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Abstract—We consider a remote source coding problem subject
to a distortion function. Contrary to the use of the classical sep-
arable distortion criterion, herein we consider the more general,
f -separable distortion measure and study its implications on the
characterization of the minimum achievable rates (also called f -
separable indirect rate distortion function (iRDF)) under both
excess and average distortion constraints. First, we provide a
single-letter characterization of the optimal rates subject to an
excess distortion using properties of the f -separable distortion.
Our main result is a single-letter characterization of the f -
separable iRDF subject to an average distortion constraint. As
a consequence of the previous results, we also show a series of
equalities that hold using either indirect or classical RDF under
f -separable excess or average distortions. We corroborate our
results with two application examples in which new closed-form
solutions are derived, and based on these, we also recover known
special cases.

I. INTRODUCTION

The mathematical analysis of the lossy source coding under
a fidelity criterion, called rate distortion theory [1], was
developed under the assumption that an encoder observes an
information source x with distribution p(x) defined on the
alphabet space X , and the aim is for the decoder to recon-
struct in a minimal end-to-end rate-constrained manner, its
representation x̂ defined on an alphabet X̂ within a distortion
measure d : X × X̂ 7→ [0,∞). When the information source
generates a sequence of n realizations, the source sequence
induces the distribution p(xn) on the Cartesian product al-
phabet space Xn, with its reconstruction alphabet being X̂n.
For the latter case, Shannon in [1] extended the single-letter
expression of the distortion measure to the n-letter expression
dn : Xn × X̂n 7→ [0,∞) by taking the arithmetic mean of
single-letter distortions, i.e.,

dn(xn, x̂n) =
1

n

n∑
i=0

d(xi, x̂i), (1)

which is often encountered as separable, additive or per-letter
distortion measure.

A natural extension of the lossy source coding problem,
called indirect or remote lossy source coding, was proposed
almost fifteen year later in [2]. Therein the authors considered
the case where the encoder observes a noisy version of the
source x, say z, and the goal is to reconstruct x̂ with minimal
rates subject to an average distortion d : X × X̂ 7→ [0,∞). A

major result in [2] is that for stationary memoryless sources,
the fundamental limit in the asymptotic regime corresponds
to the classical lossy source coding problem with an amended
average distortion constraint. Subsequently, this problem and
some of its variants, e.g., non-asymptotic analysis, excess
distortion measures, multi-terminal systems, were revisited by
many researchers, see e.g., [3]–[12] and references therein.

All the aforementioned efforts in [3]–[12], consider separa-
ble distortion penalties. On one hand, the separability assump-
tion is natural and quite appealing when it comes to the deriva-
tion of tractable characterizations of the fundamental trade-offs
between the coding (or compressed) rate and its corresponding
distortion. On the other hand, the separability assumption is
very restrictive because it only models distortion penalties that
are linear functions of the single-letter distortion in the source
reconstruction. However, in real-world applications, distortion
measures may be highly non-linear. To address this issue and
inspired by [13], here we consider a much broader class of
distortion measures, namely, f -separable distortion measures.

In this work, we derive the following new results: (i)
a single-letter characterization of the minimal rates subject
to an excess distortion using properties of the f -separable
distortion (see Lemma 1); (ii) a single-letter characterization
of the f -separable iRDF (obtained for finite alphabets) subject
to an average distortion constraint that is obtained under
relatively mild regularity conditions and by making use of a
strong converse theorem [8] (see Theorem 1); (iii) new series
of equalities under f -separable excess or average distortion
constraints using indirect or classical RDFs (see Corollary
1 and Theorem 1); (iv) two application examples in which
new analytical solutions are derived for various types of
f -separable average distortions; we also explain how these
analytical expressions recover known results as special cases
(see Examples 1, 2). It is worth mentioning that from (ii),
we also derive the implicit solution of the optimal minimizer
that achieves the characterization of the f -separable iRDF (see
Corollary 2). This result can be readily used to derive new
Blahut-Arimoto type of algorithms [14], [15] for a much richer
class of distortion penalties.

II. PROBLEM FORMULATION

We consider a memoryless source described by the tuple
(x, z) with probability distribution p(x, z) in the product
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alphabet space X ×Z . The remote information of the source
is in x whereas z is the noisy observation at the encoder side.
The goal is to study the remote source coding problem [2],
[5], [6] under an f -separable distortion measure.

Formally, the system model (without the distortion penal-
ties) is illustrated in Fig. 1 and can be interpreted as follows.
An information source is a sequence of n-length independent
and identically distributed (i.i.d) RVs (xn, zn). The encoder
(E) and the decoder (D), are modeled by the mappings

fE : Zn →W, gD :W → X̂n (2)

where the index set W ∈ {1, 2, . . . ,M}.

Encoder Decoderp z xn n( | )
nznx n̂x

( )Ef nz W

Fig. 1: System model.

We consider a per-letter distortion measure responsible to
penalize the remote information source in Fig. 1 given by
d : X × X̂ 7→ [0,∞) and their corresponding n-letter
expressions given by dn : Xn × X̂n 7→ [0,∞). This setting
has recently gained attention in the context of goal-oriented
semantic communication [16], [17], where x can represent the
semantic or intrinsic information of the source, which is not
directly observable, whereas z is the noisy observation of the
source at the encoder side.

Next, we define the precise terminology of the noisy lossy
source codes for the single-letter and the multi-letter case
(without restricting to i.i.d processes at this stage).

Definition 1. (Noisy lossy source codes) Consider constants
ε ∈ [0, 1), D ≥ 0, and an integer M .
(1) We say that a noisy lossy source-code (fE , gD) is an
(M,D)-noisy lossy source code on (X ,Z, X̂ , d) such that
x− z− x̂, if E[d(x, x̂)] ≤ D, where x̂ = gD(fE(z)).
(2) We say that a noisy lossy source-code (fE , gD) is an
(M,D, ε)-noisy lossy source code on (X ,Z, X̂ , d) such that
x− z− x̂, if P[d(x, x̂) > D] ≤ ε where x̂ = gD(fE(z)).
(3) If (fE , gD) is an (M,D)-noisy lossy source code on
(Xn,Zn, X̂n, dn) such that xn − zn − x̂n, we say that
(fE , gD) is an (n,M,D)-noisy lossy source code.
(4) If (fE , gD) is an (M,D, ε)-noisy lossy source code on
(Xn,Zn, X̂n, dn) such that xn − zn − x̂n, we say that
(fE , gD) is an (n,M,D, ε)-noisy lossy source code.

We remark the following special case of Definition 1.

Remark 1. (On Definition 1) In our analysis, we will also
consider as a special case the classical (noiseless) lossy source
codes subject to similar single-letter and multi-letter distortion
measures as in the case of noisy lossy source coding. This
means that we will use special cases of Definition 1. For
example, for a noiseless lossy source code, Definition 1, (1),
will be modified as follows
• we say that a lossy source-code (fE , gD) is an (M,D)-

lossy source code on (X , X̂ , d) if E[d(x, x̂)] ≤ D, where
x̂ = gD(fE(x)) (because x = z).

Definition 1, (2)-(4), are modified accordingly.

Using [13, Definition 1], we consider an f-separable distor-
tion measure associated with the remote information source of
the setup in Fig. 1 defined as follows

dnf (xn, x̂n) , f−1

(
1

n

n∑
i=1

f(d(xi, x̂i))

)
(3)

where f(·) is a continuous, increasing function on [0,∞).
In the sequel, we give the definitions of indirect and direct

(or classical) RDFs under f -separable distortion measures. To
do it, we need the following definition of achievability.

Definition 2. (Achievability) Suppose that a sequence of
distortion measures {dn : n = 1, 2, . . .} on (Xn, X̂n) is
given, such that xn − zn − x̂n. Then, we define the following
statements.
(1) The rate distortion tuple (R,D) is indirectly achievable if
there exists a sequence (n,Mn, D

n)-noisy lossy source codes
such that lim supn→∞

1
n logMn ≤ R, lim supn→∞Dn ≤ D.

(2) The rate distortion tuple (R,D) is indirectly and ex-
cess distortion achievable if for any γ > 0 there exists a
sequence (n,Mn, D + γ, εn)-noisy lossy source codes such
that lim supn→∞

1
n logMn ≤ R, lim supn→∞ εn = 0,

where εn denotes the decoding error probability, i.e., εn =
P
[
xn 6= gD(fE(zn))

]
.

If we assume sequences of noiseless lossy source codes,
we say that a rate distortion tuple (R,D) is directly (and
excess distortion) achievable in analogous way to Definition
2, with Xn = Zn. This means that the sequence of distortion
measures {dn : n = 1, 2, . . .} can be defined either on
(Zn, X̂n) or on (Xn, X̂n).

Definition 3. (iRDF) Given a single-letter distortion measure
d : X × X̂ → [0,∞) and a continuous, increasing function
f on [0,∞), let {dnf : n = 1, 2, . . .} be a sequence of f -
separable distortion measures. Then,

If,d(D) = inf{R : (R,D) is indirectly achievable} (4)

and Îf,d(D) = inf
{
R : (R,D) is indirectly and excess dist-

ortion achievable
}

. If f is the identity function, then we have
a sequence of separable distortion measures; in this case we
omit the subscript f and write Id(D) and Îd(D).

Definition 4. (Direct RDF) Given a single-letter distortion
measure d : Z × X̂ → [0,∞) and a continuous, increasing
function f on [0,∞), let {dnf : n = 1, 2, . . .} be a sequence
of f -separable distortion measures. Then,

Rf,d(D) = inf{R : (R,D) is directly achievable} (5)

and R̂f,d(D) = inf{R: (R, D) is directly and excess distortion
achievable}. If f is the identity function, we omit the subscript
f and write Rd(D) and R̂d(D).

We give the following remark for the previous two Defini-
tions.



Remark 2. (On Definitions 3, 4) In this work our goal is
to characterize the f -separable iRDFs Id,f (D) and Îd,f (D)
for a given distortion measure d(·, ·) and a function f(·). In
addition to the f -separable iRDFs, we consider the following
three special cases: (1) separable RDF Rd(D) and R̂d(D),
(2) separable iRDFs Id(D) and Îd(D), and (3) f -separable
RDFsRd,f (D) and R̂d,f (D). To state our results, we compare
these different classes of RDFs to each other. While the iRDFs
is defined over some space (X ,Z, X̂ , d), it is possible to gen-
erate modified direct RDFs from iRDFs in which case these are
definite over the space (Z, X̂ , d̃), where d̃ : Z × X̂ → [0,∞)
is an amended distortion measure. In general, the underlying
space for the direct RDFs should be clear from context. For
example, Rd(D) refers to an RDF on (X , X̂ , d), while Rd̃(D)

refers to an RDF on (Z, X̂ , d̃).

III. PRIOR WORK

Next, we discuss more extensively some prior results that
will be used in our main results.

A. RDF under Average and Excess Constraints

For i.i.d sources with finite alphabets (X , X̂ ) and bounded
distortion measure d, the RDF is given by

Rd(D) = inf
q(x̂|x) : E[d(x,x̂)]≤D

I(x; x̂).

See e.g., [18, Theorem 10.2.1] and [19, Theorem 5.2.1].
Moreover, we know that for stationary ergodic sources with a
bounded distortion measure,

Rd(D) = R̂d(D). (6)

That is, the RDF is the same under average and excess
distortion constraints [19, Theorem 5.9.1]. We also know that
for stationary ergodic sources R̂d(D) satisfies the so-called
strong converse [8], [20]. Finally, the second order asymptotic
expansion of R̂d(D) is given as well, see e.g., [21], [22], but
this type of analysis is beyond the scope of the present paper.

B. iRDF

For i.i.d sources with finite alphabets (X ,Z, X̂ ) and
bounded distortion measure d, the iRDF is given by

Id(D) = inf
q(x̂|z) :

E[d(x,x̂)]≤D

I(z; x̂)

(a)
= inf

q(x̂|z) :

E[d̃(z,x̂)]≤D

I(z; x̂) ≡ Rd̃(D) (7)

where (a) follows from [2] (see also Remark 2) and Rd̃(D) is
the direct RDF for (X ,Z) with the amended distortion given
by d̃(z, x̂) =

∑
X p(x|z)d(x, x̂). In other words, the indirect

rate distortion problem reduces to a direct rate distortion
problem with a modified per-letter distortion measure [2], [5],
[6], [8]. Moreover, for i.i.d sources, the iRDF is the same
under average and excess distortion constraints

Id(D) = Îd(D) (8)

and the strong converse also holds [8]. Finally, for this prob-
lem, the second-order asymptotic analysis has been addressed
in [8] where it was shown that the equivalence between direct
and indirect problems no longer holds in the second-order
(dispersion) sense.

C. f-Separable RDF

Similar equivalence results hold for f -separable RDFs.
Specifically, for i.i.d sources

Rf,d(D) = Rd̄(f(D)) = inf
q(x̂|x)

E[d̄(x,x̂)]≤f(D)

I(x; x̂) (9)

where Rd̄(·) is the separable RDF for (X , X̂ ) with the
amended distortion given by d̄(x, x̂) = f(d(x, x̂)), see [13].
More generally, it is shown in [13] that for the f -separable
rate distortion problem

R̂f,d(D) = R̂d̄(f(D)). (10)

That is, under excess distortion criterion, the f -separable RDF
reduces to the classical separable case without any assumption
on the underlying source. In fact for stationary ergodic sources,
this result extends to both average and excess distortion criteria
under some regularity assumptions (see [13, Theorem 1]),
namely,

Rf,d(D) = R̂f,d(D). (11)

We remark that the generalizations of the classical rate-
distortion problem to indirect and f -separable rate distortion
problems have intriguing parallels. Both generalizations could
be expressed in terms of a classical amended rate distortion
problem. The same insight holds when we apply both general-
izations simultaneously. As we will see next, the resulting rate-
distortion function could be expressed in terms of the classical
amended rate distortion problem.

IV. SINGLE-LETTER CHARACTERIZATION OF THE
OPERATIONAL RATES FOR i.i.d SOURCES

In this section, we characterize the f -separable iRDFs for
the setup in Fig. 1 for i.i.d sources. Specifically, our main
result states that for i.i.d sources over finite alphabets (under
mild regularity assumptions) we have that

If,d(D) = Rd̃(f(D)) (12)

where Rd̃(D) is the RDF for (X ,Z, d̃) with the amended
distortion given by d̃(z, x̂) =

∑
X p(x|z)f(d(x, x̂)).

First, we give a lemma in which we characterize the f -
separable iRDF under the excess distortion criterion.

Lemma 1. (f -separable iRDF under excess distortion) Given
a single-letter distortion measure d : X × X̂ → [0,∞) and a
continuous, increasing function f on [0,∞),

Îf,d(D) = Îd̄(f(D)) (13)

where Îd̄(f(D)) is computed subject to the single-letter sep-
arable distortion measure d̄(x, x̂) = f(d(x, x̂)).



Next, we make assumptions that will be used to derive the
single-letter information theoretic characterization to our prob-
lem. These assumptions are a counterpart of the assumptions
utilized in [13, Theorem 1]; however, due to the difficulty
of the indirect rate distortion problem, these assumptions are
more restrictive, e.g., we only consider finite alphabets.

Assumptions. Suppose that the following statements are true.
(A1) The joint process {(xn, zn) : n = 1, 2, . . .} is i.i.d

sequence of random variables, namely, p(xn, zn) =
p(x)p(z|x) × . . . × p(x)p(z|x) = p(x|z)p(z) × . . . ×
p(x|z)p(z), for any n;

(A2) The single-letter distortion d(·, ·) and is such that

max
(x,x̂)∈X×X̂

d(x, x̂) <∞; (14)

(A3) The alphabets (X ,Z, X̂ ) are finite.

In particular, assumption (A2) rules out pathological rate-
distortion function for which finite distortion is only possible
at full rate.

Corollary 1. (Consequence of Lemma 1) Under Assumptions
(A1)-(A3), a consequence of Lemma 1 is the following series
of equalities

Îf,d(D) = Îd̄(f(D)) = R̂f,d̂(D) = R̂d̃(f(D)) (15)

where

d̄(x, x̂) = f(d(x, x̂)) (16)

d̂(z, x̂) = f−1

(∑
x

p(x|z)f(d(x, x̂))

)
(17)

d̃(z, x̂) =
∑
x

p(x|z)f(d(x, x̂)). (18)

Proof: The first equality, Îf,d(D) = Îd̄(f(D)), is
shown in Lemma 1. We have that Îd̄(f(D)) = R̂d̃(f(D))

from (6), (7) and (8). Finally, R̂f,d̂(D) = R̂d̃(f(D)) follows
from (10). This completes the proof.

Next, we show the same result for the average rate-distortion
functions.

Theorem 1. (f -separable iRDF under average distortion)
Under Assumptions (A1)-(A3), the f -separable iRDF under
an average distortion constraint satisfies the following equality

If,d(D) = Id̄(f(D)) (19)

where d̄(x, x̂) is given in (16). In particular, this implies that
under Assumptions (A1)-(A3),

If,d(D) = Îf,d(D) = Rf,d̂(D) = Rd̃(f(D)) (20)

and

If,d(D) = inf
q(x̂|z)

E[d̃(z,x̂)]≤f(D)

I(z; x̂) (21)

where d̂(z, x̂) and d̄(z, x̂) are given by (17) and (18), respec-
tively.

Proof: Equations (20) and (21) follow from (19) and the
results in Section III. Namely, we have that Id̄(f(D)) =
Rd̃(f(D)) from (7); Rf,d̂(D) = Rd̃(f(D)) from (10)
and (11), and Id̄(f(D)) = Îd̄(f(D)) = Îf,d(D) from (8) and
Lemma 1. Likewise, (21) is a consequence of (19) and (7).
It remains to show (19). To do it, we need the following useful
lemma.

Lemma 2. Suppose that the remote source (xn, zn) and the
sequence of distortion measures {dn}∞n=1 are such that

lim sup
n→∞

sup
(xn,x̂n)

dn(xn, x̂n) ≤ ∆ <∞. (22)

Then, if the rate-distortion pair (R,D) is excess distortion
achievable, it is achievable under the average distortion.

First note that f -separable iRDF can be upper bounded as
follows:

If,d(D)
(a)

≤ Îf,d(D)
(b)
= Îd̄(f(D))

(c)
= Id̄(f(D)) (23)

where (a) is a consequence of Assumption (A2) and Lemma 2;
(b) follows from Lemma 1; (c) follows from the equivalence
between excess and average iRDF, see (8).
The other direction,

If,d(D) ≥ Id̄(f(D)) (24)

is a consequence of the strong converse by [8]. This completes
the proof.

One pleasing consequence of Theorem 1 is the following
corollary.

Corollary 2. (Implicit solution of Id̄(f(D))) The characteri-
zation in (21) via (19) admits the following implicit solution
to its minimizer

p∗(x̂|z) =
esd̃(z,x̂)p∗(x̂)∑
x̂ e

sd̃(z,x̂)p∗(x̂)
, (25)

where s < 0 is the Lagrange multiplier associated with the
amended distortion penalty E[d̃(z, x̂)] ≤ f(D) and p∗(x̂) =∑
z q
∗(x̂|z)p(z) is the X̂ -marginal of the output i.i.d process

x̂n. Moreover, the optimal parametric solution of (21) via (20)
when If,d(D) > 0 is given by

If,d(D∗) = sf(D∗)−
∑
z

p(z) log

(∑
x̂

esd̃(z,x̂)p∗(x̂)

)
.

(26)

By taking p(z|x) to be a noiseless channel, Corollary 2
gives us an implicit solution forRf,d(D) which was suggested
in [13].

V. EXAMPLES

In what follows, we give two examples to demonstrate the
impact of f -separable distortion measures to a popular class
of finite alphabet sources.

Example 1. (Binary memoryless sources) Let the joint process
(xn, zn) form an i.i.d sequence of RVs such that X = Z =



X̂ = {0, 1} furnished with the classical single-letter Hamming
distortion, i.e.,

d(x, x̂) =

{
0, if x = x̂

1 if x 6= x̂.
(27)

Moreover, let xi ∼ Bernoulli( 1
2 ) and a binary memoryless

channel that induces a transition probability of the form

p(z|x) =

[
1− β β
β 1− β

]
, β ∈

[
0,

1

2

)
. (28)

Using the above input data, we obtain the following theo-
rem.

Theorem 2. (Closed-form solution) For the previous inputs
and for any continuous, increasing function f(·), we obtain

If,d(D) = Id̄(f(D)) =[
1− hb

(
f(D)− (1− β)f(0)− βf(1)

(1− β)f(1) + βf(0)− (1− β)f(0)− βf(1)

)]+

(29)

where [·]+ = max{0, ·}, f(D) ∈[
(1− β)f(0) + βf(1), f(0)+f(1)

2

]
and hb(·) denotes the

binary entropy function.

In Fig. 2 we illustrate some plots of (29) for various
functions f(·) and different distortion levels D. It should be
noted that due to the nature of the indirect rate distortion
problem compared to the classical rate distortion problem,
there are different minimum distortion thresholds for which
the curves are well-defined. In particular, when the function
f is exponential, with β = 0.01 and ρ = 9.2, Fig. 2
demonstrates that the f -separable iRDF curve is non-convex,
monotonic and well-defined for D ∈ (Dexp

min, D
exp
max] =(

1
ρ log(1− β + β exp(ρ)), 1

ρ log
(

1+exp(ρ)
2

)]
. Similarly, if the

function f is third order polynomial with β = 0.15
and α = 0.4 or quadratic with β = 0.001, then,
from Fig. 2 we observe that If,d(D) is again non-convex,
monotonic and well-defined for D ∈

(
Dpol

min, D
pol
max

]
=(

3
√

(1− a)3β − a3(1− b) + a, 3

√
(1−a)3−a3

2 + a

]
and for

D ∈ (Dqua
min, D

qua
max] =

(√
β,
√

1
2

]
, respectively. Clearly, if in

Fig. 2 we consider the function f to be the identity map, then,
as Fig. 2 demonstrates, we obtain If,d(D) = Id̄(f(D)) =
Rd̃(D) and the closed-form solution of (29) recovers the
solution of [3, Exercise 3.8] i.e.,

If,d(D) =

[
1− hb

(
D − β
1− 2β

)]+

if D ∈ [β, 1
2 ]. (30)

This example aims at further emphasizing on the impact of the
f -separable (non-linear) distortion constraint on the indirect
rate distortion curve as opposed to the classical separable
(linear) distortions for which the indirect rate-distortion curve
is always convex.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Fig. 2: Computation of If,d(D) for various functions f(·) and
single-letter Hamming distance.

Special case: If in Example 1 we assume that in (28) we
have β = 0, then our problem recovers the solution of [13,
eq. (44)] for x ∼ Bernoulli( 1

2 ).

Example 2. Let the joint process (xn, zn) form an i.i.d
sequence of RVs such that X = X̂ = {0, 1}, Z = {0, e, 1}
furnished with the Hamming distortion in (27). Moreover, let
xi ∼ Bernoulli( 1

2 ) and a binary memoryless erasure channel
that induces a transition probability of the form

p(z|x) =

1− δ 0
δ δ
0 1− δ

, δ ∈ [0, 1]. (31)

Using the above input data, we obtain the following theo-
rem.

Theorem 3. (Closed-form solution) For the previous input
data, and for any continuous, increasing function f(·) we
obtain

If,d(D) = Id̄(f(D)) =[
(1− δ)

(
log(2)− hb

(
f(D)− δ

2f(1)− f(0)(1− δ
2 )

(1− δ)(f(1)− f(0))

))]+

(32)

where f(D) ∈
[
(1− δ

2 )f(0) + δ
2f(1), f(1)+f(0)

2

]
.

Special case: If the chosen f -separable distortion mea-
sure is additive (function f corresponds to the identity map),
then the closed-form solution of (32) recovers the solution of
[8, Eq. (76)], which in turn admits the closed-form solution

If,d(D) =

[
(1− δ)

(
log(2)− hb

(
D − δ

2

1− δ

))]+

(33)

where D ∈
[
δ
2 ,

1
2

]
.
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