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Abstract—This paper addresses the blind recovery of the
parity check matrix of an (n, k) linear block code over noisy
channels by proposing a fast recovery scheme consisting of
3 parts. Firstly, this scheme performs initial error position
detection among the received codewords and selects the
desirable codewords. Then, this scheme conducts Gaussian
elimination (GE) on a k-by-k full-rank matrix and uses a
threshold and the reliability associated to verify the recovered
dual words, aiming to improve the reliability of recovery.
Finally, it performs decoding on the received codewords with
partially recovered dual words. These three parts can be
combined into different schemes for different noise level
scenarios. The GEV that combines Gaussian elimination
and verification has a significantly lower recovery failure
probability and a much lower computational complexity than
an existing Canteaut-Chabaud-based algorithm, which relies
on GE on n-by-n full-rank matrices. The decoding-aided re-
covery (DAR) and error-detection-&-codeword-selection-&-
decoding-aided recovery (EDCSDAR) schemes can improve
the code recovery performance over GEV for high noise level
scenarios, and their computational complexities remain much
lower than the Canteaut-Chabaud-based algorithm.

Index Terms—Blind signal processing, low-density parity-
check (LDPC) codes, Gaussian elimination with verification
(GEV), computational complexity.

I. INTRODUCTION

In many modern advanced telecommunication systems,

including adaptive modulation and coding (AMC) [1]–

[3] and cognitive radio systems [4], blind recognition

of the modulation, coding, or scrambling parameters of

an unknown incoming communication signal waveform,

and the subsequent use of the recovered parameters to

detect and decode the incoming signal, are indispensable

[5]–[7]. More specifically, control channels are needed to

transmit the AMC parameters to implement the AMC in

mobile network systems. To preserve the spectrum usage,

a technique called blind decoding was proposed to blindly

estimate the AMC parameters from the received noisy

data from the data channel without the usage of control

channels. This paper focuses on the blind identification

of the parity check matrix of an (n, k) linear block code

without a candidate set in a noisy channel, where k and

n are the number of message bits and coded binary bits,

respectively.

To blindly identify the parity check matrix of a (n, k)
linear block code in a noisy channel, a sufficient number,

that is, n − k, of dual words that are orthogonal to the

codewords need to be recognized. In [8]–[10], techniques

for linear block code recovery based on exhaustive search

were proposed. These brute force search (BFS) schemes

typically used a threshold to select the correct dual words

out of all 2n possible dual words, leading to computational

complexity increases exponentially with the code length n.

In [11], Valembois proposed a method to find the correct

dual words based on the Canteaut-Chabaud information

set decoding algorithm [12], and recently Cluzeau [8], [9]

and Cote [13] used this technique for the reconstruction

of different types of codes. However, these schemes need

to perform Gaussian elimination (GE) on an n-by-n full-

rank matrix and a small-scale exhaustive search of all

combinations of 2p columns out of n columns, where

p is usually either one or two. In [14], an algorithm

based on the Canteaut-Chabaud algorithm [12] to find

the low-weight dual words from the dual space of the

received code-vector space to recover LDPC codes. In [15],

an algorithm based on the partial Gaussian elimination

algorithm to find the sparse part in the noisy matrix to

recover LDPC codes. However, their methods focused on

the recovery of LDPC codes which has the special property

of a sparse parity-check matrix. This paper focuses on the

recovery of all linear block codes.

This paper first proposes a novel scheme to recover the

dual words of a linear block code with a significantly

reduced computational complexity. This scheme performs

initial error position detection among the received code-

words and selects the codewords with the least detected er-

rors for the coding recovery process. The proposed scheme

conducts GE on a k-by-k full-rank matrix to recover the

dual word candidates. Then, the reliability associated with

each dual word candidate is used in a verification process

to improve the reliability of recovery when the number of

received codewords is limited. After the verification, n−k
linearly independent dual words with the highest reliability

will be selected as the recovered dual words. The early-

recovered parity check rows to clean the noisy received

codewords to enhance the recovery of the remaining parity

check rows. These three parts can be combined into

different schemes for different noise level scenarios. The

GEV that combines Gaussian elimination and verification

has a significantly lower recovery failure probability and

a much lower computational complexity than an existing

Canteaut-Chabaud-based algorithm, which relies on GE

on n-by-n full-rank matrices. The decoding-aided recov-

ery (DAR) and error-detection-&-codeword-selection-&-

decoding-aided recovery (EDCSDAR) schemes can im-

prove the code recovery performance over GEV for high

noise level scenarios, and their computational complexi-

ties remain much lower than the Canteaut-Chabaud-based

algorithm.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the basic system model

for the transceivers. We consider a general communication

system with the additive white Gaussian noise (AWGN)

channel model.

This paper conducts all algebraic operations and the

associated analysis in binary field GF (2). The original

information bits are grouped into blocks at the transmitter,

each of which consists of k consecutive bits. The v-th

information bits block sv is passed to an unknown linear

block encoder C to generate a corresponding codeword cv .

Specifically, we have

cv = svG, (1)

where cv = (c1v, ..., c
n
v ) ∈ GF (2)n is the 1-by-n code-

word vector, sv = (s1v, ..., s
k
v) ∈ GF (2)k is the 1-by-k

information vector, G = (Ik,p1, · · · ,pn−k) is the k-by-n
generator matrix of the linear block encoder C which is

unknown to the receiver and needs to be recovered. Ik is

the identity matrix with size k and pi, i = 1, ..., n − k
are k-by-1 columns. The corresponding code rate is R =
k/n. The codeword cv is assumed to be modulated by

a binary phase-shift keying (BPSK) modulator and the

corresponding block of modulated symbols is denoted by

bv = (b1v, ..., b
n
v ) ∈ Bn, where B = {−1,+1}. The soft

values of the received bits are also collected in blocks

yv = (y1v, ..., y
n
v ) and can be expressed as

yjv = bjv + wj
v, j = 1, 2, ..., n, (2)

where under the AWGN channel model, the values of

the independent noise w follow the centered-Gaussian

probability distribution function

p(w) =
1√
2πσ2

exp

[−w2

2σ2

]
, (3)

with σ2 = N0/2, where N0 is the noise spectral density.

Let ⊕ denote the addition over binary field GF (2) (or

exclusive-OR (XOR) operation). After demodulation, the

hard decisions of the bits in blocks rv = (r1v, ..., r
n
v ) can

be represented as

rv = cv ⊕ ev, (4)

where ev = (e1v, ..., e
n
v ) ∈ GF (2)n is the random variables

with the crossover probability Pe defined by

Pe =
1

2
erfc

(
1√
2σ2

)
, (5)

where erfc() is the complementary error function.

In this paper, we assume a time synchronization has been

achieved and the values of n and k have been found, e.g.,

using techniques in [16]1. Then the remaining problem of

blind recovery of the linear block code is to find a parity

check matrix of rank n − k from the noisy observations.

Let C⊥ denotes the dual of a code C, i.e.,

C⊥ = {h|∀c ∈ C, c · h = 0}, (6)

1By using the method proposed in [16], we can obtain the correct
values of n and k when the SNR is above a certain value. For the received
noisy bitstream, we can use our proposed error detection and codeword
selection method to eliminate the noise to reduce the SNR.

where c·h denotes the inner product of h and c in GF (2).
Recovery of the (n, k) linear block code can be achieved

by finding the n− k dual words h in C⊥ that are linearly

independent.

III. A LOW COMPLEXITY ALGORITHM WITH ERROR

DETECTION AND CODEWORD SELECTION AND

DECODING AIDED-RECOVERY AND GAUSSIAN

ELIMINATION AND VERIFICATION

In this section, a new scheme, referred to as Error

Detection and codeword selection and Decoding Aided-

Recovery (EDCSDAR) scheme, which is much simpler

than the existing algorithms described in Appendix A, is

proposed for linear block code recovery. The proposed

EDCSDAR algorithm includes three key steps: 1) error

position detection and codeword selection; 2) Gaussian

elimination (GE) and verification of the recovered dual

words; 3) noise-reducing decoding.

A. Error Detection and codeword selection

Recall that we consider the AWGN channel model.

The codewords are assumed to be modulated by a BPSK

modulator. So each received bit has a Gaussian noise in

it. The received noisy soft value stream is firstly divided

into M blocks of length n and then arranged in an M -

by-n matrix Y. After demodulation, the hard decisions of

matrix Y is an M -by-n binary matrix X.

It is observed that when a received bit’s soft value is

near 0, it is more likely that there is an error in the hard

demodulated bit, i.e., if the absolute value of a received

bit is smaller than others, it is more likely that an error

occurs during the demodulation.

With this observation into consideration, we can esti-

mate the error positions in the hard received codeword

matrix with a certain probability, select the codewords in

which the positions of the detected errors concentrate in

a certain number of rows corresponding to the bits of a

received codeword or with least number of errors. In this

way, the correct dual words that are not affected by the

detected errors should be obtained with the code recovery

scheme.

Recall that the parity check matrix H =
(
P, I(n−k)

)

has a systematic formation, each dual word has more non-

zero elements in the first k positions and only 1 non-zero

element in the rest n−k positions. Hence, the errors should

be more concentrated in the n−k positions where the non-

zero elements are sparse.

1) Divide received soft codeword matrix Y into two

sub-matrices Y1 with size M -by-k and Y2 with size

M -by-(n− k).
2) Conduct error detection on Y1 with |Y1| ≤ t1 and

Y2 with |Y2| ≤ t2 to obtain the estimated error

sub-matrices E1 and E2.

3) Concatenate two estimated error matrices to form

the M -by-n complete estimated error matrix E =
(E1,E2).

4) Find the indexes of the columns of E that have all

zeros. The corresponding columns in the received

codeword matrix X have no estimated errors in them,

which are selected to form Ms-by-n Xs used to

recover some dual words.



B. Gaussian Elimination and Verification

In this subsection, a new scheme, referred to as Gaus-

sian elimination with verification (GEV) is proposed for

linear block code recovery. The proposed GEV algorithm

includes two key steps. The first step is to recover the dual

word candidates by performing GE on a k-by-k full-rank

matrix. The second step is to verify the recovered dual

word candidates by using the reliability associated with

each dual word candidate to improve recovery reliability.

The proposed scheme finally selects n − k linearly inde-

pendent dual words with the highest reliabilities as the

recovered dual words. Details of the proposed algorithm

will be described in the following

1) Divide the matrix Xs into two sub-matrices Xs1

with size Ms-by-k and Xs2 with size Ms-by-(n−k),
so that Xs = (Xs1,Xs2).

2) Perform GE on the k-by-Ms matrix XT
s1 with

Gauss–Jordan elimination through pivoting (GJETP)

algorithm [17] to find the column indexes of the

columns with pivots to obtain the k-by-k matrix

(R1)
T

and obtain the corresponding transition ma-

trix Dt1 as the inverse matrix of the full-rank matrix

(R1)
T

. With the column indexes of the columns with

pivots, we can select the corresponding columns in

XT
s2 to obtain (R2)

T
with size (n− k)-by-k

3) Obtain p̂j which is defined as the recovered pj with

p̂j = (R1)
−1

r2,j . (7)

where r2,j is the jth column in the matrix R2

4) Obtain the recovered dual words, i.e., the rows of

the obtained parity check matrix Ĥ =
(
P̂, I(n−k)

)
,

where P̂ = (p̂1, · · · , p̂n−k) is the recovered P

matrix.

5) For each obtained dual word ht, calculate wht
=

htX
T , where wht

has length M and weight dht
.

6) If dht
≤ Th, where Th can be calculated with

equation (12), we calculate the reliability of each

dual word, which denotes the probability that a tested

n-tuple is a true dual word [11] by

pht

=

(
1+(1−2Pe)

|ht|
)M−dht

(
1−(1−2Pe)

|ht|
)dht

2M
.(8)

7) Use ht and pht
to update the dual word table

(DWT) which stores maximally (n− k) candidates

of dual words. These dual word candidates must be

linearly independent.

8) After all obtained dual word candidates are tested,

take the n − k dual word candidates in DWT as

the recovered dual words and use them to form the

parity check matrix.

After the verification, to make sure that the newly

obtained dual word candidates are not correlated with the

previously obtained dual word candidates in table DWT,

we need to use GE again. For this purpose, we propose

another efficient GE algorithm, which allows us to use

the knowledge of previously obtained linearly independent

dual word candidates through pivoting. The details of this

algorithm are presented in Appendix B.

C. Noise-Reducing Decoding

After recovering n − k dual words, the parity check

matrix can be reconstructed and used to perform error

correction. For some error-correcting codes, e.g., LDPC

codes [18], [19], error correction can be done without

recovering all the n − k dual words. When some of the

dual words are missing, the LDPC code still has some

error correction capability and the BER decreases with a

decreasing number of missing dual words.

Based on the above analysis, we propose a decoding-

aided recovery (DAR) scheme that uses early-recovered

parity check rows to clean up the noisy received codewords

to enhance the recovery of the remaining parity check

rows. This algorithm includes the following steps:

1) Conduct code recovery procedure with the proposed

GEV on the M -by-n matrix X to obtain i linearly

independent dual words to form the matrix H
′

.

2) If 1 ≤ i ≤ n − k − 1, conduct decoding for each

individual received noisy soft codeword yi with the

obtained dual word matrix H
′

with adaptive belief-

propagation decoder to obtain the decoded bit y
′

i to

form the M -by-n decoded codeword matrix X
′

.

3) Conduct code recovery procedure with the proposed

GEV on the M -by-n decoded codeword matrix X
′

to obtain i
′

linearly independent dual words to form

the i
′

-by-n dual word matrix H
′

.

4) Proceed to Step 2 until Niter iterations have reached.

The proposed DAR scheme requires at least one recovered

dual word to commence the decoding process. For highly

noisy channels, this scheme will not perform well.

D. Different Schemes for Different Noise Scenarios

The GEV that combines Gaussian elimination and ver-

ification has a significant performance improvement com-

pared to that achieved by an existing algorithm in terms

of recovery accuracy, and the computational complexity is

also much lower than the existing ones. Simulation results

show that using the proposed GEV algorithm can improve

the code recovery performance when a small number of

GE is used and the noise level is relatively small. For

higher noise levels, one can only recover some of the

correct dual words, but not all of n−k correct dual words,

the decoding-aided recovery (DAR) combining GEV and

noise-reducing decoding can improve the code recovery

performance over GEV. For even more more severe noise

levels, error-detection-&-codeword-selection-&-decoding-

aided recovery (EDCSDAR) schemes combining error-

detection-&-codeword-selection, GEV, and noise-reducing

decoding can improve the code recovery performance over

GEV and DAR. After more than one dual words are

recovered with the aid of error detection and codeword

selection, one can use the DAR scheme to decode all the

selected codewords and obtain the decoded log-likelihood

ratio (LLR) values of all the received codewords, which

are used to estimate error positions with LLR thresholds
4×t1/N0 and 4×t2/N0 in the next iteration, where N0 is the

noise spectral density. Then, the estimated error matrix and

the selected decoded codewords are updated accordingly

to recover more dual words. The DAR scheme’s and

EDCSDAR scheme’s computational complexities remain

much lower than the Canteaut-Chabaud-based algorithm.



TABLE I
THE COMPUTATIONAL COMPLEXITY OF THE CODE RECOVERY

ALGORITHMS.

Algorithm Complexity

Brute Force Search O(M2n)

Canteaut-Chabaud O(NGE(Mn2 +

(
n/2
p

)2

))

Yu’s scheme O

(
Nc2

[
Mn2 + (Nc1(

n(n− k)2 +

(
(n−k)/2
p

)2
))])

Proposed GEV O(NGE ·M · k2)
Proposed DAR O(Niter ·NGE ·M · k2)

Proposed EDCSDAR O(Niter(NGEMk2 +Mn))

E. Analysis of the Computational Complexity

Note that the computational complexity of the proposed

GEV algorithm is mainly related to the GE process on a

k-by-k matrix, and there are NGE times of GE. Hence, the

computational complexity of the proposed GEV algorithm

is O(NGE ×M × k2).
The computational complexity of the DAR algorithm is

mainly related to several iterations of dual word recovery

using the proposed GEV algorithm and channel decoding

with the recovered dual words. It can be observed that

the computational complexity of channel decoding with

the part of dual words can be neglected as compared with

the computational complexity of the dual word recovery

process. Note that there are Niter number of iterations

used. Therefore, the computational complexity of the DAR

algorithm is O(Niter×NGE·M ·k2). The main contributing

factor to the computational complexity of EDCSDAR is

several iterations of error position detection and channel

decoding with the recovered dual words on all the received

codewords. Therefore, the computational complexity of the

EDCSDAR algorithm is O(Niter×(NGE ·M ·k2+Mn)).
The computational complexities of the existing algo-

rithms, including the Brute Force Search and the Canteaut-

Chabaud algorithms, are compared with that of the pro-

posed GEV algorithm and DAR algorithm, and the results

are shown in Table I. From Table I, it is shown that the

proposed algorithms reduce the computational complexity

significantly as compared with the existing ones.

IV. SIMULATION RESULTS

To demonstrate the performance of the proposed GEV

algorithm, it is used to blindly recover a linear block

code, i.e., cyclic (100, 50) code. The recovery process is

considered to be successful if n− k linearly independent

dual words are found. If the number of linearly indepen-

dent dual words found is less than n − k, or there are

falsely detected dual words in the n−k dual words, or the

recovery process cannot be started because a k-by-k or

an n-by-n full-rank matrix cannot be found, the recovery

is considered to be a failure. The channel is an AWGN

channel, and we assume that the noise variance σ2 is

known. If σ2 is unknown, we can use some existing tech-

niques, e.g., the expectation-maximization (EM) estimator

proposed in [20] to estimate it. The modulation scheme is

BPSK scheme with the symbol power being 1, the channel

error probability Pe is given by (5).
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Fig. 1. Recovery failure probabilities of the proposed GEV algorithm,
Canteaut-Chabaud algorithm and Yu’s algorithm for the Cyclic (100, 50)
code at different values of Pe.

The recovery failure probabilities of the proposed GEV

algorithm, original Canteaut-Chabaud algorithm, revised

Canteaut-Chabaud algorithm, and Yu’s algorithm for the

cyclic (100,50) code are shown in Fig. 1. It can be observed

that the original Canteaut-Chabaud algorithm gets a very

high recovery failure probability at a low channel error

probability (Pe ≤ 5.0 × 10−3). This is because the

Canteaut-Chabaud algorithm relies on conducting GE on

an n-by-n full-rank matrix. For a (n, k) linear block codes,

all the codeword is among a vector space span(G) with

dimension k. If the channel error probability is low, the

number of errors among the hard received codewords is

very small; hence the rank of the hard received codeword

matrix tends to be less than n. Therefore, we cannot

find any n-by-n full-rank matrix, so the recovery process

cannot be started. A revised Canteaut-Chabaud algorithm

was proposed to solve this issue by using GE to find

the full-rank ns-by-M matrix where ns ≤ n. We can

observe that the revised version can work for the low

channel error probability scenario. Meanwhile, it can be

observed that the revised Canteaut-Chabaud algorithm and

Yu’s algorithm get higher recovery failure probabilities

compared to our proposed GEV algorithm. This is because

Yu’s algorithm relies on conducting GE on an k-by-n full-

rank matrix to obtain the systematic matrix. The k linear

independent column in the k-by-n full-rank matrix might

not match the k linear independent column in the true

generator matrix G, and then we will get the wrong parity

check matrix. Besides, by using only the same NGE , the

complexity of the proposed GEV algorithm is much lower

than that of Yu’s algorithm. Moreover, we can also find that

using the proposed GEV algorithm, the recovery failure

probability can be reduced significantly when a larger

NGE is used. In particular, by using only NGE = 10,

the proposed GEV algorithm with known and unknown

noise variance have a lower recovery failure probability as

compared with the original Canteaut-Chabaud algorithm,

the revised Canteaut-Chabaud algorithm, and Yu’s algo-

rithm. Moreover, the proposed GEV algorithm with known

noise variance has a better recovery performance than that

with unknown noise variance. This is because the proposed

GEV algorithm relies on the correct noise variance σ2 to

calculate the threshold Th can be calculated with (12) and

the probability pht
by (18). When there is an error in the



1234

P
e

10-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
R

ec
ov

er
y 

fa
ilu

re
 p

ro
ba

bi
lit

y

Proposed GEV Algo.
Proposed DAR Algo., 2 iterations
Proposed DAR Algo., 3 iterations
Proposed DAR Algo., 4 iterations
Proposed DAR Algo., 5 iterations

Fig. 2. The recovery failure probabilities of the proposed GEV algorithm
and the proposed DAR algorithm for the LDPC (648, 324) code at
different values of Pe.

0 0.1 0.2 0.3 0.4 0.5 0.6
t
1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

ov
er

y 
fa

ilu
re

 p
ro

ba
bi

lit
y

X: 0.05239
Y: 0.1576

Fig. 3. The recovery failure probabilities of the proposed EDCSDAR
algorithm for the LDPC (648, 540) code with different error detection
parameters of t1.

estimation of noise variance σ2, some obtained correct

dual words will be deemed as incorrect ones and will

be removed from the correct dual words candidate list,

resulting in the code recovery failure.

Next, the performance of the proposed DAR algorithm is

verified by simulations. The LDPC parity-check matrices

defined in the IEEE 802.11n standard are used in our

simulations [21]. Accordingly, we use codewords of length

648. The parity-check matrix is specified corresponding

to code rate R = 1/2 in [21]. The value of M is set

to be 5000, and the recovery failure probabilities of the

proposed GEV algorithm and the proposed DAR algorithm

with different iterations are shown in Fig. 2. From Fig. 2,

it can be observed that for all the Pe tested, part of the

dual words can be recovered in the first iteration, and more

dual words can be recovered in the subsequent iterations.

In summary, after each iteration, there are decreases in the

recovery failure probability, and finally, all the dual words

can be recovered.

Then, we carry out the simulation for the LDPC (648,

540) code. The number of received codewords m is

3, 840, 000. The BER is 1.5 × 10−3. From Fig. 3, it is

clear that there is an optimal detection parameter set.

The optimal value is 0.16 when we set t1 = 0.05 and

t2 = 0.28, which is obtained with monte carlo simulation

when Ms is set to be 600. From Fig. 4, we can observe

that in the first iteration, when only two dual words are
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Fig. 4. The percentage of dual words recovered of the proposed
EDCSDAR algorithm with the same detection parameters as compared
with the proposed EDCSDAR algorithm with varied detection parameters
for the LDPC (648, 540) code at different iterations.

recovered, the new BERs are not significantly reduced after

the decoding. However, when we use the same detection

threshold parameters, more than 1400 codewords do not

have any detected error in them and we only need a little

more than k = 540 codewords with no detected errors

to conduct the dual word recovery process with the GEV

method. In this case, we should revise the error detection

threshold t1 for the first sub-matrix until only a little more

than k = 540 codewords with no detected errors are

obtained. With this change of the detection threshold t1,

we can obtain the codewords with fewer true errors. In the

following iterations, we use the same strategy–we revise

the error detection threshold t1 for the first sub-matrix until

only a little more than k = 540 codewords with no detected

errors are obtained. This detection parameter adjustment

will continue until all the dual words are recovered. The

performance of the EDCSDAR with the same detection

parameters and varied parameters are compared in Fig. 4.

We can observe that by adjusting the detection parameter,

only 4 iterations are needed to recover the LDPC (648,

540) code.

V. CONCLUSION

This paper investigates the problem of blind recovery of

the parity check matrix of linear block codes and proposes

a fast recovery scheme consisting of 4 parts. Firstly, this

scheme performs initial error position detection among the

received codewords and selects the desirable codewords.

Then, this scheme conducts Gaussian elimination on a k-

by-k full-rank matrix. Then, it uses a threshold and the

reliability associated to verify the recovered dual words.

Finally, it performs decoding with partially recovered dual

words. These three parts can be combined into different

schemes for different noise level scenarios. The GEV

that combines Gaussian elimination and verification has

a significantly lower recovery failure probability and a

much lower computational complexity than an existing

Canteaut-Chabaud-based algorithm. The DAR and ED-

CSDAR schemes can improve the code recovery perfor-

mance over GEV for high noise level scenarios, and their

computational complexities remain much lower than the

Canteaut-Chabaud-based algorithm.
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APPENDIX A

EXISTING ALGORITHMS

A. Brute Force Search

In [9], an algorithm for finding such dual words by

using brute force search (BFS) was proposed, in which the

received noisy bitstream is firstly divided into M blocks

of length n and then arranged in an M -by-n binary matrix

X.

According to (6), for any h belonging to C⊥, when there

is no transmission error, we have hXT = 0; when the

channel is noisy, we have hXT = wh, where wh is a

vector of length M . According to the definition of Pe and

rv in Equations (4) and (5), it can be derived that

Pr(hrTv = 0) =
1 + (1− 2Pe)

|h|

2
(9)

and

Pr(hrTv = 1) =
1− (1 − 2Pe)

|h|

2
, (10)

where |h| denotes the Hamming weight of h. Thus, when h

is a dual word in C⊥, the Hamming weight |wh| of wh has

a binomial distribution with a mean value of µ1 = M
2 (1−

(1−2Pe)
|h|) and a variance of σ2

1 = M
4 (1−(1−2Pe)

2|h|);
when h is not a dual word in C⊥, |wh| has a binomial

distribution with a mean value of µ2 = M/2 and a variance

of σ2
2 = M/4. It can be obtained that a threshold Th can be

used to separate the two distributions and estimate whether

h belongs to C⊥. To achieve a high detection accuracy, the

intersection between the two distributions should be small.

This can be achieved by using M larger than a certain

value. To make the distance from Th to µ1 and µ2 larger

than three times the standard deviations, the value of M
should satisfy

M >



3
(√

1− (1− 2Pe)2|h| + 1
)

(1 − 2Pe)|h|




2

, (11)

and the corresponding threshold Th can be derived as

Th =
M

2

(
1− (1 − 2Pe)

|h|

2

)

+3

√
M

4

(√
1− (1− 2Pe)2|h| − 1

)
. (12)

B. Code Recovery Using the Canteaut-Chabaud Algorithm

The aforementioned BFS algorithm can hardly be used

for code block length n larger than 20, shorter than

most existing linear block codes. In order to deal with

these codes, an algorithm based on the Canteaut-Chabaud

information set decoding algorithm [12] was proposed by

Valembois [11] and recently were used by Cluzeau [8],

[9] and Cote [13] to recover different types of codes. This

Canteaut-Chabaud algorithm includes the following steps:

1) Select n linearly independent rows in the M -by-n
matrix X to form a n-by-n matrix N.

2) Perform GE on this n-by-n full-rank matrix N

by swapping and XORing columns of X. After

N becomes an identity matrix, we will get a new

matrix X′. Store the transition matrix Q such that

XQ = X′.

3) Choose a small window of l rows among the M −n
remaining rows of X′.

4) Use the same technique as in the BFS algorithm to

find all combinations of 2p columns XORing to 0 on

the l rows of the window, where p is usually equal

to 1 or 2.

5) For each set of 2p columns which meets the require-

ment in Step 4, verify that the XOR on the columns



of X′ is of weight lower than a threshold T , where

T = M
2 −

√
Mn ln 2

2 .

6) Each word h of weight lower than T can be con-

verted to a dual word h′ by h′ = hQ.

When performing GE on this n-by-n full-rank matrix for

several iterations, the Canteaut-Chabaud algorithm only

changes one position in the previous iteration information

set to make the GE step less costly [12].

C. Code Recovery Using the Revised Canteaut-Chabaud

Algorithm

The aforementioned Canteaut-Chabaud algorithm can-

not be used at low channel error probability. This is

because the Canteaut-Chabaud algorithm relies on con-

ducting GE on an n-by-n full-rank matrix. For a (n, k)

linear block code, all the codeword is among a vector space

span(G) with dimension k. If the channel error probability

is low, the number of errors among the hard received

codewords is very small. Hence the rank of the hard

received codeword matrix tends to be less than n. For an

error-free scenario, the rank of the hard received codeword

is only k. Therefore, we cannot find any n-by-n full-rank

matrix, so the recovery process cannot be started. In order

to deal with low error and error-free scenarios, a revised

Canteaut-Chabaud algorithm was proposed. This revised

Canteaut-Chabaud algorithm includes the following steps:

1) Perform GE on the n-by-M matrix XT by swapping

and XORing rows of XT . After XT becomes an up-

per trapezoidal matrix, we will get a new matrix X′.

Store the transition matrix Q1 such that Q1X
T =

X′. If the rank of matrix XT is ns, ns ≤ n, the last

n−ns rows of matrix XT are all zeros row vectors.

2) Each word h in the last n− ns rows of matrix Q1

is a dual word.

3) Select ns not-all-zero rows in the n-by-M matrix X′

to form a ns-by-M matrix Xs.

4) Select ns linearly independent rows in the ns-by-M
matrix Xs to form a ns-by-ns matrix N.

5) Perform GE on this ns-by-ns full-rank matrix N

by swapping and XORing rows of Xs. After N

becomes an identity matrix, we will get a new

matrix X′
s. Store the transition matrix Q2 such that

Q2Xs = X′
s.

6) Choose a small window of l rows among the M−ns

remaining rows of X′
s.

7) Use the same technique as in the BFS algorithm to

find all combinations of 2p columns XORing to 0 on

the l rows of the window, where p is usually equal

to 1 or 2.

8) For each set of 2p columns which meets the require-

ment in Step 4, verify that the XOR on the columns

of X′
s is of weight lower than a threshold T , where

T = M
2 −

√
Mn ln 2

2 .

9) Each word h of weight lower than T can be con-

verted to a dual word h′ by h′ = [h,01×ns
]Q2Q1.

D. Code Recovery Using the Algorithm of Finding Low

Weight code-words

Moreover, an algorithm based on finding low weight

codewords [12] was proposed by Yu [14] to recover LDPC

codes. Yu’s work focused on the recovery of LDPC codes

which has a special property of sparse parity-check matrix.

This algorithm includes the following steps:

1) Select Mc rows randomly in the M -by-n matrix X

to form a Mc-by-n matrix Xc.

2) Select k′ linearly independent rows in the Mc-by-n
matrix Xc to form a k′-by-n matrix C′.

3) Perform GE on this k′-by-n matrix C′ by swap-

ping and XORing rows of C′. After swapping

column of C′ to obtain the systematic matrix

G
′

sys = (Ik′ ,P)I′ , where I ′ is the column swap-

ping/permutation pattern to gather k′ linear inde-

pendent column into the first k′ columns, then

we will get a new parity check matrix H
′

sys =(
PT , In−k′

)
I′

.

4) Find n − k′ low weight dualwords from H
′

sys for

LDPC codes using Canteaut-Chabaud algorithm with

performing GE on this k′-by-k′ full-rank matrix for

Nc1 iterations.

5) Proceed to Step 1 until Nc2 iterations have reached.

E. Computational Complexity

In a code recovery scenario, it is very important that

the proposed scheme is feasible for a code with a large

code length n. Further, from the above description we

see that the computational complexity of the existing

algorithms is mainly related to the BFS and GE processes.

For the BFS algorithm, the computational complexity is

O(2n ·M) which is exponential with the code length n.

For the Canteaut-Chabaud algorithm, the computational

complexity is O(M · n2) for step 2 and O

((
n/2
p

)2
)

for

step 4. Steps 1 to 5 will be repeated NGE times. Hence,

the computational complexity of this Canteaut-Chabaud

algorithm is O(NGE · (M ·n2+
(
n/2
p

)2

)). From the above

description, we can see that the computational complexity

of the Canteaut-Chabaud algorithm is much less than that

of the the BFS algorithm. However, it is still very high for

the code with code length n ≥ 1000. For Yu’s algorithm,

the computational complexity is O(M · n2) for steps 2

and 3 and O

(
Nc1 ·

[
n · (n− k)2 +

(
(n−k)/2
p

)2
)]

)

for step 4. Steps 1 to 5 will be repeated

Nc2 times. Hence, the total complexity is

O

(
Nc2

[
Mn2 +

(
Nc1

(
n(n− k)2 +

(
(n−k)/2
p

)2
))])

.

APPENDIX B

GAUSSIAN ELIMINATION BASED RECOVERY

ALGORITHMS

F. Recovery of the First n− k Dual Word Candidates

Recall that the received noisy hard bitstream is firstly

divided into M blocks of length n and then arranged row-

wise into an M -by-n binary matrix X. We can divide the

matrix X into two sub-matrices X1 with size M -by-k and

X2 with size M -by-(n− k), so that X = (X1,X2). Then

we select k row vectors from the matrix X where cor-

responding row vectors in the sub-matrix X1 are linearly



independent to form a k-by-n matrix R, which is given

by

R =
(
rT1 , . . . , r

T
k

)T
=




r11 r21 · · · rn1
r12 r22 · · · rn2
...

. . .
. . .

...

r1k−1 r2k−1 · · · rnk−1

r1k r2k · · · rnk



.(13)

When there is no transmission error, for the matrix R,

we have

R = SG, (14)

where R is the received hard codeword matrix, S =(
sT1 , s

T
2 , . . . , s

T
k

)T
is the k-by-k message matrix and G

is the k-by-n generator matrix defined in Section II. The

matrix R can be divided into two sub-matrices R1 with

size k-by-k and R2 with size k-by-(n − k), so that

R = (R1,R2). The jth column in the sub-matrix R2 is

defined as r2,j = (r12,j , ..., r
k
2,j)

T , and r2,j can be obtained

by

r2,j = S× pj = R1 × pj , (15)

where pj = (p1j , ..., p
k
j )

T is the jth column of P.

When the k message vectors among the k-by-k message

matrix R1 are linearly independent, i.e., R1 is a full-rank

matrix, we have

p̂j = (R1)
−1

r2,j . (16)

where p̂j is the recovered pj .

According to (16), with the knowledge of the full-

rank matrix R1, we would be able to obtain the jth

column of the parity check matrix P. Hence, we need to

find k codewords among the M codewords of X whose

message vectors are linearly independent to form R and

obtain (R1)
−1

simultaneously. To achieve this, we adapt

the Gauss–Jordan elimination through pivoting (GJETP)

algorithm [17] to perform GE on the sub-matrix X1.

By adapting GJETP, the k linearly independent rows

among the M rows of X1 can be found efficiently.

Meanwhile, the inverse matrix of R1 can be obtained

without performing matrix inversion. More specifically,

our proposed dual word recovery algorithm includes the

following steps:

1) Perform GE on the k-by-M matrix XT
1 by swapping

and XORing rows of XT
1 to obtain a new matrix

A which is row echelon form of XT
1 and store the

transition matrix Dt1 such that A = Dt1X
T
1 . (Note

that the elementary row operations do not affect the

dependence relations between the column vectors.

This makes it possible to use row reduction to find

linearly independent column vectors.)

2) Store the column indexes of the columns with pivots

in a full-rank index table (FRIT) since the indepen-

dent columns of the reduced row echelon form A are

precisely the columns with pivots [17].

3) Form the full-rank matrix (R1)
T

with the columns

vectors whose column indexes are in the FRIT.

4) Do back substitution on A to obtain the correspond-

ing transition matrix Dt1 as the inverse matrix of the

full-rank matrix (R1)
T

.

We now obtain Dt1 =
(
(R1)

T
)−1

and (R1)
−1

=

(Dt1)
T 2. The details of this algorithm are presented in

Algorithm 1.

G. Recovery of Additional Dual Word Candidates

We need to perform GE on different k-by-k full-rank

matrices to obtain more dual word candidates. GE is

computationally expensive. In order to avoid repeating this

procedure, we follow the idea proposed in [12] to choose

at each step to replace only one column of the previously

obtained full-rank matrix and operate on this new matrix.

Recall that FRIT is the previously obtained index

vector which contains the k-element subset of column

indexes of XT
1 and the columns indexed by FRIT are

linearly independent.
[
XT

1

]
(:,µ)

and
[
XT

1

]
(:,FRIT\{λ}})

are linearly independent if and only if A(x,µ) = 1 where

x is the non-zero element row index number of A(:,λ).

After finding the new linearly independent column with

column index µ, we can obtain a new set of column indexes

FRIT′ = FRIT\{λ} ∪ {µ} to form the full-rank matrix

R′
1. We also need to obtain the inverse matrix of the newly

obtained full-rank matrix R′
1. This can be done by simply

adding the x-th row of matrix A to all other rows A(z,:)

when the corresponding element A(z,µ) is not zero.

Hence, after k steps, we can obtain a completely new

full-rank matrix and its inverse matrix. Then, we can

calculate p̂j , 1 ≤ j ≤ n− k, with (16).

H. Verification of the Recovered Dual Word Candidates

When the channel is noisy, the recovered dual words

h1,h2..., might not be correct. These recovered dual

words are rows of the obtained parity check matrix Ĥ =(
P̂, I(n−k)

)
, where P̂ = (p̂1, · · · , p̂n−k) is the recovered

P matrix. To improve the accuracy of the recovery, we

propose to perform verification on all the recovered dual

words candidates based on the reliability of each recovered

dual word.

To measure the reliability of each dual word, the prob-

ability pht
, which denotes the probability that a tested n-

tuple is a true dual word. In [11], a way to calculate the

probability pht
of a tested n-tuple being a true dual word

is proposed. When htX
T = wht

and |wht
| = dht

, pht
is

given by

pht
= Pr[|wht

| = dht
]

=
[
Pr(htr

T
v = 0)

]M−dht
[
Pr(htr

T
v = 1)

]dht .(17)

For channel with error probability Pe, inserting (9) and

(10) into (17), we obtain that

pht
=

(
1 + (1− 2Pe)

|ht|
)M−dht

(
1− (1− 2Pe)

|ht|
)dht

2M
.

(18)

In summary, our proposed dual word verification scheme

includes the following steps:

1) For each obtained dual word ht, calculate wht
=

htX
T , where wht

has length M and weight dht
.

2Note that the transpose of an invertible matrix is also invertible, and
its inverse is the transpose of the inverse of the original matrix, i.e.,(
(U)T

)
−1

=
(
(U)−1

)T
.



2) If dht
≤ Th, where Th can be calculated with

equation (12), we calculate the probability pht
of

ht by (18).

3) Use ht and pht
to update the dual word table

(DWT) which stores maximally (n− k) candidates

of dual words. These dual word candidates must be

linearly independent.

4) After all obtained dual word candidates are tested,

take the n − k dual word candidates in DWT as

the recovered dual words and use them to form the

parity check matrix.

To make the recovery failure probability as small as possi-

ble, the dual word candidates should be stored in table in

order of their probabilities, i.e., phi1
≥ phi2

≥ . . . phin−k
.

After the verification, to make sure that the newly

obtained dual word candidates are not correlated with the

previously obtained dual word candidates in table DWT,

we need to use GE again. For this purpose, we propose

another efficient GE algorithm, which allows us to use

the knowledge of previously obtained linearly independent

dual word candidates through pivoting. The details of this

algorithm are presented in Algorithm 2.

I. Efficient Gaussian Elimination Algorithms

In this paper, we need to efficiently find k codewords

among the M codewords of X whose message vectors

are linearly independent to form R and obtain (R1)
−1

simultaneously. To achieve this, we adapt the well-known

Gauss–Jordan elimination through pivoting (GJETP) al-

gorithm [17] to perform GE on the sub-matrix X1. The

details of this algorithm are presented in Algorithm 1.

For the obtained dual word candidates, to verify the

linear independence between the newly obtained dual word

candidates and the previously obtained dual word candi-

dates, we propose another algorithm that allows us to use

the knowledge of previously obtained linearly independent

dual word candidates. The details of this algorithm are

presented in Algorithm 2.

At the beginning, a dual word candidate h1 is obtained

and verified with the threshold in step 2). When h1 6= 0,

we let Q = (hT
1 ) and conduct GE on the k-by-1 matrix

Q by swapping and adding rows to obtain a new matrix

Q′ = [1, 0, ..., 0]T , which is the row echelon form of Q,

and the corresponding transition matrix is Dt2. Now, we

already have one dual word candidate. Then when another

dual word candidate hT
2 is obtained, to make sure that

hT
2 is linearly independent with hT

1 , we can calculate that

h′
2 = Dt2h

T
2 and check whether there is a new pivot

appeared in h′
2 when compared with Q′ [17]. If there is, we

conclude that hT
2 is linearly independent to hT

1 and com-

bine h′
1 and h′

2 to form an n-by-2 matrix. Then we conduct

GE on the n-by-2 matrix Q = (Q′,h′
2) by swapping and

adding rows to obtain the row echelon form of Q, i.e., Q′,

and the corresponding updated transition matrix Dt2. After

processing a number of obtained dual word candidates,

suppose that we already have Ni dual words in the DWT,

and an n-by-Ni full-rank matrix Q′ which has row echelon

form and the corresponding updated transition matrix Dt2.

When a new dual word candidates ht is obtained, we

calculate h′
t = Dt2h

T
t and check whether a new pivot

[17] appears in h′
t when compared with Q′. If there is, we

Algorithm 1 Efficient Gaussian Elimination Algorithm to

obtain the Full-Rank Matrix and Its Inverse Matrix
Input: X1,

Output:A, Dt1, FRIT,

1) Initialization:A← (X1)
T

; Dt1 ← In;

2) for j from 1 to k do

a) for z from j to M do

i) if the column vector [A](j:k,z) is not all 0

then

A) Permute the zth row with (d+ j − 1)th

row of A and Dt1 where d is the

index of the first non-zero element of

[A](j:k,z);
B) FRIT(j) = z;

ii) end if

b) end for

c) for i from index of the non-zero entry of

A((d+1):k,z)

i) Apply the XOR operation to the zth row

and ith row of A and Dt1 in order to have

A(i,z) = 0:

d) end for

3) end for

4) for j from k to 2 do

a) for i from index of the non-zero entry of

A(1:(j−1),FRIT(j))

i) Apply the XOR operation to the ith row and

jth row of A and Dt1 to have A(i,FRIT(j))

= 0:

b) end for

5) end for

return A, Dt1, FRIT,

conclude that ht is linearly independent to the Ni obtained

linearly independent dual word candidates in the DWT,

we then calculate the new row echelon form matrix with

size n by (Ni+1) and the corresponding updated transition

matrix Dt2. If there is no new pivot, we keep Q′ and P′

to be unchanged.



Algorithm 2 Gaussian Elimination Algorithm to test the

Linear Independence of the Column Vectors

Input: x, NR, Q, Dt2

Output: Q′, Dt2’, NR

1) Initialization: q′ = mod(P · q, 2); j =NR+1;

2) if the column vector q′
(j:n) is not all 0 then

a) Permute the jth row with (d + j − 1)th row

of q and Dt2 where d is the index of the first

non-zero element of q′
(j:n); NR = NR + 1;

Q′ = (Q,q′);
b) for i is among index of the non-zero element

of q′
((d+j):m)

i) Apply the XOR operation to the (i + d +
j − 1)th row and jth row Q′ and Dt2 in

order to have Q
′

((i+d+j−1),j) = 0:

c) end for

3) end if

4) D′
t2 = Dt2

return Q′, D′
t2, NR
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