we denote the ring of polynomials over

Fqs . By superscript T , we denote the transpose of a vector.

By Mij we denote (i, j)th entry of matrix M. By 〈M,N〉
we denote the Frobenius inner product of M and N, i.e.

〈M,N〉 =
∑

i,j MijNij . By H(X) - we denote the entropy

of discrete random variable X .

B. k-Server PIR Schemes

Let us formally define k-server PIR schemes. Let the database

x be formed of m files f (1), . . . , f (m) and replicated on each

server. The user wants to retrieve the file ι by sending the

queries q1, . . . , qk to each server.Based on the received query

qj , each server j ∈ [k] computes the answer aj and sends

it back to the user. In the byzantine PIR setting, there exists

unknown to the user set of up to b servers that can provide

incorrect answers to queries. After this introduction, we can

define k-server t-private b-byzantine resistant PIR.

Definition 1 (k-server t-private b-byzantine resistant PIR). A

k-server t-private b-byzantine resistant PIR is a scheme that

satisfies the following properties:

1) (Privacy) The scheme is t-private, i.e., any subset of t

or less queries do not reveal any information about the

identity of the file.

2) (Correctness) The scheme is correct and b-byzantine resis-

tant, i.e., the user is always able to successfully decode the

file from any k queries and corresponding answers even if

b answers are incorrect. We note that the set of b incorrect

responses a priori is not known to the user.

Remark 2. By setting b = 0 this definition is reduced to k-

server t-private PIR scheme.

Definition 3 (retrieval threshold). A k-server t-private b-

byzantine resistant PIR scheme from Definition 1 has the

retrieval threshold r if, for all sets of r and more answers,

the user is always able to successfully decode the file from

these answers and corresponding queries, even if b answers are

incorrect. As before, we note that the set of b incorrect responses

a priori is not known to the user.

C. A Communication-Efficient PIR Scheme

Let us adopt a communication-efficient secret-sharing scheme

from [27] to obtain k-server t-private PIR scheme with optimal

download rate. For simplicity, we consider a non-universal case

when we request responses from exactly k ≥ r servers, where

r is the recovery threshold and (r − t) divides (k − t). In the

same way as in the Reed-Solomon repairing problem, we can

reduce the total download cost by increasing the number of

servers involved [29].

Scheme Π1: k-server t-private PIR

Let t, r, k be positive integers satisfying t < r < k ≤ q,

∆ = r − t and ∆|(k − t). Denote by s , k−t
∆ . Let

Ωα = {α1, . . . , α∆} ⊂ Fqs , Ωχ = {χ1, . . . , χt} ⊂ Fqs and

Ωβ = {β1, . . . , βk} ⊆ Fq be publicly known non-intersecting

sets such that all elements of Ωα are roots of distinct monic

irreducible polynomials of degree s over Fq .

Let us represent the database x with m files as a m × ∆-

array. Let the (i, j)-th entry of x be x
(i)
j . Then we set the file

f (i) , [x
(i)
1 , . . . , x

(i)
∆ ]. Therefore,

x =













x
(1)
1 x

(1)
2 · · · x

(1)
∆

x
(2)
1 x

(2)
2 · · · x

(2)
∆

...
...

. . .
...

x
(m)
1 x

(m)
2 · · · x

(m)
∆













=











f (1)

f (2)

...

f (m)











.

Then we define e(i,j) to be the m ×∆ indicator array for the

database components. In other words, the (i, j)th entry of e(i,j)
is one, while all other entries of e(i,j) are zero. We replicate

the database x on k servers.

• Query generation algorithm: To retrieve the file ι ∈ [m]
user randomly generates t (m × ∆)-arrays r(1), . . . , r(t)

and draw a random degree-(t+∆− 1) curve

g(ξ) ,

∆
∑

j=1

∏

ℓ∈[∆]\{j}

(

ξ − αℓ

αj − αℓ

) t
∏

ℓ=1

(

ξ − χℓ

αj − χℓ

)

e(ι,j)

+
t
∑

h=1

∆
∏

ℓ=1

(

ξ − αℓ

χh − αℓ

)

∏

ℓ∈[t]\{h}

(

ξ − χℓ

χh − χℓ

)

r(h)

(3)

that resides in F
m×∆
qs and passes through points

(α1, e(ι,1)), . . . , (α∆, e(ι,∆)). Query to server j ∈ [k] is

g(βj). We note that both g and r(h) depend on retrieved

index ι, but we omit the subscript ι for readability.

• Answer generation algorithm: Upon receive the query

g(βj), server j ∈ [k] computes the Frobenius inner product

〈g(βj),x〉. We can observe that

〈g(ξ),x〉 =

∆
∑

j=1

∏

ℓ∈[∆] 6={j}

(

ξ − αℓ

αj − αℓ

) t
∏

ℓ=1

(

ξ − χℓ

αj − χℓ

)

x
(ι)
j

+
t
∑

h=1

∆
∏

ℓ=1

(

ξ − αℓ

χh − αℓ

)

∏

ℓ∈[t]\{h}

(

ξ − χℓ

χh − χℓ

)

〈r(h),x〉,

which is a polynomial in ξ of degree ∆+t−1 = r−1. We

call this polynomial φ(ξ) and observe further that φ(αi) =

x
(ι)
i for i ∈ [∆].

– For retrieval from answers from r servers, server j
responds with value of aj = φ(βj) ∈ Fqs .

– For retrieval from answers from k servers, server re-



sponds with

aj = Tr(vjφ(βj)) ∈ Fq, (4)

where

vj =

∆
∏

ℓ=1

(βj − αℓ)
−1 ×

∏

ℓ∈[k]\{j}

(βj − βℓ)
−1. (5)

• File retrieval algorithm

– For retrieval from answers from r servers, the user

applies the Lagrange interpolation formula.

– For retrieval from answers from k servers, the user

prepares a basis {θ1, . . . , θs} for Fqs over Fq and its

trace-orthogonal basis {η1, . . . , ηs}. After that, the user

chooses polynomials hiδ ∈ Fq[ξ] of degree less than s

for all i ∈ [∆] and δ ∈ [s] so that

hiδ(αi) = u−1
i ηδ

∏

ℓ∈[∆]\{i}

f̃−1
ℓ (αi), (6)

where f̃ℓ(ξ) is the minimal polynomial of αℓ over Fq

and

ui =
∏

ℓ∈[∆]\{i}

(αi − αℓ)
−1 ×

k
∏

j=1

(αi − βj)
−1. (7)

The user retrieves the file of interest by

x
(ι)
i = φ(αi) = −

s
∑

δ=1

θδ

(

k
∑

j=1

hiδ(βj)Tr(vjφ(βj))·

∏

ℓ∈[∆]\{i}

f̃ℓ(βj)

)

, (8)

for all i ∈ [∆].

Theorem 1. Scheme Π1 is k-server t-private PIR over Fqs with

file size (k− t) log(q) and a recovery threshold r that achieves

the asymptotic capacity (2) for b = 0 and any given ∆ and r
so that

t < r < k ≤ q, ∆ = r − t and ∆|(k − t),

and s = k−t
∆ .

Proof. According to the definition of k-server t-private PIR,

we will prove privacy and correctness properties and show that

responses from r servers are enough for file retrieval. The proof

is very similar to the proof from [27]. To make the paper self-

contained, we present the proof here in all the details.

To prove the security, we need to show that

I(g(βl1), . . . ,g(βlt); eι,1, . . . , eι,∆) = 0, (9)

for any subset {l1, . . . , lt} ⊂ [k] of servers and any file index

ι ∈ [m].

As each element of the matrix g(ξ) is encoded separately

from other elements and corresponding random symbols are

independent, (i, j)th entry of g(ξ) depends only on e(i,j)
and conditionally independent of everything else. Hence, our

scheme is equivalent to the transmission over m∆ independent

channels [30] and, as a result, we have

I(g(βl1), . . . ,g(βlt); eι,1, . . . , eι,∆)

≤
m
∑

i=1

∆
∑

j=1

I(g(βl1)(ij), . . . ,g(βlt)(ij); (eι,1)(ij), . . . , (eι,∆)(ij)).

(10)

It can be easily seen that for each i, j,
g(βl1)(ij), . . . ,g(βlt)(ij) are t evaluations of random

polynomial ψ(ij) of degree t + ∆ − 1 over Fqs at lt
different points βl1 , . . . , βlt . Hence, for any given values of

(eι,1)ij , . . . , (eι,∆)ij by Lagrange interpolating formula we can

obtain a unique polynomialψ(ij) over Fqs such that ψ(ij)(α1) =
(eι,1)(ij), . . . , ψ(ij)(α∆) = (eι,∆)(ij) and ψ(ij)(βl1) =
g(βl1)(ij), . . . , ψ(ij)(βlt) = g(βlt)(ij). This implies that

I(g(βl1)(ij), . . . ,g(βlt)(ij); (eι,1)(ij), . . . , (eι,∆)(ij)) = 0 and

by (10), the privacy property holds.

The property that responses from r servers are enough for file

retrieval trivially follows from the facts - that servers responses

are values of polynomial φ over Fqs of degree r − 1 so

that φ(αj) = x
(ι)
j for j ∈ [∆] and we can use a Lagrange

interpolation formula to retrieve them.

Let us prove the correctness of scheme Π1. It is clear that

values (φ(α1), . . . , φ(α∆), φ(β1), . . . , φ(βk)) can be seen as a

codeword of Reed-Solomon code

RSr(Ωα ∪ Ωβ) = {(φ(α1), . . . , φ(α∆), φ(β1),

. . . , φ(βk))|φ ∈ Fqs [ξ], deg(φ) < r}. (11)

Dual of RSr is a Generalized-Reed Solomon code [31]

defined as

GRSk+∆−r(Ωα ∪ Ωβ) = {u1h(α1), . . . , u∆h(α∆), v1h(β1),

. . . , vkh(βk))|h ∈ Fqs [ξ], deg(h) < k +∆− r = k − t},
(12)

where ui =
∏

ℓ∈[∆]\{i}(αi − αℓ)
−1 ×

∏k

j=1(αi − βj)
−1 and

vj =
∏∆

ℓ=1(βj − αℓ)
−1 ×

∏

ℓ∈[k]\{j}(βj − βℓ)
−1 for i ∈ [∆]

and j ∈ [k].
As each αj , j ∈ [∆] is a root of different monic irreducible

polynomial f̃j of degree s over Fq we have that

f̃j(αj) = 0 f̃j(αi) 6= 0 for i ∈ [∆], j 6= i (13)
∏

j∈[∆],j 6=i

f̃j(αn) = 0 for n ∈ [∆], n 6= i. (14)

Let {θ1, . . . , θs} be the basis of Fqs over Fq and {η1, . . . , ηs}
is its trace-orthogonal basis. For each δ ∈ [s] and i ∈ [∆],
we can represent the element u−1

i ηδ
∏

ℓ∈[∆],ℓ 6=i f̃
−1
ℓ (αi) as the

value of function hiδ(ξ) ∈ Fq[ξ] of degree less than s at point

αi. It is clear that deg(hiδ
∏

ℓ∈[∆]\{i} f̃ℓ) < ∆s ≤ k − t and

hence such functions belong to the dual Generalized Reed-

Solomon code (12). Also, we have that

hiδ(αi)
∏

ℓ∈[∆]\{i}

f̃ℓ(αi) = u−1
i ηδ (15)

and

hiδ(αn)
∏

ℓ∈[∆]\{i}

f̃ℓ(αn) = 0 for all n ∈ [∆], n 6= i. (16)



Consequently,
(

u1hiδ(α1)
∏

ℓ∈[∆]\{i}

f̃ℓ(α1), . . . , u∆hiδ(α∆)
∏

ℓ∈[∆]\{i}

f̃ℓ(α∆),

v1hiδ(β1)
∏

ℓ∈[∆]\{i}

f̃ℓ(β1), . . . , vkhiδ(βk)
∏

ℓ∈[∆]\{i}

f̃ℓ(βk)
)

· (φ(α1), . . . , φ(α∆), φ(β1), . . . , φ(βk))
T = 0. (17)

Utilizing the properties of function hiδ(ξ) ∈ Fq[ξ] we have

ηδφ(αi) + v1hiδφ(β1)
∏

ℓ∈[∆]\{i}

f̃ℓ(β1) + . . .+

vkhiδφ(βk)
∏

ℓ∈[∆]\{i}

f̃ℓ(βk) = 0 (18)

and

ηδφ(αi) = −

k
∑

j=1



vjhiδ(βj)φ(βj)
∏

ℓ∈[∆]\{i}

f̃ℓ(βj)



 . (19)

Applying trace-mapping function to both sides of equa-

tion (19) and utilizing the facts that hiδ(ξ) ∈ Fq[ξ], f̃ℓ(ξ) ∈
Fq[ξ] and βj ∈ Fq for all i, ℓ ∈ [∆], δ ∈ [s], j ∈ [k] together

with the linearity of trace-mapping function we obtain that

Tr(ηδφ(αi)) = −

k
∑

j=1

Tr



vjφ(βj)hiδ(βj)
∏

ℓ∈[∆]\{i}

f̃ℓ(βj)



 =

−

k
∑

j=1

hiδ(βj)



Tr (vjφ(βj))
∏

ℓ∈[∆]\{i}

f̃ℓ(βj)



 (20)

From the fact that {θ1, . . . , θs} and {η1, . . . , ηs} are trace-

orthogonal bases of Fqs over Fq it is clear (see, for example,

[32][Ch. 2]) that

x
(ι)
i = φ(αi) =

s
∑

δ=1

θδTr(ηδφ(αi)) (21)

and hence all φ(α1), . . . , φ(α∆) can be recovered by accessing

Tr(vjφ(βj)) from all involved servers j = 1, . . . , k.

The observations that each file consists of ∆ elements of Fqs

for s = k−t
∆ and download rate is equal to k−t

k
finish the proof.

III. BYZANTINE-RESISTANT PIR SCHEME

Let us construct a k-server PIR scheme with t-colluding

and b-byzantine servers by modifying the construction from

Section II-C. For simplicity, we consider a non-universal case

when we request responses from exactly k ≥ r servers, where r
is the recovery threshold, and (r− 2b− t) divides (k− 2b− t).
Here, we employ the idea of [28] to include error-correction

capability in our PIR scheme.

Scheme Π2: k-server t-private b-byzantine resistant PIR

Let t, r, k be positive integers satisfying t < r−2b < k−2b ≤
k ≤ q, ∆ = r−2b−t and ∆|(k−2b−t). Denote by s , k−2b−t

∆ .

Let Ωα = {α1, . . . , α∆} ⊂ Fqs , Ωχ = {χ1, . . . , χt} ⊂ Fqs and

Ωβ = {β1, . . . , βk} ⊆ Fq be publicly known non-intersecting

sets such that all elements of Ωα are roots of distinct monic

irreducible polynomials of degree s over Fq .

Let us represent the database x with m files as a m × ∆-

array. Let the (i, j)-th entry of x be x
(i)
j . Then we set the file

f (i) , [x
(i)
1 , . . . , x

(i)
∆ ]. Therefore,

x =













x
(1)
1 x

(1)
2 · · · x

(1)
∆

x
(2)
1 x

(2)
2 · · · x

(2)
∆

...
...

. . .
...

x
(m)
1 x

(m)
2 · · · x

(m)
∆













=











f (1)

f (2)

...

f (m)











.

Then we define e(i,j) be the m × ∆ indicator array for the

database components. In other words, the (i, j)th entry of e(i,j)
is one, while all other entries of e(i,j) are zero. We replicate

the database x on k servers.

• Query generation algorithm: To retrieve the file ι ∈ [m]
user randomly generates t (m × ∆)-arrays r(1), . . . , r(t)

and draw a random degree-(t+∆− 1) curve

g(ξ) ,

∆
∑

j=1

∏

ℓ∈[∆]\{j}

(

ξ − αℓ

αj − αℓ

) t
∏

ℓ=1

(

ξ − χℓ

αj − χℓ

)

e(ι,j)

+
t
∑

h=1

∆
∏

ℓ=1

(

ξ − αℓ

χh − αℓ

)

∏

ℓ∈[t]\{h}

(

ξ − χℓ

χh − χℓ

)

r(h)

(22)

that resides in F
m×∆
qs and passes through points

(α1, e(ι,1)), . . . , (α∆, e(ι,∆)). Query to server j ∈ [k] is

g(βj). We note that both g and r(h) depend on retrieved

index ι, but we omit the subscript ι for readability.

• Answer generation algorithm: Upon receive the query

g(βj), server j ∈ [k] computes the Frobenius inner product

〈g(βj),x〉. We can observe that

〈g(ξ),x〉 =

∆
∑

j=1

∏

ℓ∈[∆] 6={j}

(

ξ − αℓ

αj − αℓ

) t
∏

ℓ=1

(

ξ − χℓ

αj − χℓ

)

x
(ι)
j

+

t
∑

h=1

∆
∏

ℓ=1

(

ξ − αℓ

χh − αℓ

)

∏

ℓ∈[t]\{h}

(

ξ − χℓ

χh − χℓ

)

〈r(h),x〉,

which is a polynomial in ξ of degree ∆+ t−1 = r−2b−
1. We call this polynomial φ(ξ) and observe further that

φ(αi) = x
(ι)
i for i ∈ [∆].

– For retrieval from answers from r servers, server j
responds with value of aj = φ(βj) ∈ Fqs .

– For retrieval from answers from k servers, server re-

sponds with

aj = Tr(vjφ(βj)) ∈ Fq, (23)

where

vj =

∆
∏

ℓ=1

(βj − αℓ)
−1 ×

∏

ℓ∈[k]\{j}

(βj − βℓ)
−1. (24)

• File retrieval algorithm

– For retrieval from answers from r servers, the user

applies any Reed-Solomon code decoding algorithm



(see, for example, [31]).

– For retrieval from answers from k servers, the user

decodes the vector
(

∆
∏

ℓ=1

f̃ℓ(β1)Tr(v1φ(β1)), . . . ,

∆
∏

ℓ=1

f̃ℓ(βk)Tr(vkφ(βk))

)

,

(25)

where f̃ℓ(ξ) is the minimal polynomial of αℓ over Fq,

as a codeword of Generalized Reed-Solomon code over

Fq by any decoding algorithm (see, for example, [31])

and extract the values

Tr(vjφ(βj)), for j ∈ [k]. (26)

After it, user prepares a basis {θ1, . . . , θs} for Fqs over

Fq and its trace-orthogonal basis {η1, . . . , ηs}. After it,

the user chooses polynomials hiδ ∈ Fq[ξ] of degree less

than s for all i ∈ [∆] and δ ∈ [s] so that

hiδ(αi) = u−1
i ηδ

∏

ℓ∈[∆]\{i}

f̃−1
ℓ (αi), (27)

and

ui =
∏

ℓ∈[∆]\{i}

(αi − αℓ)
−1 ×

k
∏

j=1

(αi − βj)
−1. (28)

The user retrieves the file of interest by

x
(ι)
i = φ(αi) = −

s
∑

δ=1

θδ

(

k
∑

j=1

hiδ(βj)Tr(vjφ(βj))·

∏

ℓ∈[∆]\{i}

f̃ℓ(βj)

)

, (29)

for all i ∈ [∆].

Theorem 2. Scheme Π2 is k-server t-private b-byzantine PIR

over Fqs with file size (k−2b−t) log(q) and recovery threshold

r that achieves the asymptotic capacity (2) for any given ∆ and

r so that

t < r− 2b < k− 2b ≤ q, ∆ = r− 2b− t and ∆|(k− 2b− t),

and s = k−2b−t
∆ .

Proof. According to the definition of k-server t-private b-
byzantine resistant PIR, we will prove privacy and correctness

properties and show that responses from r servers are enough

for file retrieval in presence of up to b incorrect responses. The

proof of privacy coincides with privacy proof for Theorem 1

and is omitted here.

The property that responses from r servers are enough

for file retrieval follows from the fact that values

(φ(α1), . . . , φ(α∆), φ(β1), . . . , φ(βk)) can be seen as a

codeword of Reed-Solomon code

RSr−2b(Ωα ∪ Ωβ) = {(φ(α1), . . . , φ(α∆), φ(β1),

. . . , φ(βk))|φ ∈ Fqs [ξ], deg(φ) < r − 2b}. (30)

As a result, by values of polynomial φ in any r points,

we can correctly interpolate it in the presence of b incorrect

value utilizing any Reed-Solomon decoding algorithm (see, for

example, [31]).

Let us prove the correctness of scheme Π2. It is clear that dual

of RSr−2b is a Generalized-Reed Solomon code [31] defined

as

GRSk+∆−(r−2b)(Ωα ∪ Ωβ) = {u1h(α1), . . . , u∆h(α∆), v1h(β1),

. . . , vkh(βk))|h ∈ Fqs [ξ], deg(h) < k +∆− r + 2b = k − t},
(31)

where ui =
∏

ℓ∈[∆]\{i}(αi − αℓ)
−1 ×

∏k

j=1(αi − βj)
−1 and

vj =
∏∆

ℓ=1(βj − αℓ)
−1 ×

∏

ℓ∈[k]\{j}(βj − βℓ)
−1 for i ∈ [∆]

and j ∈ [k].

As each αj , j ∈ [∆] is a root of different monic irreducible

polynomial f̃j of degree s over Fq we have that

f̃j(αj) = 0 f̃j(αi) 6= 0 for i ∈ [∆], j 6= i (32)
∏

j∈[∆]\{i}

f̃j(αn) = 0 for n ∈ [∆], n 6= i. (33)

Let {θ1, . . . , θs} be the basis of Fqs over Fq and {η1, . . . , ηs}
is its trace-orthogonal basis. For each δ ∈ [s] and i ∈ [∆],
we can represent the element u−1

i ηδ
∏

ℓ∈[∆]\{i} f̃
−1
ℓ (αi) as the

value of function hiδ(ξ) ∈ Fq[ξ] of degree less than s at point

αi. It is clear that deg(hiδ
∏

ℓ∈[∆]\{i} f̃ℓ) < ∆s < k − t and

hence such functions belong to the dual Generalized Reed-

Solomon code (31). Also, we have that

hiδ(αi)
∏

ℓ∈[∆]\{i}

f̃ℓ(αi) = u−1
i ηδ (34)

and

hiδ(αn)
∏

ℓ∈[∆]\{i}

f̃ℓ(αn) = 0 for all n ∈ [∆], n 6= i. (35)

Consequently,
(

u1hiδ(α1)
∏

ℓ∈[∆]\{i}

f̃ℓ(α1), . . . , u∆hiδ(α∆)
∏

ℓ∈[∆]\{i}

f̃ℓ(α∆),

v1hiδ(β1)
∏

ℓ∈[∆]\{i}

f̃ℓ(β1), . . . , vkhiδ(βk)
∏

ℓ∈[∆]\{i}

f̃ℓ(βk)
)

· (φ(α1), . . . , φ(α∆), φ(β1), . . . , φ(βk))
T = 0. (36)

Utilizing the properties of function hiδ(ξ) ∈ Fq[ξ] we can

write down that

ηδφ(αi) + v1hiδφ(β1)
∏

ℓ∈[∆]\{i}

f̃ℓ(β1) + . . .+

vkhiδφ(βk)
∏

ℓ∈[∆]\{i}

f̃ℓ(βk) = 0 (37)

and

ηδφ(αi) = −

k
∑

j=1



vjhiδ(βj)φ(βj)
∏

ℓ∈[∆]\{i}

f̃ℓ(βj)



 . (38)

Applying trace-mapping function to both sides of equa-

tion (38) and utilizing the facts that hiδ(ξ) ∈ Fq[ξ], f̃ℓ(ξ) ∈
Fq[ξ] and βj ∈ Fq for all i, ℓ ∈ [∆], δ ∈ [s], j ∈ [k] together



with the linearity of trace-mapping function we obtain that

Tr(ηδφ(αi)) = −

k
∑

j=1

Tr



vjφ(βj)hiδ(βj)
∏

ℓ∈[∆]\{i}

f̃ℓ(βj)



 =

−

k
∑

j=1

hiδ(βj)



Tr (vjφ(βj))
∏

ℓ∈[∆]\{i}

f̃ℓ(βj)



 (39)

From the fact that {θ1, . . . , θs} and {η1, . . . , ηs} are trace-

orthogonal bases of Fqs over Fq it is clear (see, for example,

[32][Ch. 2]) that

x
(ι)
i = φ(αi) =

s
∑

δ=1

θδTr(ηδφ(αi)) (40)

an hence all φ(α1), . . . , φ(α∆) can be recovered by accessing

Tr(vjφ(βj)) from all involved servers j = 1, . . . , k.

Let us show that we can correctly recover φ(α1), . . . , φ(α∆)
even in case of at most b incorrect values of Tr(vjφ(βj)).
Following the ideas from [28], let us replace the functions hiδ
in derivations above by functions

h̃e(ξ) = ξe
∏

ℓ∈[∆]

f̃ℓ(ξ) ∈ Fq[ξ]. (41)

It is clear that h̃e(αi) = 0 for all i ∈ [∆] and deg(he(ξ)) <
∆s+e. Hence, for all e < 2b, we have that deg(he(ξ)) < k− t
and, as a result, these functions belong to the dual Generalized

Reed-Solomon code (31). Consequently,

(u1h̃e(α1), . . . , u∆h̃e(α∆), v1h̃e(β1), . . . , vkh̃e(βk))·

(φ(α1), . . . , φ(α∆), φ(β1), . . . , φ(βk))
T =

v1h̃e(β1)φ(β1) + . . .+ vkh̃e(βk)φ(βk) = 0. (42)

As h̃e(ξ) ∈ Fq[ξ] and {β1, . . . , βk} ⊆ Fq, applying the trace-

mapping function to both sides of equation (42) and utilizing

its linearity, we have

βe
1

∏

ℓ∈[∆]

f̃ℓ(β1)Tr(v1φ(β1)) + . . .

+ βe
k

∏

ℓ∈[∆]

f̃ℓ(βk)Tr(vkφ(βk)) = 0, (43)

where e = 0, 1, . . . , 2b − 1, and βj ,
∏

ℓ∈[∆] f̃ℓ(βk),
Tr(vjφ(βj)) belong to Fq for all j ∈ [k]. Hence, elements
∏

ℓ∈[∆] f̃ℓ(βk)Tr(vkφ(βk)) form a codeword of Generalized

Reed-Solomon code over Fq of length k and dimension k−2b.
This code can correct up to b errors, and user can retrieve

the correct values of Tr(vjf(βj)) from server responses for all

j ∈ [k] [31].

The observations that each file consists of ∆ elements of Fqs

for s = k−t−2b
∆ and download rate is equal to k−t−2b

k
finish

the proof.

IV. LOWER BOUND ON THE FILE SIZE

For any given base field Fq of size q ≥ k, the size of file

∆s log2 q bits depends on the parameter ∆s. In this section,

following the derivations of [27, Section V], we describe the

class of byzantine-resistant PIR schemes for an asymptotically

large number of files, and then show that the size of the file in

our scheme is optimal.

Definition 4 (Balanced byzantine-resistant PIR). The

byzantine-resistant PIR scheme is balanced if the client

downloads a single element of the same subfield FqR from

each involved server.

Definition 5 (Rate optimal byzantine-resistant PIR). Byzantine-

resistant PIR scheme is rate optimal if for any ith file f (i)

H(f (i)) = (r − 2b− t)s = s∆.

After introducing the necessary definitions, we can formulate

the main theorem of this section.

Theorem 3. For a balanced rate-optimal byzantine-resistant

PIR scheme that achieves the minimum download rate for a

large enough number of files, the following hold:

(r − 2b− t)|(k − 2b− t) (44)

s∆ ≥ k − 2b− t (45)

Proof. As the considered scheme is rate-optimal, ∆ = r−2b−t.
Let us consider the scenario in which the client downloads a

single element of FqR from each of k servers, and the scheme

achieves the asymptotic capacity. It follows that

k logq q
R =

k

k − 2b− t
∆s. (46)

As a result ∆s = R(k − 2b − t). Since s is a positive

integer and FqR is a subfield of Fqs , then R divides s and

hence theorem statement follows.

Corollary 4. The scheme Π2 is a balanced rate-optimal

byzantine-resistant PIR with optimal file size.

V. COMPARISON

In this section, we give a comparison of PIR schemes Π1

and Π2 with Staircase-PIR from [33]. We denote the latter

as scheme A1 and formulate its parameters in form of the

following theorem.

Theorem 5. Scheme A1 is k-server t-private PIR over Fq with

file size (r − t)(k − t) log(q) and recovery threshold r that

achieves the asymptotic capacity (2) for b = 0 and any given r

so that

t < r < k ≤ q.

Scheme A1 assumes that servers are honest-but-curious and

provide correct answers. To add the b-byzantine resistance, we

can utilize error-correction capabilities of underlined staircase

codes in the same way as it was done in [34]. We present the

parameters of resulted scheme A2 in the following theorem.

Theorem 6. Scheme A2 is k-server t-private b-byzantine resis-

tant PIR over Fq with file size (r−2b−t)(k−2b−t) log(q) and

recovery threshold r that achieves the asymptotic capacity (2)

for any given r so that

t < r − 2b < k − 2b < k ≤ q.

To justify ignoring the upload cost, we repeat each scheme

l times and summarize the parameters in Table 1. We note that



Table 1: Parameters of PIR scheme with optimal download rate. All parameters are measured in bits.

Π1 Π2 A1 A2

File size l(k − t) log(q) l(k − 2b− t) log(q) l(r − t)(k − t) log(q) l(r − 2b− t)(k − 2b− t) log(q)

Field Fqs , where s = k−t
r−t

Fqs , where s = k−2b−t
r−2b−t

Fq Fq

Download cost lk log(q) lk log(q) lk(r − t) log(q) lk(r − 2b− t) log(q)

Download rate 1− t
k

1− 2b+t
k

1− t
k

1− 2b+t
k

Capacity 1− t
k

1− 2b+t
k

1− t
k

1− 2b+t
k

Byzantine-resistance 0 b 6= 0 0 b 6= 0

our schemes work over the extended field, while schemes A1

and A2 work over the base field. Nevertheless, in A1 and A2,

each component of the file consists of multiple field symbols

that result in a big file size and retrieval delay.

VI. CONCLUSION

We considered the problem of designing a Private Infor-

mation Retrieval scheme resistant to the adversarial behavior

of servers. We focused on download cost minimization and

proposed a non-universal capacity-achieving scheme with a

small file size for asymptotically large number of files of fixed

size. We also formally proved that such a file size is optimal

solving the problem pointed out by Banawan and Ulukus in

[17]. Extending the proposed framework to the universal case

and finite number of files are interesting open problems.
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