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Abstract—In the zero-error Slepian-Wolf source coding prob-
lem, the optimal rate is given by the complementary graph
entropy H of the characteristic graph. It has no single-letter
formula, except for perfect graphs, for the pentagon graph
with uniform distribution G5, and for their disjoint union. We
consider two particular instances, where the characteristic graphs
respectively write as an AND product ∧, and as a disjoint union
⊔. We derive a structural result that equates H(∧ ·) and H(⊔ ·)
up to a multiplicative constant, which has two consequences.
First, we prove that the cases where H(∧ ·) and H(⊔ ·) can be

linearized coincide. Second, we determine H in cases where it
was unknown: products of perfect graphs; and G5 ∧G when G

is a perfect graph, using Tuncel et al.’s result for H(G5 ⊔ G).
The graphs in these cases are not perfect in general.

I. INTRODUCTION

We study the zero-error variant of Slepian and Wolf source

coding problem depicted in Figure 1, where the estimate X̂n

must be equal to Xn with probability one. This problem is also

called “restricted inputs” in Alon and Orlitsky’s work [1].

A. Characteristic graphs and optimal rate H

An adequate probabilistic graph G (i.e. a graph with an

underlying probability distribution on its vertices) can be

associated to a given instance of zero-error source coding

problem in Figure 1, as in Witsenhausen’s work [2]. This

graph is called “characteristic graph” of the problem, as it

encompasses the problem data in its structure: the vertices are

the source alphabet, with the source probability distribution

PX on these vertices, and two source symbols xx′ are adjacent

if they are “confusable”, i.e. PX,Y (x, y)PX,Y (x
′, y) > 0 for

some side information symbol y. By construction, the encoder

must map adjacent symbols in G to different codewords in

order to prevent any decoding error: the colorings of the graph

G directly correspond to zero-error encoding mappings.

The best rate that can be achieved in the problem of Figure

1 with n = 1 is the minimal entropy of the colorings of G, as

shown in [1]. This quantity is called chromatic entropy and is

denoted by

Hχ(G)
.
= inf{H(c(V )) | c is a coloring of G}. (1)

The asymptotic optimal rate in the problem of Figure 1 is

characterized by

H(G) = lim
n→∞

1

n
Hχ(G

∧n), (2)

Encoder Decoder

Y n

X̂n = XnXn �
R

Fig. 1. Zero-error Slepian-Wolf source coding problem.

where G∧n is the n-iterated AND product of the characteristic

graph G, see [1]. As shown in [3], it is equal to the comple-

mentary graph entropy defined in [4].

A single-letter formula for H is not known, except for

perfect graphs [5]; and for G5 ⊔ G and its complement, for

all perfect graph G [6], where G5 is the pentagon graph with

uniform distribution.

B. Characteristic graph structure in particular instances

Since determining H is difficult, let us consider particular

instances of the problem in Figure 1, depicted in Figure

2. Both settings have a characteristic graph with a specific

structure. Thanks to the side information at the encoder in

Figure 2.a, the characteristic graph is the disjoint union (⊔)

of a family of auxiliary probabilistic graphs (Gz)z∈Z ; and

in Figure 2.b the characteristic graph is the AND product

(∧) of the (Gz)z∈Z . Both ⊔ and ∧ are binary operators on

probabilistic graphs that play a central role in this study. A

natural question arises in the context of Figure 2: can we

determine the optimal rates if we only know H(Gz) for all

z ∈ Z? With the subadditivity results in [6, Theorem 2],

we know that H
(⊔Pg(Y )

z∈Z Gz

)
≤
∑

z∈Z Pg(Y )H(Gz) and

H
(∧

z∈Z Gz

)
≤
∑

z∈Z H(Gz) holds in general, however

characterizing the cases where equality holds is an open

problem.

C. Related work

If the decoder wants to recover a function f(X,Y ) instead

of X , the setting of Figure 1 becomes the zero-error variant

of the “coding for computing” problem [7]. Charpenay et al.

study in [8] the variant with side information at the encoder,

i.e. the setting from Figure 2.a with f(X,Y ) requested by the

decoder. In [9], Ravi and Dey study a setting with a bidirec-

tional relay. In [10], Malak introduces a fractional version of

chromatic entropy in a lossless coding for computing scenario.

http://arxiv.org/abs/2305.01459v1


Encoder Decoder

Y n

X̂n = Xn

(
g(Yt)

)
t≤n

Xn �
R

a.

Encoder

b.

Decoder

Y ′n
1 , ..., Y ′n

|Z|

X̂ ′n
1 , ..., X̂

′n
|Z|

X ′n
1 , ..., X

′n
|Z| �

R

Fig. 2. Two particular instances of zero-error Slepian-Wolf source coding
problem, where g : Y → Z is deterministic, (X′n

z , Y ′n
z ) ∼ Pn

X,Y |g(Y )=z

for all z ∈ Z , and the pairs ((X′n
z , Y ′n

z ))z∈Z are mutually independent. For
all z ∈ Z , the auxiliary graph Gz is Witsenhausen’s characteristic graph for
the pair (X′

z , Y
′
z ).

Another important problem is the Shannon capacity Θ of a

graph [11], which characterizes the optimal rate in the zero-

error channel coding scenario. Marton has shown in [12] that

H(G) + C(G,P ) = H(P ), where P is the underlying prob-

ability distribution of G, and C(G,P ) is the graph capacity

relative to P . The same questions on linearization arise for

Θ: for which G,G′ do we have Θ(G ∧ G′) = Θ(G)Θ(G′)?
A counterexample is shown by Haemers in [13], using an

upper-bound on Θ based on the rank of the adjacency matrix.

Refinements of Haemers bound are developed in [14] by

Bukh and Cox, and in [15] by Gao et al. Recently in [16],

Schrijver shows that Θ(G ∧ G′) = Θ(G)Θ(G′) is equivalent

to Θ(G ⊔ G′) = Θ(G) + Θ(G′). The computability of Θ
is investigated in [17] by Boche and Deppe. An asymptotic

expression for Θ using semiring homomorphisms is given

by Zuiddam et al. in [18]. In [19], Gu and Shayevitz study

the two-way channel case. An extension of Θ for secure

communication is developed in [20] by Wiese et al.

D. Contributions

In this paper we link the complementary graph entropies

of a disjoint union of probabilistic graphs with that of their

product, i.e. H(⊔ · ) and H(∧ · ). First, we show a structural

result on the complementary graph entropy of a disjoint union

w.r.t. a type PA, that makes use of ∧ instead of ⊔. This enables

us to equate H(⊔·) and H(∧·) up to a multiplicative constant.

This formula has several consequences.

Firstly, we can derive with it a single-letter formula H
of products of perfect graphs. This case was unsolved as a

product of perfect graphs is not perfect in general. However,

a disjoint union of perfect graphs is perfect, this is why

studying disjoint unions is the key. Finally, it enables us

to show that the linearizations of H(⊔ · ) and H(∧ · ) are

equivalent; i.e. if equality holds for either equation in Tuncel

et al.’s subadditivity results [6, Theorem 2], then equality also

holds for the other one. We use this result to determine the

complementary graph entropy of the non-perfect probabilistic

graph G5 ∧G when G is perfect.

In Section II, we define the graph-theoretic concepts we

need to formulate our main theorems in Section III, and their

1/4 1/2 1/4G1 = 1/3 2/3G2 =

1/6

1/12

1/3

1/6

1/6

1/12

G1 ∧G2 =
1/16 1/8 1/16

1/4 1/2

G1

( 1
4 ,

3
4 )

⊔ G2 =

Fig. 3. An empty graph G1 = (N3, (
1
4
, 1
2
, 1
4
)) and a complete graph G2 =

(K2, (
1
3
, 2
3
)), along with their AND product G1∧G2 and their disjoint union

G1 ⊔G2 w.r.t. ( 1
4
, 3
4
).

consequences in Section IV. An example of application for

these theorems is given in Section V, and the main proofs are

developed in Section VI, Section VII and Section VIII.

II. NOTATIONS AND DEFINITIONS

We denote sequences by xn = (x1, ..., xn).
The set of probability distributions over X is denoted by

∆(X ); PX ∈ ∆(X ) is the distribution of a random variableX .

The uniform distribution is denoted by Unif. The conditional

distribution of X knowing Y is denoted by PX|Y .

A probabilistic graph G is a tuple (V , E , PV ), where (V , E)
is a graph and PV ∈ ∆(V). A subset S ⊆ V is independent

in G if for all x, x′ ∈ S, xx′ /∈ E . A mapping c : V → C is

a coloring if c−1(i) is independent for all i ∈ C. The cycle,

complete, and empty graphs with n vertices are respectively

denoted by Cn, Kn, Nn.

Definition II.1 (AND product ∧) The AND product of G1 =
(V1, E1, PV1) and G2 = (V2, E2, PV2) is a probabilistic graph

denoted by G1 ∧G2 with:

- V1 × V2 as set of vertices,

- PV1PV2 as probability distribution on the vertices,

- (v1v2), (v
′
1v

′
2) are adjacent if v1v

′
1 ∈ E1 AND v2v

′
2 ∈ E2;

with the convention of self-adjacency for all vertices.

We denote by G∧n
1 the n-th AND power: G∧n

1
.
= G1∧ ...∧G1 .

Definition II.2 (Disjoint union ⊔ of probabilistic graphs)

Let A be a finite set, and let PA ∈ ∆(A). For all a ∈ A, let

Ga = (Va, Ea, PVa
) be a probabilistic graph, their disjoint

union w.r.t. PA is a probabilistic graph (V , E , PV ) denoted

by
⊔PA

a∈AGa and defined by:

- V =
⊔

a∈A Va is the disjoint union of the sets (Va)a∈A;

- For all v, v′ ∈ V , vv′ ∈ E iff they both belong to the

same Va and vv′ ∈ Ea;

- PV =
∑

a∈A PA(a)PVa
; note that the (PVa

)a∈A have

disjoint support in V .

Remark II.3 The disjoint union ⊔ that we consider here is

also called “sum of graphs” by Tuncel et al. in [6]. Note that

⊔ is the disjoint union over the vertices: it differs in nature

from the union over the edges ∪ that is already studied in the

literature, in particular in [21], [5] and [12].

An example of AND product and disjoint union is given in

Figure 3.



III. MAIN RESULT

In this section, A is a finite set, PA is a distribution from

∆(A) and (Ga)a∈A is a family of probabilistic graphs.

In Theorem III.2 we give an expression for the comple-

mentary graph entropy of a disjoint union w.r.t. a type; the

proof is given in Section III-A. With Corollary III.3 we equate

H(⊔ · ) and H(∧ · ) up to a multiplicative constant when

PA = Unif(A).

Definition III.1 (Type of a sequence) Let ak ∈ Ak, its type

Tak is its empirical distribution. The set of types of sequences

from Ak is denoted by ∆k(A) ⊂ ∆(A).

Theorem III.2 If PA ∈ ∆k(A) for some k ∈ N⋆ then

H

(
PA⊔

a∈A

Ga

)
=

1

k
H

(∧

a∈A

G∧kPA(a)
a

)
. (3)

Corollary III.3 H
(⊔Unif(A)

a∈A Ga

)
= 1

|A|H
(∧

a∈AGa

)
.

A. Proof of Theorem III.2

In order to complete the proof, we need Lemma 1, it is the

cornerstone of the connection between H(⊔ · ) and H(∧ · ).
The main reasons why ∧ appears in (4) are the AND powers

used in H , and the distributivity of ∧ w.r.t. ⊔ (see Lemma 2).

The proof of Lemma 1 is developed in Section VI.

Lemma 1 Let (an)n∈N⋆ ∈ AN
⋆

be any sequence such that

Tan → PA when n→ ∞. Then we have

H

(
PA⊔

a∈A

Ga

)
= lim

n→∞

1

n
Hχ

(∧

a∈A

G∧nTan (a)
a

)
. (4)

Now let us prove Theorem III.2. Let (an)n∈N⋆ be a k-

periodic sequence such that Tak = PA, then Tank = Tak

for all n ∈ N⋆, and Tan →
n→∞

PA. We can use Lemma 1 and

consider every k-th term in the limit:

H
(⊔PA

a∈AGa

)
= lim

n→∞

1

kn
Hχ

(∧
a∈AG

∧knT
akn (a)

a

)

= lim
n→∞

1

kn
Hχ

((∧
a∈AG

∧kT
ak (a)

a

)∧n)

=
1

k
H
(∧

a∈AG
∧kPA(a)
a

)
.

IV. CONSEQUENCES

A. Single-letter formula of H for products of perfect graphs

With the exceptions of G5 = (C5,Unif({1, ..., 5})) and

G5 ⊔ G and its complement when H(G) is known, the only

cases where H is known are perfect graphs with any under-

lying distribution: it is given by the Körner graph entropy,

defined below. We extend the known cases with Theorem IV.6,

which gives a single-letter expression for H for AND products

of perfect graphs. This case was not solved before, as a product

of perfect graphs is not perfect in general (see Figure 4 for a

counterexample). The proof of Theorem IV.6 is developed in

Section VIII.

Definition IV.1 (Induced subgraph) The subgraph induced

in a graph G by a subset of vertices S is the graph ob-

tained from G by keeping only the vertices in S and the

edges between them, and is denoted by G[S]. When G is

a probabilistic graph, we give it the underlying probability

distribution PV /PV (S).

Definition IV.2 (Perfect graph) A graph G = (V , E) is per-

fect if ∀S ⊂ V , χ(G[S]) = ω(G[S]); where ω is the size of the

largest clique (i.e. complete induced subgraph); and χ(G[S])
is the smallest |C| such that there exists a coloring c : S → C
of G[S]. By extension, we call perfect a probabilistic graph

(V , E , PV ) if (V , E) is perfect.

Definition IV.3 (Körner graph entropy Hκ) For all G =
(V , E , PV ), let Γ(G) be the collection of independent sets of

vertices in G. The Körner graph entropy of G is defined by

Hκ(G) = min
V ∈W∈Γ(G)

I(W ;V ), (5)

where the minimum is taken over all distributions PW |V ∈
∆(W)V , with W = Γ(G) and with the constraint that the

random vertex V belongs to the random independent set W
with probability one, i.e. V ∈W ∈ Γ(G) in (5).

Theorem IV.4 (Strong perfect graph theorem, from [22])

A graph G is perfect if and only if neither G nor its

complement have an induced odd cycle of length at least 5.

Theorem IV.5 (from [5]) Let G be a perfect probabilistic

graph, then H(G) = Hκ(G).

Theorem IV.6 When (Ga)a∈A is a family of perfect prob-

abilistic graphs, the following single-letter characterizations

hold:

H

(∧

a∈A

Ga

)
=
∑

a∈A

H(Ga) =
∑

a∈A

Hκ(Ga), (6)
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Fig. 4. This is the AND product of two perfect graphs C6 and C8. The thick
edges represent an induced subgraph C7, which makes C6 ∧C8 non perfect
by the strong perfect graph Theorem (see Theorem IV.4).



H

(
PA⊔

a∈A

Ga

)
=
∑

a∈A

PA(a)H(Ga) =
∑

a∈A

PA(a)Hκ(Ga).

(7)

B. Linearization of the complementary graph entropy

In their subadditivity result [6, Theorem 2], Tuncel et al.

show that for all probabilistic graphs G1, G2 and α ∈ (0, 1),

H(G1

(α,1−α)
⊔ G2) ≤ αH(G1) + (1− α)H(G2), (8)

H(G1 ∧G2) ≤ H(G1) +H(G2). (9)

We show in Theorem IV.7 that the cases where equality holds

in (8) and (9) coincide.

Theorem IV.7 For all probabilistic graphs G1, G2, for all

α ∈ (0, 1), we have:

H(G1

(α,1−α)
⊔ G2) = αH(G1) + (1 − α)H(G2) (10)

⇐⇒H(G1 ∧G2) = H(G1) +H(G2). (11)

We prove and use the more general formula stated in

Theorem IV.8. The proof is given in Section VII.

Theorem IV.8 Let PA ∈ ∆(A) with full-support, then the

following equivalence holds

H

(
PA⊔

a∈A

Ga

)
=
∑

a∈A

PA(a)H(Ga) (12)

⇐⇒ H

(∧

a∈A

Ga

)
=
∑

a∈A

H(Ga). (13)

A case where equality holds in (12) is developed by Tuncel

et al. in [6, Lemma 3]: G5
.
= (C5,Unif({1, ..., 5})) along

with any perfect graph. We provide a single-letter formula for

H(G5 ∧ G) when G is perfect; while G5 ∧ G is not perfect

as G5 ∧ G contains an induced C5 (see Theorem IV.4). The

proof of the following Corollary is given in Appendix A.

Corollary IV.9 For all perfect probabilistic graph G,

H
(
G ∧G5) = H(G) +H(G5) = Hκ(G) +

1
2 log 5. (14)

V. EXAMPLE

In this section, for all i ∈ N⋆, Gi denotes the cy-

cle graph with i vertices uniform distribution, i.e. Gi =(
Ci,Unif({0, ..., i−1})

)
. Both G6 and G8 are perfect, and as

shown in Figure 4, G6 ∧G8 is not a perfect graph. We have:

Hκ(G6) = H(V6)− max
V6∈W6∈Γ(G6)

H(V6|W6) (15)

= 1 + log 3− log 3 = 1 (16)

as H(V6|W6) in (15) is maximized by taking W6 = {0, 2, 4}
when V6 ∈ {0, 2, 4}, and W6 = {1, 3, 5} otherwise.

Similarly, Hκ(G8) = 1.

We can use Theorem IV.5 to find H(G6 ∧G8):

H(G6 ∧G8) = Hκ(G6) +Hκ(G8) = 2. (17)

We can build an optimal coloring of G6 ∧ G8, c∗ :
(v6, v8) 7→ (1v6 is even,1v8 is even).

VI. PROOF OF LEMMA 1

A. Preliminary results

Lemma 2 establishes the distributivity of ∧ w.r.t. ⊔ for

probabilistic graphs, similarly as in [18] for graphs without

underlying distribution. Lemma 3 states that H can be com-

puted with subgraphs induced by sets that have an asymptotic

probability one, in particular we will use it with typical sets of

vertices. The proofs of Lemma 2 and Lemma 3 are respectively

given in Appendix C and Appendix D.

Lemma 2 Let A,B be finite sets, let PA ∈ ∆(A) and PB ∈
∆(B). For all a ∈ A and b ∈ B, let Ga = (Va, Ea, PVa

) and

Gb = (Vb, Eb, PVb
) be probabilistic graphs. Then

(
PA⊔

a∈A

Ga

)
∧

(
PB⊔

b∈B

Gb

)
=

PAPB⊔

(a,b)∈A×B

Ga ∧Gb. (18)

Lemma 3 Let G = (V , E , PV ), and (Sn)n∈N⋆ be a sequence

of sets such that for all n ∈ N⋆, Sn ⊂ Vn, and Pn
V (S

n) → 1
when n→ ∞. Then H(G) = limn→∞

1
n
Hχ

(
G∧n[Sn]

)
.

Definition VI.1 (Isomorphic probabilistic graphs) Let

G1 = (V1, E1, PV1) and G2 = (V2, E2, PV2). We say that G1

is isomorphic to G2 if there exists an isomorphism between

them, i.e. a bijection ψ : V1 → V2 such that:

- For all v1, v
′
1 ∈ V1, v1v

′
1 ∈ E1 ⇐⇒ ψ(v1)ψ(v

′
1) ∈ E2,

- For all v1 ∈ V1, PV1(v1) = PV2

(
ψ(v1)

)
.

Lemma 4 (from [8]) Let B be a finite set, let PB ∈ ∆(B)
and let (Gb)b∈B be a family of isomorphic probabilistic

graphs, then Hχ

(⊔PB

b′∈BGb′
)
= Hχ(Gb) for all b ∈ B.

B. Main proof of Lemma 1

For all a ∈ A, let Ga = (Va, Ea, PVA
), and let G =⊔PA

a∈AGa. Let PA ∈ ∆(A), and let (an)n∈N⋆ ∈ AN
⋆

be a

sequence such that Tan → PA when n→ ∞.

Let ǫ > 0, and for all n ∈ N⋆ let

T n
ǫ (PA)

.
=
{
an ∈ An

∣∣ ‖Tan − PA‖∞ ≤ ǫ
}
, (19)

P ′n .
=

Pn
A

Pn
A(T

n
ǫ (PA))

, Sn
ǫ

.
=

⊔

an∈T n
ǫ (PA)

∏

t≤n

Vat
.

By Lemma 3 we have

H(G) = lim
n→∞

1

n
Hχ

(
G∧n[Sn

ǫ ]
)
, (20)

as Pn
V (S

n
ǫ ) → 1 when n → ∞. Let us study the limit in

(20). For all n large enough, an ∈ T n
ǫ (PA) as Tan → PA.

Therefore, for all an ∈ T n
ǫ (PA) and a′ ∈ A,

∣∣Tan(a′)− Tan(a′)
∣∣ ≤ 2ǫ. (21)

We have on one hand

Hχ

((⊔PA

a∈AGa

)∧n
[Sn

ǫ ]
)

= Hχ

((⊔Pn
A

an∈An

∧
t≤nGat

)
[Sn

ǫ ]
)

(22)



= Hχ

(⊔P ′n

an∈T n
ǫ (PA)

∧
t≤nGat

)
(23)

= Hχ

(⊔P ′n

an∈T n
ǫ (PA)

∧
a′∈AG

∧nTan (a′)
a′

)
(24)

≤ Hχ

(⊔P ′n

an∈T n
ǫ (PA)

∧
a′∈AG

∧nTan(a′)+⌈2nǫ⌉
a′

)
(25)

= Hχ

(∧
a′∈AG

∧nTan (a′)+⌈2nǫ⌉
a′

)
(26)

≤ Hχ

(∧
a′∈AG

∧nTan (a′)
a′

)
+Hχ

(∧
a′∈AG

∧⌈2nǫ⌉
a′

)
(27)

≤ Hχ

(∧
a′∈AG

∧nTan (a′)
a′

)
+ ⌈2nǫ⌉|A| log |V|; (28)

where (22) comes from Lemma 2; (23) comes from the defini-

tion of Sn
ǫ and P ′n in (19); (24) is a rearrangement of the terms

inside the product; (25) comes from (21); (26) follows from

Lemma 4, the graphs
(∧

a′∈AG
∧nTan (a′)+⌈2nǫ⌉
a′

)
an∈T n

ǫ (PA)

are isomorphic as they do not depend on an; (27) follows

from the subadditivity of Hχ; and (28) is the upper bound on

Hχ given by the highest entropy of a coloring.

On the other hand, we obtain with similar arguments

Hχ

((⊔PA

a∈AGa

)∧n
[Sn

ǫ ]
)

≥Hχ

(∧
a′∈AG

∧nTan (a′)−⌈2nǫ⌉
a′

)
(29)

≥Hχ

(∧
a′∈AG

∧nTan (a′)
a′

)
−Hχ

(∧
a′∈AG

∧⌈2nǫ⌉
a′

)
, (30)

≥Hχ

(∧
a′∈AG

∧nTan (a′)
a′

)
− ⌈2nǫ⌉|A| log |V|. (31)

Note that (30) also comes from the subadditivity of Hχ :

Hχ(G2) ≥ Hχ(G1 ∧G2)−Hχ(G1) for all G1, G2.

By combining (28) and (31) we obtain∣∣∣∣∣ limn→∞

1

n
Hχ(G

∧n[Sn
ǫ ])− lim

n→∞

1

n
Hχ

( ∧

a′∈A

G
∧nTan (a′)
a′

)∣∣∣∣∣
≤ 2ǫ|A| log |V|. (32)

As this holds for all ǫ > 0, combining (20) and (32) yields

the desired result.

VII. PROOF OF THEOREM IV.8

A. Preliminary results

In Lemma 5 we give regularity properties of PA 7→
H
(⊔PA

a∈AGa

)
. The proof of Lemma 5 is developed in Ap-

pendix E. Lemma 6 states that if a convex function γ of ∆(A)
meets the linear interpolation of the (γ(1a))a∈A at an interior

point, then γ is linear. We use it for proving the equivalence

in Theorem IV.8, by considering γ = PA 7→ H
(⊔PA

a∈AGa

)
.

The proof of Lemma 6 is given in Appendix F.

Lemma 5 The function PA 7→ H
(⊔PA

a∈AGa

)
is convex and

(logmaxa |Va|)-Lipschitz.

Lemma 6 Let A be a finite set, and γ : ∆(A) → R be a

convex function. Then the following holds:

∃PA ∈ int(∆(A)), γ(PA) =
∑

a∈A PA(a)γ(1a) (33)

⇐⇒ ∀PA ∈ ∆(A), γ(PA) =
∑

a∈A PA(a)γ(1a) (34)

where int(∆(A)) is the interior of ∆(A) (i.e. the full-support

distributions on A).

B. Main proof of Theorem IV.8

(=⇒) Assume that H
(∧

a∈AGa

)
=
∑

a∈AH(Ga).

We can use Corollary III.3: H
(⊔Unif(A)

a∈A Ga

)
=∑

a∈A
1

|A|H(Ga). Thus, the function PA 7→ H
(⊔PA

a∈AGa

)

is convex by Lemma 5, and satisfies (33) with the interior

point PA = Unif(A): by Lemma 6 we have

∀PA ∈ ∆(A), H
(⊔PA

a∈AGa

)
=
∑

a∈A PA(a)H(Ga). (35)

(⇐=) Conversely, assume (35), then PA 7→ H
(⊔PA

a∈AGa

)

is linear. We can use Corollary III.3, and we have

H
(∧

a∈AGa

)
= |A|H

(⊔Unif(A)
a∈A Ga

)
=
∑

a∈AH(Ga).

VIII. PROOF OF THEOREM IV.6

A. Preliminary results

Lemma 7 comes from [23, Corollary 3.4], and states that

the function PA 7→ Hκ

(⊔PA

a∈AGa

)
, defined analogously to

PA 7→ H
(⊔PA

a∈AGa

)
, is always linear. We give a proof of

Lemma 7 in Appendix G for the sake of completeness. The

proof of Lemma 8 is given in Appendix H.

Lemma 7 For all probabilistic graphs (Ga)a∈A and PA ∈
∆(A), we have Hκ

(⊔PA

a∈AGa

)
=
∑

a∈A PA(a)Hκ(Ga).

Lemma 8 The probabilistic graph
⊔PA

a∈AGa is perfect if and

only if Ga is perfect for all a ∈ A.

B. Main proof of Theorem IV.6

For all a ∈ A, let Ga = (Va, Ea, PVa
) be a perfect prob-

abilistic graph. By Lemma 8,
⊔PA

a∈AGa is also perfect; and

we have H
(⊔PA

a∈AGa

)
= Hκ

(⊔PA

a∈AGa

)
by Theorem IV.5.

We also have Hκ

(⊔PA

a∈AGa

)
=
∑

a∈A PA(a)Hκ(Ga) =∑
a∈A PA(a)H(Ga) by Lemma 7 and Theorem IV.5 used on

the perfect graphs (Ga)a∈A.

Therefore (12) is satisfied by the graphs (Ga)a∈A and

PA: by Theorem IV.8, it follows that H
(∧

a∈AGa

)
=∑

a∈AH(Ga) =
∑

a∈AHκ(Ga), where the last equality

comes from Theorem IV.5.

IX. CONCLUSION

Theorem III.2 shows that H
(⊔PA

a∈AGa

)
=

1
k
H
(∧

a∈AG
∧kPA(a)
a

)
holds for all PA ∈ ∆k(A). The

consequences of this result are stated in Theorem IV.6,

Theorem IV.8 and Corollary IV.9. We provide a single-letter

formula for H for a new class of graphs. By (2), this allows to

characterize optimal rates for the two source coding problems

depicted in Figure 2.

Proposition IX.1 The optimal rates in the settings from

Figure 2.a and Figure 2.b are respectively given by

H
(⊔Pg(Y )

z∈Z Gz

)
and H

(∧
z∈Z Gz

)
.



REFERENCES

[1] N. Alon and A. Orlitsky, “Source coding and graph entropies,” IEEE

Transactions on Information Theory, vol. 42, no. 5, pp. 1329–1339,
1996.

[2] H. Witsenhausen, “The zero-error side information problem and chro-
matic numbers (corresp.),” IEEE Transactions on Information Theory,
vol. 22, no. 5, pp. 592–593, 1976.

[3] P. Koulgi, E. Tuncel, S. L. Regunathan, and K. Rose, “On zero-error
source coding with decoder side information,” IEEE Transactions on

Information Theory, vol. 49, no. 1, pp. 99–111, 2003.

[4] J. Korner and G. Longo, “Two-step encoding for finite sources,” IEEE

Transactions on Information Theory, vol. 19, no. 6, pp. 778–782, 1973.

[5] I. Csiszár, J. Körner, L. Lovász, K. Marton, and G. Simonyi, “Entropy
splitting for antiblocking corners and perfect graphs,” Combinatorica,
vol. 10, no. 1, pp. 27–40, 1990.

[6] E. Tuncel, J. Nayak, P. Koulgi, and K. Rose, “On complementary graph
entropy,” IEEE transactions on information theory, vol. 55, no. 6, pp.
2537–2546, 2009.

[7] A. Orlitsky and J. R. Roche, “Coding for computing,” in Proceedings

of IEEE 36th Annual Foundations of Computer Science. IEEE, 1995,
pp. 502–511.

[8] N. Charpenay, M. l. Treust, and A. Roumy, “Zero-error coding for com-
puting with encoder side-information,” arXiv preprint arXiv:2211.03649,
2022.

[9] J. Ravi and B. K. Dey, “Zero-error function computation through a
bidirectional relay,” in 2015 IEEE Information Theory Workshop (ITW).
IEEE, 2015, pp. 1–5.

[10] D. Malak, “Fractional graph coloring for functional compression with
side information,” arXiv preprint arXiv:2204.11927, 2022.

[11] C. Shannon, “The zero error capacity of a noisy channel,” IRE Trans-
actions on Information Theory, vol. 2, no. 3, pp. 8–19, 1956.

[12] K. Marton, “On the shannon capacity of probabilistic graphs,” Journal

of Combinatorial Theory, Series B, vol. 57, no. 2, pp. 183–195, 1993.

[13] W. Haemers et al., “On some problems of lovász concerning the shannon
capacity of a graph,” IEEE Transactions on Information Theory, vol. 25,
no. 2, pp. 231–232, 1979.

[14] B. Bukh and C. Cox, “On a fractional version of haemers’ bound,”
IEEE Transactions on Information Theory, vol. 65, no. 6, pp. 3340–
3348, 2018.

[15] L. Gao, S. Gribling, and Y. Li, “On a tracial version of haemers bound,”
IEEE Transactions on Information Theory, 2022.

[16] A. Schrijver, “On the shannon capacity of sums and products of graphs,”
Indagationes Mathematicae, vol. 34, no. 1, pp. 37–41, 2023.

[17] H. Boche and C. Deppe, “Computability of the zero-error capacity of
noisy channels,” in 2021 IEEE Information Theory Workshop (ITW).
IEEE, 2021, pp. 1–6.

[18] J. Zuiddam et al., Algebraic complexity, asymptotic spectra and entan-

glement polytopes. Institute for Logic, Language and Computation,
2018.

[19] Y. Gu and O. Shayevitz, “On the non-adaptive zero-error capacity of
the discrete memoryless two-way channel,” Entropy, vol. 23, no. 11, p.
1518, 2021.

[20] M. Wiese, T. J. Oechtering, K. H. Johansson, P. Papadimitratos, H. Sand-
berg, and M. Skoglund, “Secure estimation and zero-error secrecy
capacity,” IEEE Transactions on Automatic Control, vol. 64, no. 3, pp.
1047–1062, 2018.

[21] J. Körner and K. Marton, “Graphs that split entropies,” SIAM journal

on discrete mathematics, vol. 1, no. 1, pp. 71–79, 1988.

[22] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, “The strong
perfect graph theorem,” Annals of mathematics, pp. 51–229, 2006.

[23] G. Simonyi, “Graph entropy: a survey,” Combinatorial Optimization,
vol. 20, pp. 399–441, 1995.

APPENDIX A

PROOF OF COROLLARY IV.9

By [6, Lemma 3], if G is perfect then

H(G
(α,1−α)

⊔ G5) = αH(G) + (1 − α)H(G5). (36)

By Theorem IV.8, we have H(G ∧G5) = H(G) +H(G5) =
Hκ(G)+

log 5
2 ; where the last equality comes from [3, Example

1] which states that H(G5) =
log 5
2 , and from Theorem IV.6.

APPENDIX B

PROOF DEPENDENCIES

An illustration of the dependencies between the results can

be found in Figure 5.

Lemma 2Lemma 9

Lemma 3

Lemma 4

Lemma 5Theorem III.2

Lemma 1 Lemma 10

Lemma 7

Lemma 6

Theorem IV.8

Theorem IV.6Theorem IV.5

Lemma 8

Fig. 5. An arrow from A to B means that A is used in the proof of B. Results
from the literature are represented with a dashed outline.

APPENDIX C

PROOF OF LEMMA 2

The probabilistic graphs in both sides of (18) have
(⊔

a∈A

Va

)
×

(⊔

b∈B

Vb

)
=

⊔

(a,b)∈A×B

Va × Vb (37)

as set of vertices, with underlying distribution
(∑

a∈A

PA(a)PVa

)(∑

b∈B

PB(b)PVb

)

=
∑

(a,b)∈A×B

PA(a)PB(b)PVa
PVb

. (38)

Now let us show that these two graphs have the same edges.

Let (vA, vB), (v
′
A, v

′
B) ∈

(⊔
a∈A Va

)
×
(⊔

b∈B Vb

)
; let a∗, a

′
∗ ∈

A and b∗, b
′
∗ ∈ B be the unique indexes such that

(vA, vB) ∈ Va∗
× Vb∗ and (v′A, v

′
B) ∈ Va′

∗
× Vb′∗

. (39)

We have:

(vA, vB), (v
′
A, v

′
B) are adjacent in

(
PA⊔

a∈A

Ga

)
∧

(
PB⊔

b∈B

Gb

)

(40)

⇐⇒ vA, v
′
A adjacent in

PA⊔

a∈A

Ga and

vB, v
′
B adjacent in

PB⊔

b∈B

Gb (41)

⇐⇒ a∗ = a′∗ and vAv
′
A ∈ Ea∗

and b∗ = b′∗ and vBv
′
B ∈ Eb∗

(42)

⇐⇒ (a∗, b∗) = (a′∗, b
′
∗) and

http://arxiv.org/abs/2211.03649
http://arxiv.org/abs/2204.11927


(vA, vB), (v
′
A, v

′
B) are adjacent in Ga∗

∧Gb∗ (43)

⇐⇒ (vA, vB), (v
′
A, v

′
B) are adjacent in

PAPB⊔

(a,b)∈A×B

Ga ∧Gb.

(44)

APPENDIX D

PROOF OF LEMMA 3

A. Preliminary results

In Lemma 9 we give upper and lower bounds on the

chromatic entropy of an induced subgraph G[S], using the

chromatic entropy of the whole graph G and the probability

PV (S). The core idea is that if PV (S) is close to 1 and Hχ(G)
is big, then Hχ(G[S]) is close to Hχ(G). The proof of Lemma

9 is given in Appendix I

Lemma 9 Let G = (V , E , PV ) and S ⊂ V , then

Hχ(G) − 1− (1− PV (S)) log |V| ≤ Hχ(G[S]) ≤
Hχ(G)

PV (S)
.

(45)

Remark D.1 Hχ(G[S]) can be greater than Hχ(G), even if

G[S] has less vertices and inherits the structure of G. This

stems from the normalized distribution PV /PV (S) on the

vertices of G[S] which gives more weight to the vertices in

S. For example, consider

G =
(
N5,Unif({1, ..., 5})

) (1−ǫ,ǫ)
⊔

(
K5,Unif({1, ..., 5})

)
,

with S being the vertices in the connected component K5 in

G. Then Hχ(G) = ǫ log 5 and Hχ(G[S]) = log 5.

B. Main proof of Lemma 3

By Lemma 9, we have for all n ∈ N⋆:

Hχ(G
∧n)− 1− (1− Pn

V (S
n)) log |V|

≤Hχ(G
∧n[Sn]) ≤

Hχ(G
∧n)

Pn
V (S

n)
. (46)

Since Pn
V (S

n) → 1, and Hχ(G
∧n) = nH(G) + o(n)

when n → ∞, the desired results follows immediately by

normalization and limit.

APPENDIX E

PROOF OF LEMMA 5

A. Preliminary results

Lemma 10 is a generalization for infinite sequences of the

following observation: if Tan = PA ∈ ∆n(A) satisfies PA =
i
n
P ′
A+

n−i
n
P ′′
A with P ′

A ∈ ∆i(A) and P ′′
A ∈ ∆n−i(A), then an

can be separated into two subsequences a′i and a′′n−i such

that Ta′i = P ′
A and Ta′′n−i = P ′′

A. The proof is given in

Appendix J.

Lemma 10 (Type-splitting lemma) Let (an)n∈N⋆ ∈ AN
⋆

be

a sequence such that Tan → PA ∈ ∆(A) when n → ∞, let

β ∈ (0, 1) and P ′
A, P

′′
A ∈ ∆(A) such that

PA = βP ′
A + (1− β)P ′′

A. (47)

Then there exists a sequence (bn)n∈N⋆ ∈ {0, 1}N
⋆

such that

the two extracted sequences a′
.
= (an)n∈N

⋆,
bn=0

and a′′
.
=

(an)n∈N
⋆,

bn=1

satisfy

Tbn →
n→∞

(β, 1 − β), (48)

Ta′n →
n→∞

P ′
A, Ta′′n →

n→∞
P ′′
A. (49)

B. Main proof of Lemma 5

(η Lipschitz) Let us first prove that η is Lipschitz. For all

PA, P
′
A ∈ ∆(A) we need to bound the quantity |η(PA) −

η(P ′
A)|; by Lemma 1 this is equivalent to bounding

lim
n→∞

1

n

∣∣∣∣∣Hχ

(∧

a∈A

G∧nTan (a)
a

)
−Hχ

(∧

a∈A

G∧nTa′n (a)
a

)∣∣∣∣∣
(50)

where (Tan , Ta′n) → (PA, P
′
A) when n→ ∞.

Fix n ∈ N⋆, we assume that the quantity inside | · | in (50) is

positive; the other case can be treated with the same arguments

by symmetry of the roles. We have

Hχ

(∧

a∈A

G∧nTan (a)
a

)
−Hχ

(∧

a∈A

G∧nTa′n (a)
a

)
(51)

≤ Hχ

(∧

a∈A

G∧nTan (a)
a

)
−Hχ

( ∧

a∈A

G∧nmin(Tan (a),Ta′n (a))
a

)

(52)

= Hχ

(∧

a∈A

G∧nmin(Tan (a),Ta′n (a))
a

∧

a∈A

G∧n|Tan (a)−Ta′n (a)|+
a

)

−Hχ

( ∧

a∈A

G∧nmin(Tan (a),Ta′n (a))
a

)
(53)

≤ Hχ

( ∧

a∈A

G∧n|Tan (a)−Ta′n (a)|+
a

)
(54)

≤ log
(
max

a
|Va|

)∑

a∈A

n|Tan(a)− Ta′n(a)|+ (55)

≤ n log
(
max

a
|Va|

)
‖Tan − Ta′n‖1, (56)

where |·|+ = max(·, 0) and ‖Tan−Ta′n‖1 =
∑

a∈A |Tan(a)−
Ta′n(a)|; (52) follows from the removal of terms in the second

product, as Hχ(G∧G′) ≥ Hχ(G) for all probabilistic graphs

G,G′; (53) is an arrangement of the terms in the first product,

as min(s, t) + max(s − t, 0) = s for all real numbers s, t;
(54) comes from the subadditivity of Hχ; (55) follows from

Hχ(Ga) ≤ logmaxa′ |Va′ | for all a ∈ A; (56) results from

|Tan(a)− Ta′n(a)|+ ≤ |Tan(a)− Ta′n(a)| for all a ∈ A.

By normalization and limit, it follows that

|η(PA)− η(P ′
A)| ≤ lim

n→∞
log
(
max

a
|Va|

)
· ‖Tan − Ta′n‖1

(57)

= log
(
max

a
|Va|

)
· ‖PA − P ′

A‖1. (58)



Hence η is (logmaxa |Va|)-Lipschitz.

(η convex) Let us now prove that η is convex. Let P ′
A, P

′′
A ∈

∆(A), and β ∈ (0, 1), we have by Lemma 1

η
(
βP ′

A + (1 − β)P ′′
A

)
= lim

n→∞

1

n
Hχ

(∧

a∈A

G∧nTan (a)
a

)
,

(59)

where Tan → βP ′
A+(1−β)P ′′

A when n→ ∞. By Lemma

10, there exists (bn)n∈N⋆ ∈ {0, 1}N
⋆

such that the decompo-

sition of (an)n∈N⋆ into two subsequences a′
.
= (an)n∈N

⋆,
bn=0

and

a′′
.
= (an)n∈N

⋆,
bn=1

satisfies

Tbn →
n→∞

(β, 1 − β), (60)

Ta′n →
n→∞

P ′
A, Ta′′n →

n→∞
P ′′
A. (61)

For all n ∈ N⋆, let Ξ(n)
.
= nTbn(0), we have

η
(
βP ′

A + (1− β)P ′′
A

)
(62)

= lim
n→∞

1

n
Hχ

(∧

a∈A

G
∧Ξ(n)T

a′Ξ(n) (a)+(n−Ξ(n))T
a′′n−Ξ(n) (a)

a

)

(63)

≤ lim
n→∞

Ξ(n)

n

1

Ξ(n)
Hχ

(∧

a∈A

G
∧Ξ(n)T

a′Ξ(n) (a)
a

)
(64)

+
n− Ξ(n)

n

1

n− Ξ(n)
Hχ

(∧

a∈A

G
∧(n−Ξ(n))T

a′′n−Ξ(n)(a)
a

)

(65)

= βη(P ′
A) + (1− β)η(P ′′

A); (66)

where (63) comes from (59); (65) follows from the subaddi-

tivity of Hχ; (66) comes from (60), (61) and Lemma 1. Since

(66) holds for all P ′
A, P

′′
A ∈ ∆(A) and β ∈ (0, 1), we have

that η is convex.

APPENDIX F

PROOF OF LEMMA 6

It can be easily observed that

∃PA ∈ int(∆(A)), γ(PA) =
∑

a∈A

PA(a)γ(1a) (67)

⇐= ∀PA ∈ ∆(A), γ(PA) =
∑

a∈A

PA(a)γ(1a). (68)

Now let us prove (67) ⇒ (68). Let P ∗
A ∈ int∆(A) such that

γ(P ∗
A) =

∑
a∈A P

∗
A(a)γ(1a). Let m : ∆(A) → R linear such

that m(P ∗
A) = γ(P ∗

A) and ∀PA ∈ ∆(A), m(PA) ≤ γ(PA).
We have

0 = γ(P ∗
A)−m(P ∗

A) =
∑

a∈A

P ∗
A(a)

(
γ(1a)−m(1a)

)
; (69)

and therefore γ(1a) = m(1a) for all a ∈ A, as γ −m ≥ 0
and P ∗

A(a) > 0 for all a ∈ A. For all PA ∈ ∆(A), we have

f(PA) ≤
∑

a∈A

PA(a)γ(1a) (70)

=
∑

a∈A

PA(a)m(1a) = m(PA), (71)

hence γ = m and γ is linear.

APPENDIX G

PROOF OF LEMMA 7

Let Ga = (Va, Ea, PVa
), and G = (V , E , PV ) such

that G =
⊔PA

a∈AGa. Let A be the random variable with

distribution PA such that V = VA, i.e. PV |A=a = PVa
.

Achievability

For all a ∈ A, let W ∗
a be a minimizer of

min
Va∈Wa∈Γ(Ga)

I(Va;Wa). (72)

Let W ∗ be the random variable defined as follows: for all

S ∈ Γ(G), a ∈ A and va ∈ Va,

PW∗|A=a,V=va(S)
.
= PW∗

a |Va=va(Sa)
∏

a′∈A
a′ 6=a

PW∗

a′
(Sa′), (73)

where S is uniquely decomposed as
⊔

a∈A Sa, with Sa ∈
Γ(Ga) for all a ∈ A. The random variable W ∗ takes its values

in Γ(G), as

PW∗(S) > 0 =⇒ ∀a ∈ A, PW∗
a
(Sa) > 0. (74)

The conditional distribution w.r.t. (A = a) writes:

PW∗|A=a(S) =
∑

va∈Va

PVa
(va)PW∗|A=a,V=va(S) (75)

=
∑

va∈Va

PVa
(va)PW∗

a |Va=va(Sa)
∏

a′∈A
a′ 6=a

PW∗

a′
(Sa′)

(76)

=
∏

a′∈A

PW∗

a′
(Sa′). (77)

It follows that the random variable W ∗ is independent of A
as the expression (77) does not depend on a. Note that PW∗

defined in (73) is a probability distribution, as
∑

S∈Γ(G)

PW∗(S) =
∑

S∈Γ(G)

∏

a′∈A

PW∗

a′
(Sa′) (78)

=
∑

(Sa′)a′∈A∈
∏

a′∈A
Γ(Ga′ )

∏

a′∈A

PW∗

a′
(Sa′)

(79)

= 1, (80)

where (78) comes from (77); (79) follows from Γ(G) ={⊔
a∈A Sa

∣∣ ∀a ∈ A, Sa ∈ Γ(Ga)
}

; and (80) holds as W ∗
a

takes its values in Γ(Ga) for all a ∈ A.

Now, let us show that V ∈ W ∗ with probability one. For

all a ∈ A and va ∈ Va,

{S ∩ Va | S ∈ suppPW∗|V=va} = suppPW∗
a |Va=va ; (81)

where supp denotes the support of a probability distribu-

tion. Since Va ∈ W ∗
a with probability one, all the sets in



suppPW∗
a |Va=va contain va, hence all sets in suppPW∗|V=va

also contain va: V ∈ W ∗ with probability one.

Now let us combine the results on W ∗:

Hκ(G) ≤ I(V ;W ∗) (82)

= I(V,A;W ∗) (83)

= I(A;W ∗) +
∑

a∈A

PA(a)I(V ;W ∗|A = a) (84)

=
∑

a∈A

PA(a)I(Va;W
∗
a ) (85)

=
∑

a∈A

PA(a)Hκ(Ga); (86)

where (82) holds as W ∗ takes its values in Γ(G) and

V ∈ W ∗ with probability one; (83) holds as A is

a deterministic function of V ; (84) comes from the

decomposition I(V,A;W ) = I(V ;W |A) + I(A;W ); (85)

follows from the independence of A and W ∗; (86) comes

from the fact that W ∗
a minimizes (72).

Converse

Hκ

(
PA⊔

a∈A

Ga

)
= min

V ∈W∈Γ(G)
I(V,A;W ) (87)

≥ min
V ∈W∈Γ(G)

∑

a∈A

PA(a)I(V ;W |A = a) (88)

=
∑

a∈A

PA(a) min
V ∈W∈Γ(G)

I(V ;W |A = a) (89)

=
∑

a∈A

PA(a) min
Va∈W∈Γ(Ga)

I(Va;W ) (90)

=
∑

a∈A

PA(a)Hκ(Ga); (91)

where (87) holds as A is a deterministic function of V ; (88)

follows from the decomposition I(V,A;W ) = I(V ;W |A) +
I(A;W ); and (90) holds as V = VA.

APPENDIX H

PROOF OF LEMMA 8

(=⇒) Let G =
⊔PA

a∈AGa be a perfect probabilistic graph.

Let a′ ∈ A and Sa′ ⊂ Va′ . We have χ
((⊔PA

a∈AGa

)
[Sa′ ]

)
=

ω
((⊔PA

a∈AGa

)
[Sa′ ]

)
since G is perfect, and therefore

χ(Ga′ [Sa′ ]) = ω(Ga′ [Sa′ ]), as
(⊔PA

a∈AGa

)
[Sa′ ] = Ga′ [Sa′ ].

Thus all the graphs (Ga)a∈A are perfect.

(⇐=) Conversely, assume that for all a ∈ A, Ga =
(Va, Ea, PVa

) is perfect. Then for all S ⊂
⊔

a∈A Va, S can

be written as
⊔

a∈A Sa where Sa ⊂ Va for all a ∈ A, and we

have for all PA ∈ ∆(A):

χ

((
PA⊔

a∈A

Ga

)
[S]

)
= χ

(
PA⊔

a∈A

Ga[Sa]

)
(92)

= max
a∈A

χ(Ga[Sa]) (93)

= max
a∈A

ω(Ga[Sa]), (94)

and similarly, ω
((⊔PA

a∈AGa

)
[S]
)

= maxa∈A ω(Ga[Sa]).

Hence
⊔PA

a∈AGa is also perfect.
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Let c∗ : V → C and c∗S : S → C be the optimal colorings of

G and G[S], respectively. Consider the coloring c : V → C⊔V
of G defined by c(v) = c∗S if v ∈ S, c(v) = v otherwise.

(Lower bound) On one hand, we have

Hχ(G) ≤H(c(V ),1V ∈S) (95)

=H(1V ∈S) + PV (S)H(c(V )|V ∈ S)

+ (1− PV (S))H(c(V )|V /∈ S) (96)

≤ 1 +H(c∗S(V )|V ∈ S) + (1− PV (S)) log |V|
(97)

=Hχ(G[S]) + 1 + (1 − PV (S)) log |V|; (98)

where (95) comes from the fact that c is a coloring of G; (96)

is a decomposition using conditional entropies; (97) comes

from the construction of c: c|S = c∗S ; (98) follows from the

optimality of c∗S as a coloring of G[S].

(Upper bound) On the other hand,

Hχ(G[S])

≤H(c∗(V )|V ∈ S) (99)

=
1

PV (S)

(
H(c∗(V )|1V ∈S)− (1− PV (S))H(c∗(V )|V /∈ S)

)

(100)

≤
H(c∗(V ))

PV (S)
=
Hχ(G)

PV (S)
(101)

where (99) comes from the fact that c∗ induces a coloring of

G[S]; (100) is a decomposition using conditional entropies;

(101) results from the elimination of negative terms and the

optimality of c∗.
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Let (an)n∈N⋆ ∈ AN
⋆

be a sequence such that Tan → PA =
βP ′

A + (1 − β)P ′′
A when n→ ∞.

Consider a sequence (Bn)n∈N⋆ of independent Bernoulli

random variables such that for all n ∈ N⋆,

Pr(Bn = 0) =
βP ′

A(an)

PA(an)
. (102)

By the strong law of large numbers,

Pr
(
TBn,an →

n→∞
(βP ′

A, (1− β)P ′′
A)
)
= 1. (103)

Therefore, there exists at least one realization (bn)n∈N⋆ of

(Bn)n∈N⋆ such that Tbn,an converges to
(
βP ′

A, (1 − β)P ′′
A

)
.

The convergences of marginal and conditional types yield

Tbn →
n→∞

(β, 1− β), (104)

Ta′n →
n→∞

P ′
A, Ta′′n →

n→∞
P ′′
A, (105)



where a′
.
= (an)n∈N

⋆,
bn=0

and a′′
.
= (an)n∈N

⋆,
bn=1

are the extracted

sequences.
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