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Abstract

Although the expenses associated with DNA sequencing have been rapidly decreasing, the current
cost of sequencing information stands at roughly $120/GB, which is dramatically more expensive than
reading from existing archival storage solutions today. In this work, we aim to reduce not only the cost
but also the latency of DNA storage by initiating the study of the DNA coverage depth problem, which
aims to reduce the required number of reads to retrieve information from the storage system. Under this
framework, our main goal is to understand the effect of error-correcting codes and retrieval algorithms on
the required sequencing coverage depth. We establish that the expected number of reads that are required
for information retrieval is minimized when the channel follows a uniform distribution. We also derive
upper and lower bounds on the probability distribution of this number of required reads and provide a
comprehensive upper and lower bound on its expected value. We further prove that for a noiseless channel
and uniform distribution, MDS codes are optimal in terms of minimizing the expected number of reads.
Additionally, we study the DNA coverage depth problem under the random-access setup, in which the
user aims to retrieve just a specific information unit from the entire DNA storage system. We prove that
the expected retrieval time is at least k for [n, k] MDS codes as well as for other families of codes.
Furthermore, we present explicit code constructions that achieve expected retrieval times below k and
evaluate their performance through analytical methods and simulations. Lastly, we provide lower bounds
on the maximum expected retrieval time. Our findings offer valuable insights for reducing the cost and
latency of DNA storage.

I. INTRODUCTION

The world’s digital data is growing exponentially, doubling from 30 to 64 zettabytes in just
three years, and it is anticipated to reach 180 zettabytes by 2025, resulting in a data storage crisis.
The demand for storage capacity already exceeds the supply, and the gap continues to grow [27].
Recent research and insights from the IDC emphasize the struggle of existing storage technologies
to meet the demands of the big data era.

Recognizing this challenge, DNA emerges as a promising storage medium due to its exceptional
density and durability. The DNA storage pipeline usually involves three main components. The
first is DNA synthesis, which produces artificial DNA molecules. These synthetic DNA molecules
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are called oligos or strands and they can be designed in a way that encodes the user’s information.
The current synthesis technologies only produce strands that are up to a length of 300 bases [22]
and due to technology limitations, they also produce several noisy copies per encoded strand. Thus,
it is likely that the user information is stored in several different strands. The second component
of the DNA storage pipeline is a storage container, usually a small tube that contains all the short
strands that encode the user information. Lastly, to read back the user information, it is required to
perform DNA sequencing on the strands in the tube. The sequencing process translates the DNA
strands into digital sequences over the DNA alphabet, which are noisy copies of the synthesized
strands. These DNA sequences can be decoded to read back the user’s information.

The sequencing process, which is done using a DNA sequencer, is one of the principal compo-
nents in any DNA storage system [1], [12], [24], [34]. Nowadays, DNA sequencers suffer from
relatively slow throughput as well as high costs relative to other alternative storage technologies [30],
[35], [37]. These issues are related to the so-called coverage depth of DNA storage, which is defined
as the ratio between the number of reads that are sequenced and the number of designed strands [17].
Reducing the coverage depth can improve the latency of any existing DNA storage system and
reduce its costs.

Motivated by the connection between the coverage depth, latency, and cost, and in an effort to
design coding schemes that overcome the drawbacks associated with existing sequencing technolo-
gies, in this work we initiate the study of a novel problem, referred to as the DNA coverage depth
problem. Simply stated, the DNA coverage depth problem aims to minimize the coverage depth
while maintaining system reliability. We will study the required coverage depth as a function of
the DNA storage channel, the error-correcting code, and the algorithms involved in retrieving the
user’s information. Furthermore, we seek to understand how to pair an error-correcting code with a
given DNA storage system in order to minimize the coverage depth. This problem will be studied
under both the random and non-random access settings. While the latter addresses the problem of
retrieving all the information that was being stored, the former describes the case in which the
user is interested in retrieving only a specific part of the stored information. Moreover, we plan to
suggest coding schemes that optimize the required coverage depth and to study, both theoretically
and experimentally, how one can utilize codes to minimize the sequencing time and costs.

Despite significant work on DNA storage, only a small number of works have focused on reducing
the latency and costs associated with sequencing in experimental or theoretical setups. Erlich
et. al. [12] encoded digital information into DNA strands using a Luby transform-based coding
scheme. Later, they diluted their synthesized strands and studied the effect of this dilution on
their ability to sequence and decode the information. The dilution procedure reduced the potential
(maximal) coverage depth of their system down to roughly 1300 reads per strand, thus making the
decoding process more challenging. They showed that thanks to the error-correcting capability of
their scheme, they were able to perfectly retrieve the stored information. In another related work,
Chandak et. al. [6] defined the ratio between the number of synthesized bits and the number of
information bits as the writing cost, and similarly the ratio between the number of bits that have to
be read (sequenced) and the number of information bits was defined as the reading cost. In their
work, they studied the tradeoffs and relations between the writing and reading costs. They first
showed that for the noiseless channel, it is enough to read one copy per designed strand. Thus,
the relation of these two costs can be obtained by inferring the channel as an erasure channel
with an erasure probability that can be approximated using Poisson approximation. Additionally,
the authors suggested an LDPC-based coding scheme that can improve the ratio between the two
costs. They also showed by simulations how their suggested scheme can be used with different
redundancy levels to reduce both the writing cost and the reading cost.

The DNA coverage depth problem is related to the coupon collector’s (CCP), dixie cup, and urn
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problems [11], [14], [15], [23]. For all these problems, it is assumed that there are n different types
of coupons and the question of interest is how many coupons one should collect before possessing
one coupon of each type. It is well known that if the coupons are drawn uniformly at random (with
repetition), then the expected number of coupons necessary to have at least one coupon from each
type is roughly n log n. Under our setting, the coupons refer to the copies of the synthesized oligos
and the goal is to read at least one copy of every oligo.

The CCP has several generalizations [11], [15], [23], some of which will be explored in this work.
One such problem, which is referred to as the MDS coverage depth problem, is how many coupons
one should collect before possessing t copies of k coupons. This generalization represents the
scenario where a reconstruction algorithm that requires t reads of an oligo for successful decoding
is used along with an MDS code that requires correctly retrieving k out of the n synthesized
sequences to recover the stored encoded information. Another problem that is addressed in this
paper is the coding coverage depth problem, which generalizes the MDS coverage depth and
considers the effect of an error-correcting code, which is not necessarily an MDS code. Under this
setup, our main results show that MDS codes are optimal codes for the purpose of reducing the
expected coverage depth. Furthermore, our analysis for the MDS coverage depth problem provides a
deep understanding of the required number of reads that should be sequenced in order to guarantee
a successful retrieval of the information with high probability.

Additionally, motivated by the random-access setting where one wishes to retrieve a single strand
of DNA from a storage system, in Section VI we consider another problem that is related to the
CCP, but to the best of our knowledge has not been studied before. Suppose we are given k
information coupons which we can encode into a set of n total coupons. For any information
coupon say i, what is the expected number of coupons that need to be collected in order to retrieve
the information in coupon i? Trivially, if no code is used and every coupon is collected with the
same probability, then the expected number of coupons that need to be collected is equal to k. In
Section VI, we initiate the study of this problem, which we refer to as the singleton-random-access
problem. Our main result is to show that it is indeed possible to design coding schemes that allow
random access that requires less than k coupons and provide examples of several such schemes.

This paper is organized as follows. Section II introduces the definitions that are used throughout
the paper. In Section III, we formally define the problems that are studied throughout this paper
along with related work. Section III also gives a detailed summary of the main results given in this
paper. Next, in Section IV, we consider the case in which the channel is noiseless and address the
MDS coverage depth problem and the coding coverage depth problem for the noiseless channel.
Section V extends the study of the MDS coverage depth problem to noisy channels, and gives
several bounds on the success probability of the decoding as a function of the number of reads
that were sequenced. Finally, in Section VI, we present our results for the singleton-random-access
problem. For more details on the results and contributions presented in each section, the reader is
referred to Section III-C.

II. DEFINITIONS AND CHANNEL MODEL

In the typical model of DNA-based storage systems [12], [24], [34], the data is stored as a
codeword that can be described by a vector of length-ℓ sequences or strands over the alphabet
Σ = {A,C,G, T}. The set of all length-ℓ vectors over Σ is denoted by Σℓ, and Σ∗ ≜

⋃∞
ℓ=0 Σ

ℓ. For
a positive integer n, [n] denotes the set {1, . . . , n}. In many cases an outer error-correcting C is
used to encode the data over the length-ℓ sequences, so it is assumed that the outer code C receives a
vector of k length-ℓ sequences, U = (u1,u2, . . . ,uk) ∈ (Σℓ)k and returns a vector of n length-ℓ se-
quences X = (x1,x2, . . . ,xn) ∈ (Σℓ)n. For two vectors U = (u1, . . . ,uk1) and V = (v1, . . . ,vk2),
we denote by U ◦ V their concatenated vector, i.e., U ◦ V = (u1, . . . ,uk1 ,v1, . . . ,vk2). In this
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work, the code C is denoted by (n, k) or by [n, k] in case C is an MDS code. The vector X is the
input to the DNA storage system, which we now describe in more detail and is also illustrated in
Fig. 1.

The DNA storage channel, denoted by S, first produces many noisy copies for each of the strands
in the vector X. Then, these noisy copies are amplified using PCR, and lastly, a sample of M of
these strands is sequenced using a DNA sequencing technology [17]. Therefore, the output of the
DNA storage channel can be described as a multiset YM = {{y1,y2, . . . ,yM}}, where each yj ∈ Σ∗

for j ∈ [M ] is called a read and is a noisy version of some xi, i ∈ [n]. It should be noted that our
model assumes that for any read yj , the index i ∈ [n] such that yj is a noisy copy of xi is known
(this can be achieved by encoding the index i within the strand x+ i). Depending on the specific
sequencing technology being used, the reads in YM can be obtained either sequentially (one after
the other), or altogether. The former corresponds to Nanopore sequencing technologies [32], while
the latter describes next-generation sequencing (NGS) technologies [5] (e.g. Illumina). The number
of reads in YM that are noisy copies of the i-th strand xi, i ∈ [n], depends upon some categorical
probability distribution p = (p1, . . . , pn), where for i ∈ [n], pi is the probability to sample a read
of xi. The probability distribution p is a function of the DNA storage channel S and is referred
by the channel probability distribution, or in short channel distribution; Note that the distribution
p might also depend on the design of the DNA strands in X, however for simplicity, in this work
we assume that p is only a function of the channel S.

Remark 1. Note that in several works, see e.g. [21], [29], it is assumed that a set (and not a
vector) of strands is stored in the DNA storage system. However, since the strands in these sets
are tagged by indices anyway, we assume for simplicity that the information is a vector of strands.
Furthermore, it may also be possible that every strand is encoded using an inner code [12], [24].
Nevertheless, since this part is independent of the study of this work, it is not treated as part of the
encoding process, but it is taken into account in the success probability of a retrieval algorithm, as
will be explained below.

The decoding process of X (and thus U) starts with partitioning the reads in YM into groups,
also called clusters, according to their origin strand, i.e., for i ∈ [n], the i-th cluster should contain
all the reads yj that are noisy copies of xi. To simplify the analysis, we assume that this step is
accomplished error-free. In practice, this assumption can be reached using indices in the sequence
xi which can be further protected using some error-correcting code [34]. Hence, the probability of
successfully retrieving X and U mainly depends on the following two components of the solution
being used.

1) Error-correcting code. When X is a codeword in some error-correcting code C, it is possible
to successfully retrieve X even if not all of its n symbols were decoded successfully. The
applicable subsets J ⊆ [n] such that X can be retrieved from the symbols xj for j ∈ J
are determined by the code C. For example, if C is an [n, k] MDS code, then any k strands
(symbols of X) are sufficient to decode the data.

2) The retrieval algorithm. The success probability to retrieve the strand xi also depends on
the retrieval algorithm, which aims to decode a sequence using several noisy copies [4].
Typically, this probability depends on the number of noisy copies which are given as input,
the channel error rates, and the use of an inner code within the strands. In this work, we
model the retrieval algorithm using an integer t ≥ 1, and we assume that each strand xi can
be retrieved given t reads, which are noisy copies of it, and cannot be retrieved given less
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than t reads1.
The main goal of this paper is to study the required sample size M that guarantees successful
decoding of the information. According to our model, this sample size depends on the channel, the
error-correcting code, and the channel probability distribution p.

Remark 2. The analysis presented in this work assumes that the reads in the multiset YM are
received sequentially from the DNA storage channel as illustrated in step 5a of Fig. 1. However, our
results are also relevant for the case in which all the reads are obtained together. More specifically,
the random variable that governs the sample size M for which decoding is possible in the sequential
case can be used to describe the non-sequential case as well. That is, the probability distribution
of the latter corresponds to the decoding success probability given M strands in the non-sequential
case.

In this paper, we explore two different scenarios concerning our problem. In the first scenario,
discussed in both Section IV and Section V, we focus on the objective of recovering all the stored
information. This involves retrieving the entire vector U. On the other hand, in Section VI, we shift
our attention to a different scenario where our goal is to retrieve a specific part of the information,
i.e., a specific subset of symbols from the vector U. For these scenarios, we calculate the expected
required sample size for noiseless/noisy channels and study how it can be minimized using coding
schemes.

III. THE COVERAGE DEPTH PROBLEM IN THE DNA STORAGE CHANNEL

A. Problems Definition
This work studies the required sample size to retrieve the information vector U, or a specific

subset of its symbols, as a function of the DNA storage channel, the error-correcting code, and
the retrieval algorithm. Under this framework, our goal is to understand how to optimally pair an
error-correcting code with a given retrieval algorithm in order to minimize the sample size, while
guaranteeing successful decoding with high probability.

According to our model characterization, we let νpt (C) be the random variable that governs the
number of reads that should be sampled for successful decoding of U. When C is an [n, k] MDS
code, this notation is replaced by νpt (n, k). The uniform distribution is denoted by pu ≜ ( 1

n
, . . . , 1

n
)

and for brevity, we let νt(C) ≜ ν
pu
t (C) and νt(n, k) ≜ ν

pu
t (n, k). The first two problems, which

focus on retrieving the entire information vector U, are defined below.

Problem 1. (The MDS coverage depth problem.) For given values of k and n, and a channel
distribution p find the expectation and the probability distribution of the random variable νpt (n, k).
That is, find the values of E [νpt (n, k)] and P [νpt (n, k) > m] for any m ∈ N.

Problem 2. (The coding coverage depth problem.) For a given value of k, find the following.
1) Given n and p, find an (n, k) code C that is optimal with respect to minimizing E [νpt (C)].
2) The minimum value of E [νpt (C)] over all possible codes C with dimension k and channel

distributions p. That is, find the value Mopt(k) ≜ lim infC,p{E [νpt (C)]}.

The third problem is related to the other setup, in which the user wishes to retrieve a subset of
the k information strands (i.e., a subset of U’s symbols). This subset can be described by an index
set I ⊆ [k], such that the set of information strands to be retrieved is UI = {ui : i ∈ I}. In this
work, we consider the special case in which this subset is a singleton, i.e., the case where the user

1Note that, in practice, the probability that the retrieval algorithm succeeds is not binary. More precisely it is a function that
returns a value between 0 and 1 and increases with t.
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Fig. 1: The DNA storage pipeline.

wishes to retrieve a single information strand ui for some i ∈ [k]. More formally, we are interested
in the following problem.

Problem 3. (The singleton coverage depth problem.)
Given an (n, k) code C, for i ∈ [k], let τi(C) be the random variable that governs the number of

samples to recover the i-th information strand assuming noiseless channel with uniform distribution.
Find the following:

1) The expectation value E[τi(C)] and the probability distribution P [τi(C) > r] for any r ∈ N.
2) The maximal expected number of samples to retrieve an information strand, i.e.,

T C
max ≜ max

1≤i≤k
E[τi(C)].
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3) The average expected number of trials to retrieve an information strand, i.e.,

T C
avg ≜

1

k

k∑
i=1

E[τi(C)].

When no coding is used, (i.e., U = X) C is removed from the notations.

B. Related Work
For the noiseless channel, it is sufficient to have a single read of each xi, i ∈ [n] to retrieve it.

We note that if the channel distribution is the uniform distribution pu, and no code is defined on
the data (i.e., k = n) then finding the expectation listed in Problem 1 is equivalent to the classical
coupon collector’s problem [14]. This problem was first studied by Feller [14] where it was referred
to as the dixie cup problem. Under the assumption that we have n coupons and it is equally likely
to collect any of the coupons, the expected number of draws (i.e., sample size) required to get a
single copy for each coupon is E[ν1(n, k = n)] = nHn = n log n + γn + O(1), where Hn is the
n-th harmonic number and γ ∼ 0.577 is the Euler–Mascheroni constant. Furthermore, it was also
proven [15] that E[ν1(n, k)] = n(Hn − Hn−k). It is well-known that when limn→∞ n − k = ∞,2

the expectation can be approximated by E[ν1(n, k)] ≈ n log(n)− n log(n− k) = n log( n
n−k

).
For noisy channels, i.e., t > 1, the problem is closely related to the classical urn problem [11],

[23]. Suppose there are n labeled urns and each can be filled with identical balls. At every round,
a ball is thrown into one of the urns randomly. In each round, the probability of throwing a
ball to the j-th urn is denoted by pj , for 1 ≤ j ≤ n, and we let p = (p1, . . . , pn). In [23], it
was shown that in order to have t balls in each urn (or equivalently t copies per coupon), the
expected sample size is E[νt(n, k = n)] = n log n+ n(t− 1) log log n+ nCt + o(n), where Ct is a
constant that depends on t. Following that, Erdős and Rényi [11] proved that the distribution of this
random variable is tightly concentrated around the expectation. More specifically, when drawing
n log n + n(t − 1) log log n + nx times, the probability to have at least t copies for n coupons is

asymptotically equal to e−
e−x

(t−1)! for n large enough. Flajolet et al. [15] generalized these results to
a general discrete distribution on the coupons/balls and proved that the expected sample size to
have at least t copies/balls for k out of the n coupons/urns is

E[νpt (n, k)]=
k−1∑
q=0

∫ ∞

0

[uq]

n∏
i=1

(et−1(piv)+u (epiv−et−1(piv)))e
−vdv, (1)

where et(x) =
∑t

i=0
xi

i!
and for a polynomial Q(u), [uq]Q(u) is the coefficient of uq in Q(u).

This known result solves the expectation value listed in Problem 1, not only for pu but for any
channel distribution. As can be seen, for practical purposes, the expression in (1) and its asymptotic
behavior are not easy to calculate or to work with. Hence, in Section V we solve a closely related
problem and present a closed-form expression. Moreover, to the best of our knowledge, the other
part of Problem 1, i.e., studying the cumulative probability distribution P [νpt (n, k) > m], is still
open.

Another related problem was presented in [6] by Chandak et al. In their paper, the authors defined
the writing cost as the number of synthesized bases per information bit, and the reading cost as
the number of bases that have to be sequenced per information bit in order to retrieve the stored
information. Their paper studies the tradeoffs between these two costs. They first showed that for
the noiseless channels, the event of obtaining zero copies of a specific strand is equivalent to an
erasure of this strand, which can be approximated as a Poisson random variable. Thus, they were

2In this case, there exists 0 < a < 1, such that for n large enough k < an.
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able to compute the capacity of this channel and by this obtaining the tradeoffs of the costs. For
the noisy channel, the authors suggested an LDPC-based scheme to improve the ratio between the
costs, for more details see [6].

The problem of random access in DNA storage has already been addressed in several works;
see e.g. [2], [20], [24], [33], [36]. The main goal is to support random access to specific DNA
strands in the storage and this can be supported by the use of different primers for the different
strands or physically storing strands in different storage containers. However, these solutions incur
high costs, and thus the problem of storing strands together using these primers is still important
and this work addresses it from a coding theory perspective.

C. Main Contributions
In this paper, we define a new family of problems that should be considered when designing

DNA storage systems. Additionally, this work provides an extensive analysis and present results
that enhance our understanding of the interplay between error-correcting codes, retrieval algorithms,
and coverage depth. The main results with respect to each of the three problems we defined are
listed below.
The MDS coverage depth problem (Problem 1) For this problem, we have the following results.

1) We show in Theorem 1 that the value of E[νpt (n, k)] is minimized if and only if the channel
has the uniform distribution.

2) We show in Theorem 3 and in Theorem 4 two upper bounds on the probability distribution
of P [νt(n, k) > m]. We further prove in Lemma 1 a lower bound on the probability
P [νt(n, k) ≤ m]. Combining these results in Theorem 5 we prove that for any ε > 0,

log

(
1

1−R

)
+ fc(n,R) ≤ E

[
νt(n, k)

n

]
≤
(
log

(
1

1−R

)
+ t log log n+ 2 log(t+ 1)

)
· (1 + 2ε),

where fc(n,R) = O( 1
n2 ).

3) For practical purposes of DNA storage systems, it is sometimes required to plan ahead and
set the number of reads that should be sampled to guarantee successful decoding. Hence, we
show in Theorem 6, that when sampling more than rE(n, k, t) reads, the expected number
of encoded strands that can not be recovered (i.e., have less than t copies) is at most n− k,
which indicates on the probability of successful decoding. The value of rE(n, k, t) can be
found in equation (11).

The coding coverage depth problem (Problem 2) We fully solve Problem 2 for the noiseless
channel with uniform distribution. We show that MDS codes are optimal with respect to minimizing
E[νt(n, k)]. We also show that for a fixed k, the larger n is, the smaller the value of E[νt(n, k)] is.
The results of this problem are given in Corollary 1 and Theorem 2.
The singleton coverage depth problem (Problem 3) We extensively study the singleton coverage
depth problem for the case in which the channel is noiseless. Our main results are summarized
below.

1) We first study and fully solve the case in which n = k. In particular, we prove that if n = k
then the expected time to retrieve a singleton is minimized when no coding is used and it is
equal to k and T C

max = T C
avg = k (see Lemma 2 and Claim 5).

2) Next, to study more involved cases, we define retrieval sets and minimal retrieval sets, which
correspond to the (minimal) sets of encoded strands from which a specific target singleton
information strand can be recovered. Using this property of codes, we analyze the expected
time to retrieve a singleton given that its minimal retrieval sets are disjoint. See these results
in Theorem 8 and Corollary 3. Moreover, in Corollary 2 we use Theorem 8 to conclude that
the expected time to retrieve a singleton given that C is the simple parity [k+1, k] code is k.
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3) We extend the result of Corollary 2 to any systematic [n, k] MDS code, by the construction and
detailed evaluation of the corresponding generating function. That is, we show in Theorem 9,
that for any [n, k] MDS code C and any i ∈ [k], E[τi(C)] = T C

max = T C
avg = k.

4) We give two explicit code constructions (Construction 1 and Construction 2) for codes with
k information strands for which T C

max < k, i.e., E[τi(C)] < k for all i ∈ [k]. Furthermore, we
analyze the behavior of these codes both analytically and by computer simulations.

5) To conclude the analysis of the singleton coverage depth problem, we provide in Lemma 3
and in Theorem 13 two lower bounds on the value of T C

max. Moreover, in Corollary 6,
for n large enough, we show that for any (n, k) code C, such that R = k

n
, we have that

T C
max ≥ k

(
1
R
+ 1−R

R2 · ln(1−R)
)
. In particular, the latter implies that when R approaches

zero, T C
max ≥ k

2
, and when R approaches one, the lower bound approaches k from below.

IV. THE CODING COVERAGE DEPTH PROBLEM - NOISELESS CHANNEL

In this section, we focus on the setup where the channel is noiseless which refers to t = 1. Hence,
we can assume that the retrieval algorithm simply returns the sampled sequences and thus if xi

has at least one copy, i.e., t ≥ 1, it is enough to retrieve it. Under this setup, the minimum sample
size M is equivalent to the quantity which is governed by the random variable νp1 (n, k). Using
our notation, note that the expected value of νp1 (n, k) is given in (2). In this case the distribution
probability function was studied in [11] and is given in (1). Clearly, when k = 1, we have that
E[ν1(n, 1)] = 1. Hence, this section is focused on the case where k ≥ 2. Our main result is to
solve Problem 2 and to show that MDS codes are optimal for any categorical channel distribution.
Furthermore, we show that E[νp1 (n, k)] is minimized when p is the uniform distribution and is
bounded from below by k log e if k

n
= Θ(1).

In light of the existing results and as a first step toward obtaining Theorem 2, we first show that
for the uniform channel distribution, when k is fixed, E[ν1(n, k)] decreases as n increases.

Claim 1. For all n ≥ k, E[ν1(n, k)] > E[ν1(n+ 1, k)].

Proof. The proof follows by showing that E[ν1(n, k)] is a monotonic function that decreases with n.
From [15] for any n ∈ N we have that

E[ν1(n, k)]− E[ν1(n+ 1, k)] =
k−1∑
i=0

n

n− i
−

k−1∑
i=0

n+ 1

n+ 1− i

=
k−1∑
i=0

(
n

n− i
− n+ 1

n+ 1− i

)
=

k−1∑
i=0

i

(n− i)(n+ 1− i)
> 0,

which completes the proof.

The next claim solves Problem 2.1 and states that given k information strands, for any channel
distribution p, using an [n, k] MDS code minimizes the expectation of νp1 (C) compared to any
other length-n codes. This can be verified by showing that the number of subsets of size k which
are sufficient to retrieve the information is maximized when an MDS code is used.

Claim 2. Given k, n, and p, assume that C is an (n, k) code. Then, it holds that, E[νp1 (n, k)] ≤
E[νp1 (C)], where equality is obtained if and only if C is an MDS code.

Proof. Given a sample of size M , we denote by J ⊆ [n] the indices of the unique strands that are
represented in this sample. If |J | < k then it is impossible to successfully decode the information,
which follows since the dimension of the code is k. Otherwise, when |J | ≥ k, any [n, k] MDS code
can decode the stored information, while if C is not an MDS code there exists J ′ of size k from
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which the stored information can not be decoded using C. Therefore, if C is not an MDS code,
for any J ⊆ [n] we have that either none of the codes can successfully decode the information,
or that the [n, k] MDS code can decode, while C cannot. This implies the inequality stated in the
theorem, where equality holds if and only if C is an MDS code.

We continue towards solving Problem 2.2, and in the next theorem it is shown that for MDS
codes, E[νp1 (n, k)] is minimized when p = pu.

Theorem 1. For any p, E[νp1 (n, k)] ≥ E[ν1(n, k)].

Proof. By (1), which was proven originally in [15], we have that

E[νp1 (n, k)] =
k−1∑
q=0

∫ ∞

0

[uq]
n∏

i=1

(1 + u(epiv − 1)) e−vdv

=
k−1∑
q=0

∫ ∞

0

e−nv

∑
I⊆[n]
|I|=q

∏
i∈I

(epiv − 1)

 dv

=

∫ ∞

0

e−nv ·
k−1∑
q=0

∑
I⊆[n]
|I|=q

∏
i∈I

(epiv − 1)

 dv. (2)

Define f(p1, . . . , pn) ≜
∑k−1

q=0

(∑
I⊆[n]
|I|=q

∏
i∈I(e

piv − 1)

)
. We show next that f is minimized if and

only if pi = 1
n

for all 1 ≤ i ≤ n. Furthermore, since f is minimized if and only if E[νp1 (n, k)] is
minimized, this concludes the proof.

Define g(p) = −1 +
∑n

i=1 pi. Using Lagrange multipliers, the Lagrangian function is

L(p, λ) = f(p) + λg(p) =
k−1∑
q=0

∑
I⊆[n]
|I|=q

∏
i∈I

(epiv − 1)

− λ+ λ
n∑

i=1

pi.

We are looking for values of p, that satisfy

∂L(p, λ)
∂λ

= −1 +
n∑

i=1

pi = 0, (3)

and for all 1 ≤ i ≤ n,

∂L(p, λ)
∂pi

= λ+
k−1∑
q=1

 ∑
I⊆[n]\{i}
|I|=q−1

vepiv
∏
j∈I

(epjv − 1)

 = 0,

which is equivalent to

λ = −vepiv
∑

I⊆[n]\{i}
|I|<k−1

∏
j∈I

(epjv − 1). (4)
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Hence, for any 1 ≤ i < i′ ≤ n we have that

epiv
∑

I⊆[n]\{i}
|I|<k−1

∏
j∈I

(epjv − 1) = epi′v
∑

I⊆[n]\{i′}
|I|<k−1

∏
j∈I

(epjv − 1).

By reorganizing the latter equation, we have that for any 1 ≤ i < i′ ≤ n,

(epiv − epi′v)
∑

I⊆[n]\{i,i′}
|I|<k−1

∏
j∈I

(epjv − 1) = (epiv − epi′v)
∑

I⊆[n]\{i,i′}
|I|<k−2

∏
j∈I

(epjv − 1),

which is equivalent to
(epiv − epi′v)

∑
I⊆[n]\{i,i′}
|I|=k−2

∏
j∈I

(epjv − 1) = 0.

Hence, we have that pi = pi′ or that |{j : j ̸= i, i′, pj > 0}| < k − 2. To complete the proof, let
us show that the minimum is not attained for any p such that, |supp(p)| < n. We prove the latter
using an induction on n. For clarity, we will use the notation fn to indicate the relevant value of
n and pn

u ≜ ( 1
n
, . . . , 1

n
). The base case in which n = 2 can be verified manually. This implies

that p = p2
u =

(
1
2
, 1
2

)
is the only minimum point for f2. Assume the claim holds up to n, and

let us prove its correctness for n + 1. Let p = (p1, . . . , pn+1) be a minimum point for fn+1, and
assume by contradiction that |supp(p)| < n+ 1 and further assume w.l.o.g. that pn+1 = 0. Define
p′ = (p1, . . . , pn) and note that fn+1(p) = fn(p

′). By the induction assumption, we know that a
minimum point of fn has a support of size n and hence, by the analysis of the Lagrangian function,
we have that fn has a unique minimum point at pnu. Therefore, we have that

fn+1(p) = fn(p
′) ≥ fn(p

n
u),

and equality is obtained if and only if p′ = pn
u. Moreover, Claim 1 implies that fn(pn

u) >
fn+1(p

n+1
u ), and thus,

fn+1(p) ≥ fn(p
n
u) > fn+1(p

n+1
u ),

which is a contradiction. Thus, we get that |supp(p)| = n+1, which implies that the only minimum
point of fn+1 is pn+1

u .

Theorem 1, together with the previous claims imply a lower bound on E[νp1 (n, k)], which is
given next.

Corollary 1. For any channel distribution p and any (n, k) code C, it holds that,

E[νp1 (C)] ≥ E[νp1 (n, k)] ≥ E[ν1(n, k)] =
k−1∑
i=0

n

n− i
, (5)

and if limn→∞ n − k = ∞ then
∑k−1

i=0
n

n−i
≈ n log( n

n−k
). Moreover (5) holds with equality if and

only if p = pu.

Finally, we give the asymptotic value for the minimum expected sample size for the noiseless
channel, E[ν1(n, k)].

Theorem 2. Let R be a constant, 0 < R < 1. Then, we have that

lim
n→∞

E[ν1(n, k = ⌊nR⌋)]
k

=
1

R
log

(
1

1−R

)
.
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Furthermore, consider a sequence of MDS codes {Ci}∞i=1 with parameters [ni, ki] such that limi→∞ ki/ni =
0. Then,

lim
i→∞

E[ν1(ni, ki)]

ki
= 1.

Proof. If 0 < R < 1 is fixed, then n goes to infinity together with k and thus we have that,

lim
n→∞

E[ν1(n, k = ⌊nR⌋)]
k

= lim
n→∞

n(Hn −Hn−k)

k
=

1

R
log

(
1

1−R

)
,

where the first equality holds from [14] and the second equality is a known result.
Furthermore, in the case in which we have a sequence of MDS codes {Ci}∞i=1, such that

limi→∞
ki
ni

= 0, the equality below holds.

lim
i→∞

E[ν1(ni, ki)]

ki
= lim

i→∞

ni(Hni
−Hni−ki)

ki
= lim

i→∞

∑ki−1
j=0

ni

ni−j

ki
,

where,

lim
i→∞

∑ki−1
j=0

ni

ni−j

ki
≤ lim

i→∞

ki

(
ni

ni−(ki−1)

)
ki

= lim
i→∞

ki

(
1

1− ki−1

ni

)
ki

= 1,

and,

lim
i→∞

∑k−1
j=0

ni

ni−j

ki
≥ lim

i→∞

ki

(
ni

ni−0

)
ki

= 1.

Thus, we can conclude that, limi→∞
E[ν1(ni,ki)]

ki
= 1.

V. THE MDS COVERAGE DEPTH PROBLEM - THE NOISY CHANNEL

The main goal of this section is to address Problem 1 for the noisy channel under the uniform
distribution. Under this setup, we assume the data is encoded with an [n, k] MDS code and that
each strand xi can be retrieved given some t > 1 reads, which are noisy copies of it, and cannot
be retrieved given less than t reads. Similarly to the previous section, it is enough to successfully
decode k (or more) sequences xi in order to retrieve the stored information and so under this setup
the minimum sample size for our problem is equivalent to the quantity νt(n, k) where t > 1.

It should be noted that as listed in the related work section, the first part of Problem 1, i.e.,
the value of E[νt(n, k)] is known [15] and is given in (1). However, it is not a closed-form
expression, and in this section, we give several closed-form expressions that bound this value
and thus extend the known result. Furthermore, the most related result regarding the probability
distribution P [νt(n, k) > m] was given in [11]. The authors showed that for n = k any x ∈ R, the

probability satisfies P [νt(n, n) > n log n+ (t− 1) log log n+ nx] ≤ e−
e−x

(t−1)! .
In this section, we extend the latter result, by providing several bounds for the case when k < n,

which is assumed for the rest of this section. Our main results for this case are stated in Theorem 3
and in Lemma 1. To discuss these results, we first define the following value. Given n, k, and t
as stated above, we define

r(n, k, t) ≜ n log

(
n

n− k

)
+ nt log log n+ 2n log(t+ 1). (6)



13

In Theorem 3, it is shown that when n is large enough, the probability that more than r(n, k, t)
reads are required to retrieve the information i.e., P [νt(n, k) > r(n, k, t)] approaches zero.

Furthermore, for the case in which k = Rn, where 0 < R < 1 is a fixed constant, the value
of r(n, k, t) can be reduced by replacing the expression log log(n) with any function of n that
approaches to infinity with n. To conclude this discussion, we also show in Lemma 1 that for any c,
the probability that less than n log( n

n−k
)−nc reads are enough to retrieve the information is bounded

from above by e−c(1+ 1
n−k

). We start by showing that for any ε > 0, P [νt(n, k) ≤ r(n, k, t)] ≥ 1−ε
for n large enough.

Theorem 3. For any ε and n, such that ε > 0, n > e
6t·2t−1

ε ≥ 16, we have that,

P [νt(n, k) ≤ r(n, k, t)] ≥ 1− ε

Proof. To prove the statement in the theorem it is suffice to show that P [νt(n, k) > r(n, k, t)] < ε.
Denote r ≜ r(n, k, t) and recall that within the context of the urn problem (see Section III-B),
the random variable νt(n, k) denotes the number of balls (or rounds) until we have a set of k
urns where each urn has at least t balls. Hence, we show that if the number of balls thrown is at
least r, then the probability of having n− k + 1 or more urns which are not filled with t balls is
approaching zero. The approach leveraged in the proof is inspired by a technique first employed
by Erdős and Rényi in [11]. Let us define the following event.
E

(r)
t : After r rounds, there exists a set St, of n− k + 1 urns, each containing less than t balls.

Next, we show that the probability of E(r)
t approaches zero when n is large. To this end, we define

zi(n, r) for 1 ≤ i ≤ n, as a random variable that governs the number of balls in the i-th urn, after
r draws. For n large enough, the probability that urn i has at most t − 1 balls after r draws is
denoted by P [zi(n, r) ≤ t− 1] and is given by,

P [zi(n, r) ≤ t− 1] =
t−1∑
j=0

(
r

j

)(
1

n

)j (
1− 1

n

)r−j

≤ t ·
(

r

t− 1

)(
1

n

)t−1(
1− 1

n

)r−(t−1)

≤ t ·
(
r · e
t− 1

)t−1(
1

n

)t−1(
1− 1

n

)r−(t−1)

,

where the first inequality is proven in Claim 6 in Appendix A, and the last inequality follows from
the fact that

(
r

t−1

)
≤ ( re

t−1
)t−1. Note that ( e

t−1
)t−1 < 3, for t > 1. Thus,

P [zi(n, r) ≤ t− 1] ≤ 3t ·
( r
n

)t−1
(
1− 1

n

)n( r
n
− t−1

n )
.

We have that,

P [zi(n, r) ≤ t− 1] ≤ 3t ·
(
log

(
n

n− k

)
+ t log log(n) + 2 log(t+ 1)

)t−1 (
e(

−r
n

+ t−1
n )
)

≤ 3t · (2 log n)t−1

(
n− k

n

)(
1

logt n

)(
1

(t+ 1)2

)
e

t−1
n

= 3t · e
t−1
n

(t+ 1)2
· (2 log n)

t−1

logt(n)
· n− k

n

= 3t · e
t−1
n

(t+ 1)2
· 2t−1

log(n)
· n− k

n
,
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where the second inequality holds since for n large enough log( n
n−k

)+ t log log(n)+2 log(t+1) ≤
(2 log n). It should be noted that for n > t, which is the case of our interests, we have that
3t · e

t−1
n

(t+1)2
≤ 6t, and hence,

P [zi(n, r) ≤ t− 1] ≤ 6t · 2t−1

log(n)
· n− k

n
.

Now let us define a random variable Y as the number of urns with less than t balls. From the
linearity of expectation, regardless if the urns are independent or not, the expected number of urns
that have less than t balls is,

E[Y ] = Σn
i=1E[zi(n, r)]

= n · P [zi(n, r) ≤ t− 1] ≤ (n− k) · 6t · 2t−1

log(n)
,

where the last inequality holds for n large enough.
Note that

P
[
E

(r)
t

]
= P [Y ≥ n− k + 1],

and hence by Markov’s inequality, we can conclude that,

P [Y ≥ n− k + 1] ≤ E[Y ]

n− k + 1
< 6t · 2t−1

log(n)
.

Thus, we get that P [E(r)
t ] → 0 for n large enough which implies the statement in the theorem.

For fixed-rate codes, i.e., for the case where k = Rn, when 0 < R < 1, and R is a fixed constant
(when n grows), we present a stronger result in the next theorem. The proof of this theorem can
be found in Appendix A.

Theorem 4. Let f : N → R be a function such that limn→∞ f(n) = ∞, and let

rf (n, k = Rn, t) ≜ n log

(
1

1−R

)
+ ntf(n) + 2n(t+ 1). (7)

Then, for n large enough, it holds that

P [νt(n, k) > rf (n, k, t)] ≤ 6tt
(2 · f(n))t−1

et·f(n)
· (1−R) .

Theorem 4 draws a connection between the sample size and the probability of successful retrieval
when using fixed-rate codes. In particular, using the results of Theorem 4 one can pick any function
f(n) that approaches infinity as slowly (or fast) as possible to get an upper bound on this probability
which gets bigger (or smaller).

Next, for any c ∈ R, we denote,

rL(n, k, c) ≜ n log

(
n

n− k

)
− nc. (8)

In the next lemma, an upper bound on the probability P [νt(n, k) ≤ rL(n, k, c)] is given.

Lemma 1. For any c > 0, and any t ≥ 1 it holds that,

P

[
νt(n, k) ≤ n log(

n

n− k
)− nc

]
≤ e−c

(
1 +

1

n− k

)
.
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Proof. We first highlight that νt(n, k) ≥ ν1(n, k), and thus it is enough to show that

P

[
ν1(n, k) ≤ n log(

n

n− k
)− nc

]
≤ e−c

(
1 +

1

n− k

)
.

We have that,

elog(
n

n−k
)−c · E

[
e−

ν1(n,k)
n

]
= elog(

n
n−k

)−c ·
∞∑
j=1

e−
j
nP [ν1(n, k) = j]

=
∞∑
j=1

elog(
n

n−k
)−c− j

nP [ν1(n, k) = j]

=

⌊n log( n
n−k

)−nc⌋∑
j=1

elog(
n

n−k
)−c− j

nP [ν1(n, k) = j] +
∞∑

j=1+⌊n log( n
n−k

)−nc⌋

elog(
n

n−k
)−c− j

nP [ν1(n, k) = j]

≥
⌊n log( n

n−k
)−nc⌋∑

j=1

elog(
n

n−k
)−c− j

nP [ν1(n, k) = j]

≥
⌊n log( n

n−k
)−nc⌋∑

j=1

1 · P [ν1(n, k) = j]

≥ P

[
ν1(n, k) ≤ n log

[
n

n− k

]
− nc

]
.

From [25], the generating function of the geometric random variable ν1(n, k) is given by

Gν1(n,k)(x) = E[xν1(n,k)] =
∞∑
j=0

P [ν1(n, k) = j]xj =
k∏

i=1

(n− (i− 1))x

n− (i− 1)x
=

k∏
i=1

(1− i−1
n
)x

1− i−1
n
x
.

Thus, given x = e−1/n, we get that,

E
[
e

−ν1(n,k)
n

]
=

k∏
i=1

(1− i−1
n
)e−

1
n

1− ( i−1
n
)e−

1
n

=
k∏

i=1

1− i−1
n

e
1
n − i−1

n

≤
k∏

i=1

1− i−1
n

1 + 1
n
− i−1

n

=
k∏

i=1

1− i−1
n

1− i−2
n

=
1− k−1

n

1 + 1
n

=
n− k + 1

n+ 1
≤ n− k + 1

n
,

where in the first inequality we used the fact the e
1
n ≥ 1 + 1

n
. Hence, it holds that, for positive c,

elog(
n

n−k
)−c · E

[
e−ν1(n,k)/n

]
≤ e−c · n

n− k
· n− k + 1

n
= e−c

(
1 +

1

n− k

)
.

Finally, we conclude that,

P

[
ν1(n, k) ≤ n log(

n

n− k
)− nc

]
≤ elog(

n
n−k

)−c · E
[
e−ν1(n,k)/n

]
≤ e−c

(
1 +

1

n− k

)
.
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Combining Lemma 1 and Theorem 3, and assuming t is a constant with respect to n, in the next
theorem we show upper and lower bounds on E

[
νt(n,k)

n

]
.

Theorem 5. For any ε > 0, there exists nε, such that for any n > nε we have that,

log

(
1

1−R

)
+ fc(n,R) ≤ E

[
νt(n, k)

n

]
≤
(
log

(
1

1−R

)
+ t log log n+ 2 log(t+ 1)

)
· (1 + 2ε),

where fc(n,R) = 1
2n
(1 − 1

1−R
) −

∑∞
h=1

B2h

2hn2h

(
1− 1

(1−R)2h

)
= O( 1

n2 ), and Bh denotes the h-th
Bernoulli number.

Proof. First, we highlight that for any integer t > 0, it holds that νt(n, k) ≥ ν1(n, k). Next, we
recall the known results proven in [15], where they showed E[ν1(n, k)] = n(Hn −Hn−k). Hence,
we can conclude that the following holds for n large enough,

E[νt(n, k)] ≥ E[ν1(n, k)]
= n(Hn −Hn−k)

= n

(
log(n) + γ +

1

2n
−

∞∑
h=1

B2h

2hn2h
− log(n− k)− γ − 1

2(n− k)
+

∞∑
h=1

B2h

2h(n− k)2h

)

= n log

(
n

n− k

)
+

1

2

(
1− 1

1−R

)
− n

∞∑
h=1

B2h

2hn2h

(
1− 1

(1−R)2h

)
= n log

(
1

1−R

)
+ nfc(n,R),

where γ ∼ 0.5772156649 is the Euler-Mascheroni constant, where the last equality was proven
in [15]. Next, let rn ≜ r(n, k, t) (recall that by (6), r(n, k, t) = n log( 1

1−R
) + nt log log(n) +

2n log(t + 1)). In Theorem 3 we showed that P [νt(n, k) > rn] < ε. Using the same methods, in
Appendix B we proved Theorem 14 which states that for any integer i ≥ 1 and for n large enough,
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P [νt(n, k) > rn · i] < ε · it−1

logt(i−1)(n)
, and thus we can conclude that,

E[νt(n, k)] =
∑
r∈N

P (νt(n, k) ≥ r)

=
∑
r<rn

P (νt(n, k) ≥ r) +
∑
r≥rn

P (νt(n, k) ≥ r)

≤ 1 · rn +
∑
r≥rn

P (νt(n, k) ≥ r)

= rn +
∞∑
i=1

(i+1)·rn∑
r=i·rn

P (νt(n, k) ≥ r)

≤ rn +
∞∑
i=1

(i+1)·rn∑
r=i·rn

P (νt(n, k) ≥ i · rn)

= rn +
∞∑
i=1

rn · P (νt(n, k) ≥ i · rn)

< rn +
∞∑
i=1

rn · ε ·
it−1

logt(i−1)(n)

= rn + ε · rn
∞∑
i=1

it−1

logt(i−1)(n)

(a)
< rn + 2ε · rn
= rn · (1 + 2ε),

where (a) follows since
∑∞

i=1
it−1

logt(i−1)(n)
< 2 for n large enough and any integer t > 0. Lastly, we

simplify the expression,

1

n
rn(1 + 2ε) =

(
log

(
1

1−R

)
+ t log log n+ 2 log(t+ 1)

)
· (1 + 2ε)

= log

(
1

1−R

)
+O(t log log n),

which completes the proof.

For practical purposes of DNA storage systems, it is sometimes required to plan ahead and sample
the number of reads that guarantees successful decoding with high probability. Hence, we turn to
the following strongly related problem and give a closed-form expression to the corresponding
value. Turning back to the urn problem terminology, we define X(r) as the number of urns that
are not filled with at least t balls after r rounds. The goal is to find a lower bound on the number
of rounds r, that guarantees that the expected number of urns that are not filled with t balls is at
most n− k. That is, to find rE , such that for any r ≥ rE , we have that E[X(r)] ≤ n− k. In order
to derive this result, we first consider the probability that any fixed urn is not filled with t or more
balls by the r-th round. This probability is given by,

p =
t−1∑
j=0

(
r

j

)
n−j

(
1− 1

n

)r−j

≤ e−rD( t−1
r

|| 1
n
),
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where the last inequality follows from Chernoff bound [8] for r ≥ n(t − 1), and D(a||p) is the
Kullback–Leibler divergence [9] which is given by

D(a||p) ≜ a log2
a

p
+ (1− a) log2

1− a

1− p
.

Under our setup, each of the n urns can be interpreted as a Bernoulli random variable with
probability p, which is denoted by X(r)

i for 1 ≤ i ≤ n. Note that X(r) =
∑n

i=1X
(r)
i is the number

of urns that are not filled with at least t balls after r rounds, which implies that the number of
urns that have at least t balls is n−X(r). Our approach will be to determine a value for r, which
guarantees (in expectation) that X(r) is at most n− k. From the linearity of expectation,

E[X(r)] = np ≤ ne−(t−1) log2(
n(t−1)

r
)−(r−(t−1)) log2(

(r−(t−1))n
r(n−1) ). (9)

The next claim will be used in the derivation to follow and its proof can be found in Appendix
C.

Claim 3. For r ≥ n(t− 1), we have that E[X(r)] ≤ n− k, if,

− r

n(t− 1)
e−

r
n(t−1) ≥ −1

e

(
1− k

n

) log 2
t−1

. (10)

Using known results on the Lambert W function [10, Section IV], [7, Theorem 1], the values of
r for which (10) holds can be concluded. This is summarized in the next theorem, and the complete
proof can be found in Appendix C. For 0 < R < 1, we denote,

rE(n, k = Rn, t) ≜ n(t− 1)− n log 2 log(1−R) + n(t− 1)

√
−2 log 2

t− 1
log(1−R). (11)

Theorem 6. Let R = k
n

. For any r ≥ rE(n, k, t), we have that E[X(r)] ≤ n− k.

At this point, we would like to shed some light on the relation between Theorem 3, Theorem 4
and Theorem 6. In our setup, which uses the urn problem terminology, it is assumed that r balls are
thrown into n unique urns, and we are interested in the event that at least k of these urns contain
at least t balls each. This scenario can be parameterized in two different ways; (a) the number of
balls that need to be thrown, and (b) the number of urns that contain t−1 or less balls. The random
variable νt(n, k) governs the value in (a), assuming that the value in (b) is fixed. Analogously, the
random variable X(r) governs the value in (b), assuming that the value in (a) is fixed.

In the case where the probability distribution is tightly concentrated (i.e., where νt(n, k) is tightly
concentrated around its mean and similarly for X(r)), one would expect these two quantities to
coincide. Fig. 2, shows results from computer simulations we made to demonstrate the results of
Theorem 3 and Theorem 6. In the presented simulation we used n = 100, 000 urns, R ∈ {0.5, 0.8},
k = Rn, and t = 5. In each simulation r balls are drawn, each inserted into one of the urns
randomly, and the simulation is considered as success if it ends with at least k urns, each with at
least t balls. For any value of r, the presented result is the fraction of successful simulations out of
1, 000 simulations we have made per r. The Y-axis shows the fraction of successful experiments,
and the X-axis shows the number of draws r normalized by n log( 1

1−R
). It can be seen that the

success rate of both values presented in Theorem 3 (r(n, k, t)) and Theorem 6 (rE(n, k, t)) are 1.
Practically speaking, as mentioned above, the noisy channel fits the real scenario of DNA storage

systems. Hence, it should be mentioned that a similar problem was studied experimentally by Erlich
and Zielinski [12], however, with a slightly different setup. They presented the DNA fountain, a
Luby transform-based scheme and assumed that the total number of reads is fixed and is given (from
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(a) R = 0.5

(b) R = 0.8

Fig. 2: Simulation results of the success rate (fraction of successful experiments) as a function of
the number of draws. The X-axis shows the number of draws (normalized by n log( 1

1−R
)), while

the Y-axis shows the fraction of simulations in which there were at least k urns with t balls each.
The parameters used in the simulations were n = 100, 000, t = 5, and for each number of draws,
we had 1, 000 simulations. It can be seen that for both Theorem 3 and Theorem 6 the success rate
of 1, as expected.
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the DNA sequencer) and it is distributed with a negative binomial distribution. Thus, they were able
to calculate the average number of copies per strand and empirically evaluate the required sample
size as a function of the distribution’s parameters. It should be noted that they only considered
reads of the design length and thus the error rates were reduced. They also evaluated how dilution
affects the distribution and the required sample size.

Finally, another variation of the noisy channel S is studied, which is relevant to the DNA
fountain [12] and similar schemes. Here, it is required to obtain a single noiseless copy from k
out of the n synthesized strands. Assuming uniform distribution on the strands, in this channel,
any sampled read is drawn noiseless with some fixed probability 0 < α < 1. We use the notation
of ωα(n, k) to denote the random variable describing the required sample size to ensure successful
decoding in this case. We note that this setup is easier to analyze, and the following results
can be derived using similar techniques as in the classical coupons collector’s problem [14]; see
Appendix D.

Theorem 7. For any k ≤ n, E[ωα(n, k)] =
n
α
(Hn −Hn−k) .

VI. RANDOM ACCESS

In this section we study the problem of optimizing the sample size for random access queries
in DNA storage systems. Recall that, in this problem, a vector of k information strands each of
length ℓ, U = (u1,u2, . . . ,uk) ∈ (Σℓ)k, is encoded into a vector of n strands, each of length ℓ,
X = (x1,x2, . . . ,xn) ∈ (Σℓ)n that are stored in the DNA storage channel as described in Section II.
Later, the user wishes to retrieve a single information strand ui for some i ∈ [k]. Unless stated
otherwise, we assume the channel is uniform and noiseless.

We start by studying the case when the number of information strands matches the number of
coded strands (i.e. n = k), and prove that the optimal retrieval strategy involves no coding, resulting
in an expected retrieval time of k. Next, we extend our insights to more involved cases, including
systematic MDS codes, affirming that the expected retrieval time remains k for any information
strand. Finally, we present explicit code constructions achieving expected retrieval times below k
and evaluate their performance analytically and through simulations, while also providing lower
bounds on the maximum expected retrieval time in different scenarios.

A. Preliminary Results
Recall that given an (n, k) code C, for i ∈ [k], we denote by τi(C) the random variable that

governs the number of samples to recover the i-th information strand. The next lemma fully solves
Problem 3 when no coding is used.

Lemma 2. Let n ≥ 1. For any 1 ≤ i ≤ n, we have that
1) E[τi] = n and Tmax = Tavg = n.

2) For any r ∈ N we have that P [τi > r] =
(
1− 1

n

)r, and P [τi = r] = 1
n
·
(
1− 1

n

)r−1.

Proof. For the first part, note that for any i, τi has geometric distribution with success probability
p = 1

n
and hence we have that E[τi] = p−1 = n which implies that

Tmax = max
1≤i≤n

E[τi] = p−1 = n,

and

Tavg =
1

n

n∑
i=1

E[τi] =
np−1

n
= p−1 = n.
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For the second part we have that τi > r for an integer r only if ui was not sampled in the first
r trials, and hence

P [τi > r] = (1− p)r =

(
1− 1

n

)r

,

and

P [τi = r] =
1

n
·
(
1− 1

n

)r−1

.

Before we continue with the analysis of more involved cases, we define the n random variables
τ̂i(C), i ∈ [n], such that τ̂i(C) governs the required sample size to retrieve the i-th encoded strand.
Additionally, for every set J ⊆ [n], let τ̂J(C) ≜ maxi∈J τ̂i(C). These random variables are used as
a technical tool in our analysis and the key idea is given in the next lemma. The proof follows the
same ideas as the proof for the coupon collector’s problem and is given here for completeness.

Claim 4. For any (n, k) code C and any J ⊆ [n] of size ρ we have that E[τ̂J(C)] = nHρ.

Proof. Let ti for 1 ≤ i ≤ ρ be the number of draws to collect the i-th strand in J after the (i−1)-th
strand from J was collected. Note that τ̂J(C) =

∑ρ
i=1 ti. Additionally, observe that ti is a geometric

random variable with success probability pi = ρ−i+1
n

and E[ti] = 1
pi

. Hence, by the linearity of the
expectation we have that

E [τ̂J(C)] = E

[
ρ∑

i=1

ti

]
=

ρ∑
i=1

E [ti] =

ρ∑
i=1

n

ρ− i+ 1
= n

ρ∑
i=1

1

i
= nHρ.

For the rest of this section, it is assumed that C is an (n, k) code and X is the encoded codeword
of the information vector U. The structure of C defines for each information strand all the possible
sets of encoded strands that are sufficient for its recovery. This concept is similar to recovery sets
in locally repairable codes [26] as well as the ones with availability [13], [19], [31].

This can be defined formally as follows.

Definition 1. Let C be an (n, k) code. We say that J ⊆ [n] is a retrieval set of the i-th information
strand (i.e., ui) if it is possible to decode the information strand ui from the encoded strands whose
indices belong to J . The set of all retrieval sets of ui is denoted by D̂(i), and D(i) is the set of
all minimal retrieval sets of ui (with respect to the inclusion relation).

We say that an (n, k) code C is a systematic code if for any i ∈ [k] it holds that ui has a retrieval
set of size one. In other words, C is systematic if for any i ∈ [k] we have that

min{|J | : J ∈ D(i)} = 1.

Next, we consider the case of non-systematic codes for k = n (in particular U ̸= X). Since X
and U have the same length, given any set of strands {xi : i ∈ J}, we can recover at most |J |
information strands from U. Our goal is to extend Lemma 2 to the coded case when k = n using
this basic insight.

Claim 5. For any code (n = k, k) C, we have that T C
max ≥ Tmax = n and T C

avg ≥ Tavg = n, where
equality is obtained if and only if C is systematic. In particular, if we let ρi be the size of the
smallest retrieval set for the information strand ui, then
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1) E[τi(C)] = nHρi ,
2) T C

max = nHρ, where ρ ≜ maxi ρi,
3) T C

avg =
∑n

i=1Hρi .

Proof. If each ui can be retrieved from a single strand xj (i.e., C is a systematic code), then
similarly to the proof of Lemma 2 we have that T C

max = T C
avg = E[τi(C)] = n, for any i ∈ [n].

Otherwise, assume w.l.o.g. that u1 cannot be retrieved from a single strand and let J ⊆ [n] be a set
of minimal size |J | = ρ1 such that J ∈ D(1). By the latter observation and since it is possible to
retrieve any information strand ui from all the n strands, the fact that n = k implies that if there
exists J ′ ⊆ [n], such that J ′ is a retrieval set of u1 (i.e., J ′ ∈ D̂(1)) then J ′ contains J . Hence,
|D(1)| = 1, i.e., the set J is the only minimal retrieval set of u1, and by Claim 4, we have that
E[τi(C)] = E [τ̂J(C)] = nHρ1 > n, where the last inequality holds since |J | = ρ1 > 1. Thus,

T C
max = max

1≤i≤k
E[τi(C)] = max

1≤i≤n
nHρi = nHρ,

and

T C
avg =

1

k

k∑
i=1

E[τi(C)] =
1

n

n∑
i=1

nHρi =
n∑

i=1

Hρi .

Note that Hρi ≥ 1 for any i ∈ [k] and since ρ1 > 1, we have that Hρ1 > 1. Hence T C
max > n and

T C
avg > n which completes the proof.

B. The Singleton Coverage Depth Problem
We continue by studying cases where n > k. Next, the case where the minimal retrieval sets

are disjoint is considered. We start with the case in which a strand xi has exactly two minimal
retrieval sets D(i) = {A,B} and A ∩ B = ∅, while the next example considers the simple parity
code which is a special instance of this case.

Example 1. Let C be the (4, 3) parity code. We have that X = (u1,u2,u3,x4), where

x4 = u1 + u2 + u3.

Since the code is symmetric, let us consider w.l.o.g. u1. Note that D(1) = {{u1}, {u2,u3,x4}}
and the two retrieval sets are disjoint. Hence, we cannot recover u1 from a series of r draws only
if the series of draws does not contain u1, and it either contains one unique strand or two unique
strands. Hence,

E [τ1(C)] =
∞∑
r=0

P [τi(C) > r] = 1 +
∞∑
r=1

(
3 · 1

4r
+

(
3

2

) r−1∑
j=1

(
r

j

)
1

4j
· 1

4r−j

)

= 1 + 3
∞∑
r=1

1

4r
+ 3

∞∑
r=1

2r − 2

4r
= 1 + 3 · 1

3
+ 3 · 1

3
= 3.

That is, in this case, E [τ1(C)] = k.

The next theorem extends Example 1 to any code C and an information strand xi with exactly
two minimal retrieval sets A,B such that A ∩B = ∅.

Theorem 8. Let C be an (n, k) code and i ∈ [k]. If D(i) = {A,B}, for two disjoint retrieval sets,
A ∩B = ∅, then E [τi(C)] = n ·

(
H|A| +H|B| −H|A|+|B|

)
.



23

Proof. Denote ρA = |A|, ρB = |B|. For a set of indices J ⊆ [n], let λJ(r − 1) be the number of
different options to draw strands in the first r − 1 draws such that for at least one of the indices
j ∈ J , the strand xj was not drawn. Additionally, let λ(r − 1) be the number of different options
to draw strands in the first r − 1 draws such that the i-th information strand cannot be retrieved
from the set of drawn strands. Note that since D(i) = {A,B}, we have that λ(r−1) is the number
of different options to draw strands in the first r − 1 draws such that at least one strand from A
and at least one strand from B were not drawn. Hence.

λA∪B(r − 1) = λA(r − 1) + λB(r − 1)− λ(r − 1),

and

λ(r − 1) = λA(r − 1) + λB(r − 1)− λA∪B(r − 1)

(a)
=

ρA∑
j=1

(
ρA
j

)
(−1)j+1(n− j)r−1

+

ρB∑
j=1

(
ρB
j

)
(−1)j+1(n− j)r−1

−
ρA+ρB∑
j=1

(
ρA + ρB

j

)
(−1)j+1(n− j)r−1,

where (a) follows from the inclusion-exclusion principle. Using the tail sum formula for the
expectation, we have that

E [τi(C)] =
∞∑
r=1

λ(r − 1)

nr−1
=

∞∑
r=1

ρA∑
j=1

(
ρA
j

)
(−1)j+1(n− j)r−1

nr−1

+
∞∑
r=1

ρB∑
j=1

(
ρB
j

)
(−1)j+1(n− j)r−1

nr−1

−
∞∑
r=1

ρA+ρB∑
j=1

(
ρA+ρB

j

)
(−1)j+1(n− j)r−1

nr−1
.

Next, we analyze the first term in the latter expression and the other two terms can be analyzed
similarly.

∞∑
r=1

ρA∑
j=1

(
ρA
j

)
(−1)j+1(n− j)r−1

nr−1

=
∞∑
r=1

ρA∑
j=1

(
ρA
j

)
(−1)j+1

(
1− j

n

)r−1

(a)
=

ρA∑
j=1

(
ρA
j

)
(−1)j+1

∞∑
r=1

(
1− j

n

)r−1

(b)
=

ρA∑
j=1

(
ρA
j

)
(−1)j+1n

j
= n

ρA∑
j=1

(
ρA
j

)
(−1)j+1

j

(c)
=nHρA .
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We note that (a) holds since the sum is absolutely convergent. (b) follows since
{(

1− j
n

)r−1
}∞

r=1
is

a geometric series. The equality (c) can be observed by considering Euler’s integral representation
of the harmonic numbers [28], HρA =

∫ 1

0
1−xρA

1−x
dx. using the latter we have that

HρA =

∫ 1

0

1− xρA

1− x
dx =

∫ 1

0

1− (1− y)ρA

y
dy

=

ρA∑
j=1

((
ρA
j

)
(−1)j+1

∫ 1

0

yj−1dy

)
=

ρA∑
j=1

(
ρA
j

)
(−1)j+1

j
.

Thus,
E [τi(C)] = n ·

(
HρA +HρB −H(ρA+ρB)

)
,

which concludes the proof.

A direct corollary from Theorem 8 is that Example 1 can be generalized to any (n = k + 1, k)
simple parity code C, and for any i ∈ [k] the expected number of draws to retrieve ui using C is
exactly k.

Corollary 2. Assume C is the (n = k+1, k) simple parity code (i.e., X = (u1, . . . ,uk,
∑k

j=1 uj)).
Then, for any i ∈ [k], we have that, E [τi(C)] = k and T C

max = T C
avg = k.

The proof of Theorem 8 relies on the inclusion-exclusion principle and can be extended to more
than two retrieval sets. Since the proof is technical and repeats the same ideas as the ones from
Theorem 8, it is omitted from the paper.

Corollary 3. Let C be an (n, k) code and i ∈ [k]. If D(i) = {A1, A2, . . . , Av} for mutually disjoint
retrieval sets, then

E [τi(C)] = n ·

(
v∑

s=1

(−1)s+1
∑

1≤j1<···<js≤v

H(|Aj1
|+···+|Ajs |)

)
.

Corollary 2 states that the simple parity code does not improve the value of T C
max. This observation

raises the problem of finding codes that indeed improve this parameter, and next we consider MDS
codes for this purpose. First, recall that by Lemma 2, if no code is used, then we have that
Tmax = Tavg = E [τi] = k for any i ∈ [k]. On the other hand, assume C is a k-non systematic MDS
code in which the minimal size of a retrieval set, for each of the information strands is k. In other
words, any set of less than k encoded strands is not a retrieval set. If C is used, then in order to
retrieve any specific information strand, one should sample a subset of k distinct encoded strands.
Hence, by Corollary 1, for any i ∈ [k], we have that, T C

max = E [τi(C)] =
∑k−1

j=0
n

n−j
≈ n log( n

n−k
),

while if k
n
= R is a constant, we have that n log( n

n−k
) = k

R
log( 1

1−R
) > k. The next theorem

discusses the case where C is a systematic MDS code and shows that for any such code the
expected sample size is exactly k. The proof can be found in Appendix E.

Theorem 9. Let C be a systematic [n, k] MDS code. For any i ∈ [k] we have that E[τi(C)] = k
and hence T C

max = T C
avg = k.

C. Reducing the Singleton Coverage Depth Below k

In all the codes we studied so far, the expected number of reads to retrieve a single information
strand ui, was at least k, which means that these codes do not improve upon the case where no
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coding is used. Next, we present families of (n, k) codes for which T C
max < k. We start with the

following example of an (8, 4) code.

Example 2. Let C(8,4) be the (8, 4) code defined as follows. Let U(8,4) = (u1,u2,u3,u4) ∈ (Σℓ)4

and let
X(8,4) = (u1,u2,u3,u4,u1 + u2,u2 + u3,u3 + u4,u4 + u1) ∈ (Σℓ)8.

Denote xi,j ≜ ui+uj and w.l.o.g. assume that we are interested in retrieving u1. It can be verified
that

D(1) =

 {u1} , {u2,x1,2} , {u4,x1,4} ,
{u3,x2,3,x1,2} , {u3,x3,4,x1,4} ,

{u4,x3,4,x2,3,x1,2} , {u2,x3,4,x2,3,x1,4}

 ,

while D(1) is given with a slight abuse of notation, in which the retrieval sets are given in terms
of the encoded strands rather than their indices to simplify the example. Let Er−1 be the random
variable that represents the number of unique strands that were sampled in the first r − 1 draws.
Since any set of 6 or more unique strands is a retrieval set of u1, we have that

P
[
τ1(C(8,4)) ≥ r

]
=

5∑
i=1

P
[
τ1(C(8,4)) ≥ r|Er−1 = i

]
· P [Er−1 = i]

+ P
[
τ1(C(8,4)) ≥ r|Er−1 ≥ 6

]
· P [Er−1 ≥ 6]

=
5∑

i=1

P
[
τ1(C(8,4)) ≥ r|Er−1 = i

]
· P [Er−1 = i] .

It can be readily verified that P
[
τ1(C(8,4)) ≥ r|Er−1 = 1

]
= 7

8
. In case Er−1 = 2, there are

(
8
2

)
=

28 different pairs of strands, and since τ1(C(8,4)) ≥ r, we should consider only the pairs from which
u1 cannot be retrieved. Note that two of the pairs are in D(1) and 7 additional pairs contain u1.
Hence we have that P

[
τ1(C(8,4)) ≥ r|Er−1 = 2

]
= 28−9

28
= 19

28
. Similarly, there are

(
8
3

)
= 56 different

triples, from which
(
7
2

)
= 21 contain u1, five more triples contain {u2,x1,2} and do not contain u1,

additional five triples contain {u3,x1,3} (and do not contain u1), and two more triples are in D(1).
That is, P

[
τ1(C(8,4)) ≥ r|Er−1 = 3

]
= 56−21−5−5−2

56
= 23

56
. Using similar counting techniques, it can

be shown that P
[
τ1(C(8,4)) ≥ r|Er−1 = 4

]
= 8

70
, and P

[
τ1(C(8,4)) ≥ r|Er−1 = 5

]
= 1

56
. Furthermore,

using the inclusion-exclusion principle, it can be proved that

P [Er−1 = i] =

(
8
i

)
8r−1

i−1∑
j=0

(
i

j

)
(−1)j(i− j)r−1.

By combining all of the above we obtain that

E[τ1(C(8,4))] =
∞∑
r=1

P
[
τ1(C(8,4)) ≥ r

]
=

403

105
≈ 3.838 = 0.9595k.

Example 2 can be extended to any integer k ≥ 2 as follows.

Construction 1. Let C(2k,k) be the (n = 2k, k) code such that

U(2k,k) = (u1,u2, . . . ,uk) ∈ (Σℓ)k

and
X(2k,k) = (u1, . . . ,uk,u1 + u2, . . . ,uk−1 + uk,uk + u1) ∈ (Σℓ)2k.
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Similarly to Example 2, the value E[τ1(C(2k,k))] can be expressed using the conditional proba-
bilities P [τ1(C(2k,k)) ≥ r|Er−1 = i]. The evaluation of these conditional probabilities can be done
using a recursive formula which is given in the next theorem together with the expected value of
τ1(C(2k,k)), while the proof appears in Appendix E.

Theorem 10. For any k ≥ 2, and any j ∈ [k] we have that

E[τj(C(2k,k))] = 1 +
2k−3∑
i=1

B(k, i) · 2k

(2k − i)
(
2k
i

) ,
where

B(k, i) =



(
2k−1

i

)
+ 2B(k − 1, i− 1)−B(k − 2, i− 2) k ≥ 2, i ≥ 2

1 k ≥ 0, i = 0

2k + 1 k ≥ 0, i = 1

1 k = 1, i = 2

0 k = 0, i ≥ 2

0 k = 1, i ≥ 3

.

Even though we did not solve the recursive formula in Theorem 10 to obtain an exact value for
E[τ1(C(2k,k))], we used it to calculate E[τ1(C(2k,k))] for values 2 ≤ k ≤ 100 and the results can be
found in Fig 5. Based on these results we have the following conjecture.

Conjecture 1. For any k ≥ 4 and any j ∈ [k], we have that E[τj(C(2k,k))] < k. Moreover, the ratio
E[τj(C(2k,k))]

k
decreases with k and

lim
k→∞

E[τj(C(2k,k))]
k

< 0.9456.

The following definition is used in the next theorem.

Definition 2. Given an (n, k) code C as defined above and an integer γ ≥ 1, we say that a (γn, γk)
code Cγ is the γ-block code of C if for an information word

U = U1 ◦U2 · · · ◦Uγ = (u1, . . . ,uk) ◦ (uk+1, . . . ,u2k) ◦ · · · ◦ (u(γ−1)k+1, . . . ,uγk),

the corresponding codeword Xγ satisfies,

ECγ (U) = X = X1 ◦X2 ◦ · · · ◦Xγ = EC(U1) ◦ EC(U2) ◦ · · · ◦ EC(Uγ),

where EC denotes the encoder of the code C.

In the next theorem, we show that given an (n, k) code C, one can increase k by using a γ-
block code Cγ , without changing the ratio between the expected number of draws to the number
of information strands.

Theorem 11. Let C be an (n, k) code. For an integer γ ≥ 1, let Cγ be a γ-block code of C. For
any 1 ≤ i ≤ γk, it holds that, E[τi(Cγ)] = γE[τi′(C)], where i′ ≡ i (mod k) and 1 ≤ i′ ≤ k.
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Proof. For any r ≥ 1 draws, let us denote by εri the random variable that governs the number of
strands drawn from Xs (from the r draws), where s is an integer and ui ∈ Us. Then we have that

E[τi(Cγ)] =
∞∑
r=1

P [τi(Cγ) ≥ r]

=
∞∑
r=1

∞∑
z=0

P [εr−1
i = z] · P

[
τi(Cγ) ≥ r|εr−1

i = z
]

(a)
=

∞∑
r=1

r−1∑
z=0

P [εr−1
i = z] · P

[
τi(Cγ) ≥ r|εr−1

i = z
]

=
∞∑
r=1

r−1∑
z=0

(
r − 1

z

)(
1

γ

)z (
1− 1

γ

)r−z−1

· P
[
τi(Cγ) ≥ r|εr−1

i = z
]

=
∞∑
r=1

r−1∑
z=0

(
r − 1

z

)(
1

γ

)z (
1− 1

γ

)r−z−1

· P [τi(C) ≥ z + 1]

=
∞∑
z=0

P [τi(C) ≥ z + 1]
∞∑

r=z+1

(
r − 1

z

)(
1

γ

)z (
1− 1

γ

)r−z−1

=
∞∑
z=0

P [τi(C) ≥ z + 1]
∞∑
r=z

(
r

z

)(
1

γ

)z (
1− 1

γ

)r−z

(b)
=

∞∑
z=0

P [τi(C) ≥ z + 1] · γ

=
∞∑
z=1

P [τi(C) ≥ z] · γ = γE [τi(C)] ,

where equality (a) follows from the fact that the probability to collect z > r − 1 unique strands
from Xs, using only r − 1 draws is zero for any integer s, i.e., P [εr−1

i = z] = 0. To see that
equality (b) holds, recall that

∑∞
r=0 x

r = 1
1−x

, and by taking the derivative of the latter z times we
get

∞∑
r=z

r · (r − 1) · · · (r − z + 1)xr−z =
z!

(1− x)z+1
,

which is equivalent to
∞∑
r=z

(
r

z

)
xr−z =

1

(1− x)z+1
.

Lastly, by substituting x = 1− 1
γ

, equality (a) follows.

Theorem 11 implies that given an (n, k) code C, that achieves good results in terms of minimizing
the expressions E[τi(C)]

k
, for i ∈ [k], it is possible to construct an infinte family of fixed-rate codes

{Cγ}∞γ=1, such that for any integer γ ≥ 1, Cγ is an (γn, γk) code and for any iγ ∈ [γk] there exists
i ∈ [k], such that

E[τiγ (Cγ)]

γk
=

E[τi(C)]
k

.
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That is, for any integer γ ≥ 1, the code Cγ has the same behavior as the code C in terms of
minimizing the normalized expected singleton coverage depth. Hence, combining Example 2 and
Theorem 11 leads to the following corollary.

Corollary 4. For any integer γ ≥ 1, let Cγ
(8γ,4γ) be the γ-block code of C = C(8,4) (see Example 2).

For any iγ ∈ [γk], where k = 4, we have that

E
[
τiγ (C

γ
(8γ,4γ))

]
= T

Cγ
(8γ,4γ)

max = T
Cγ
(8γ,4γ)

avg = 0.9595γk.

Note that our numerical computations of the expression in Theorem 10 imply that the value
E[τi(C(2k,k))]

k
decreases with k, for 2 ≤ k ≤ 100. In particular, for k > 3, E[τi(C(2k,k))]

k
≤ 0.9456 and

thus by Theorem 11 it is possible to construct codes that improve upon the result in Corollary 4
for infinite values of k.

Next, we demonstrate that the value E[τi(C)]
k

can be further reduced, by letting the rates of our
codes vanish.

Construction 2. Let n be an integer, p ∈ (0, 1), and assume for simplicity that np is an integer
that is dividable by k. Additionally, let CMDS

n,k,p be a [n(1 − p) + k, k] systematic MDS code. We
define the (n, k) code Ck

n,p as follows. For U = (u1,u2, . . . ,uk) ∈ (Σℓ)k, let

(u1,u2, . . . ,uk,x1,x2, . . . ,x(1−p)n) ∈ (Σℓ)n(1−p)+k

be the encoding of U using the encoder of CMDS
n,k,p. Then,

X = (u1, . . . ,u1︸ ︷︷ ︸
pn
k

times

, u2, . . . ,u2︸ ︷︷ ︸
pn
k

times

, . . . ,uk, . . . ,uk︸ ︷︷ ︸
pn
k

times

,x1,x2, . . . ,x(1−p)n) ∈ (Σℓ)n.

Theorem 12. For k = 2, 3, there exists p2, p3 ∈ (0, 1), such that for any information strand i ∈ [k],
we have that,

E[τi(C2
n,p2

)] ≈ 1.83 = 0.9143k,

and
E[τi(C3

n,p3
)] ≈ 2.67 = 0.89k.

Proof. We prove the claim only for k = 2, while the proof for k = 3 relies on the exact same ideas.
Assume w.l.o.g. that we want to retrieve u1. For simplicity of the analysis, also assume that X
contains two information stands u1,u2 (without multiplicity), and that each of them can be drawn
with probability p

2
. First note that since (u1,u2,x1,x2, . . . ,x(1−p)n) belongs to a [(1− p)n+ 2, 2]

MDS code, any two distinct strands form a retrieval set for u1, and hence the only case in which
we didn’t retrieve u1 in r draws, is when we draw the same strand (which is not u1) r times.

• τ1(C2
n,p) = 1 only in case we draw u1 in the first draw which happens with probability p

2
.

• τ1(C2
n,p) = r for r ≥ 2 only if the first r− 1 draws are of the strand x ̸= u1 and the last draw

is of a different strand. Hence we have that

P [τ1(C2
n,p) = r] =

(p
2

)r−1 (
1− p

2

)
+ (1− p)n ·

(
1

n

)r−1(
1− 1

n

)
.
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Thus,

E[τ1(C2
n,p)] =

∞∑
r=1

P [τi(Cn,p) = r] · r

=
p

2
+

∞∑
r=2

r

((p
2

)r−1 (
1− p

2

)
+ (1− p)n ·

(
1

n

)r−1(
1− 1

n

))

=
p

2
+
(
1− p

2

) ∞∑
r=2

r
(p
2

)r−1

+ (1− p)

(
1− 1

n

) ∞∑
r=2

r

(
1

n

)r−2

.

For n large enough (1− 1
n
)
∑∞

r=2 r
(
1
n

)r−2 ≈ 2 and hence for n large enough we have that

E[τ1(C2
n,p)] ≈

p

2
+
(
1− p

2

) ∞∑
r=2

r
(p
2

)r−1

+ 2(1− p)

=
p

2
+
(
1− p

2

) p(4− p)

(2− p)2
+ 2(1− p)

=
p

2
+
p(4− p)

2(2− p)
+ 2(1− p).

This expression is minimized when p = 2−
√
2 and in this case we have

p

2
+
p(4− p)

2(2− p)
+ 2(1− p) ≈ 1.83.

Note that even though the optimal p is irrational, since the latter function is continuous for p ∈ (0, 1),
we can get as close as we want to this optimum value. Hence, we have that

E[τ1(C2
n,p)] ≈ 1.83 = 0.9143k.

Combining Theorem 11 and Theorem 12 leads to the following corollary.

Corollary 5. Let p2, p3 ∈ (0, 1) be the constants from Theorem 12. For any integer γ ≥ 1, let C2,γ
n,p2

be the (nγ, 2γ) γ-block code of C = C2
n,p2

, and similarly let C3,γ
n,p3

be the (nγ, 3γ) γ-block code of
C = C3

n,p3
(see Definition 2). For any i2 ∈ [2γ], and i3 ∈ [3γ] we have that

E[τi2(C2,γ
n,p2

)] = T
C2,γ
n,p2

max = T
C2,γ
n,p2

avg ≈ 1.83γ = 0.9143 · (2γ),

and
E[τi3(C3,γ

n,p3
)] = T

C3,γ
n,p3

max = T
C3,γ
n,p3

avg ≈ 2.67γ = 0.89 · (3γ).

The evaluation of E[τi(Ck
n,p)] for k > 3 can be done using the same technique, however, it becomes

less elegant and we do not attempt to evaluate the latter expression rigorously. Nevertheless, we
did try to gain a better understanding of the behavior of these codes by computer simulations
as follows. Each simulation was done while fixing k ∈ {1, . . . , 10} ∪ {20, 30, . . . 100} and p ∈
{0.2, 0.4, 0.6, 0.8}. For each pair of k and p we started by encoding k information strands with
an [⌊(1 − p)n⌋ + k, k] MDS code CMDS

n,k,p, from which we constructed the (n, k) code Ck
n,p (see

Construction 2). Then, we simulated the sampling process by picking a single strand at each draw
(with an equal probability of 1

n
). The simulation stops whenever we can recover u1. We repeated

this process 107 times for each pair of k and p and plotted the mean number of the required draws,
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Fig. 3: Approximated values of E[τi(Ck
n,p)] (Construction 2) for different values of p ∈

{0.2, 0.4, 0.6, 0.8} as a function of k ∈ {1, 2, . . . , 10} ∪ {20, 30, . . . , 100}, where n = 108. The
approximated values were obtained empirically by 10, 000, 000 computer simulations per any pair
of values of k and p. The presented results are normalized by k.

which is an empirical approximation of E[τi(Ck
n,p)]. Our simulations imply that for most of the

tested values of k, the optimal value of p is around 0.6. Furthermore, it can be seen that E[τi(Ck
n,p)]

decreases as k increases. Finally, it should be noted that even though such codes are not applicable,
they allow us to gain insights about the achievable values of E[τ1(C)].

D. Lower Bounds
This section concludes with lower bounds on the value of E[τi(C)].

Lemma 3. For any (n, k) code C, T C
max ≥ k+1

2
.

Proof. Assume the word U was encoded to the codeword X. Every sequence of reads can be
expressed as a vector v ∈ [n]∗, and for every such a v, denote by ni(v), for i ∈ [k], the minimum
read index h which allows retrieving the i-th information strand ui. The key intuition behind our
approach is that each new sample collected during the sequence of reading the strands allows us
to recover at most one new information strand. Hence,

k∑
i=1

ni(v) = n1(v) + n2(v) + · · ·+ nk(v) ≥
k∑

i=1

i = k(k + 1)/2.

Hence, it follows that,
∑k

i=1 τi(C) ≥ k(k + 1)/2 and therefore

E

[
k∑

i=1

τi(C)

]
=

k∑
i=1

E[τi(C)] ≥ k(k + 1)/2.

In particular, there exists i ∈ [k] for which E[τi(C)] ≥ k+1
2

, i.e., T C
max ≥ k+1

2
.

Even though the bound in Lemma 3 holds for any code C, it appears that in most cases the
bound is not tight. To obtain a tighter lower bound on T C

max in the next theorem we also consider
the rate of the code C.
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Theorem 13. Let C be an (n, k) code. It holds that

T C
max ≥

n

k
·

k∑
i=0

k − i

n− i
= n− n(n− k)

k
· (Hn −Hn−k).

Proof. Let us use the same notations as in the proof of Lemma 3. Additionally, denote by ti(v)
the time to collect the i-th new sample (after collecting the previous one). Clearly, we have that

k∑
i=1

τi(C) =
k∑

i=1

ni(v) ≥
k∑

i=1

i∑
j=1

tj(v).

Define tj(C) to be the random variable that governs the time to collect the j-th new sample (after
collecting the previous one). Hence,

k∑
i=1

E [τi(C)] = E

[
k∑

i=1

τi(C)

]
≥ E

[
k∑

i=1

i∑
j=1

tj(C)

]
=

k∑
i=1

i∑
j=1

E [tj(C)] .

Note that for any j ∈ [k], we have that tj(C) is a geometric random variable with success probability
pj =

n−(j−1)
n

and so E[tj(C)] = n
n−(j−1)

, and

k∑
i=1

E [τi(C)] ≥
k∑

i=1

i∑
j=1

E [tj(C)] =
k∑

i=1

i∑
j=1

n

n− (j − 1)

= n
k∑

i=1

(
1

n− i+ 1
+

1

n− i+ 2
+ . . .+

1

n

)

= n

(
k

n
+
k − 1

n− 1
+ . . .+

1

n− k + 1

)
= n

k−1∑
i=0

k − i

n− i
.

For any i ∈ [k], we have that

k − i

n− i
=
k

n
−
(
1− k

n

)
i

n− i
,

which implies that

n
k∑

i=0

k − i

n− i
= n

k−1∑
i=0

(
k

n
−
(
1− k

n

)
i

n− i

)

= k2 − n

(
1− k

n

) k−1∑
i=0

i

n− i

= k2 − (n− k)
k−1∑
i=0

(
n

n− i
− 1

)

= k2 + k(n− k)− n(n− k)
k−1∑
i=0

1

n− i

= nk − n(n− k)(Hn −Hn−k).
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Hence we have that

1

k

k∑
i=1

E [τi(C)] ≥
n

k
·

k∑
i=0

k − i

n− i
= n− n(n− k)

k
· (Hn −Hn−k).

In particular, there exists i ∈ [k] for which E[τi(C)] ≥ n
k
·
∑k

i=0
k−i
n−i

= n − n(n−k)
k

· (Hn −Hn−k),
i.e., T C

max ≥ n
k
·
∑k

i=0
k−i
n−i

= n− n(n−k)
k

· (Hn −Hn−k).

Lastly, we conclude with the following lemma.

Corollary 6. Let 0 < R < 1 and consider a sequence of codes {Ci}∞i=1 with parameters (ni, ki)
such that for any i, ni < ni+1, and R = ki

ni
. It holds that,

lim
i→∞

T Ci
max

ki
≥
(
1

R
+

1−R

R2
· log(1−R)

)
.

That is, for any ε > 0, there exists i large enough (i.e., ni, ki large enough) such that,

T Ci
max ≥ ki

(
1

R
+

1−R

R2
· log(1−R)

)
− ε.

Proof. From Theorem 13, for any (n, k) code C, we have that

T C
max ≥ n− n(n− k)

k
· (Hn −Hn−k).

Thus, we have that

lim
i→∞

T Ci
max

ki
≥ lim

i→∞

1

ki

(
ni −

ni(ni − ki)

ki
· (Hni

−Hni−ki)

)
= lim

i→∞

ni

ki

(
1− ni − ki

ki
· (Hni

−Hni−ki)

)
= lim

i→∞

1

R
− (1−R)

R2
(Hni

−Hni−ki)

=
1

R
− 1−R

R2
log

(
1

1−R

)
.

It can be verified that in this case if R approaches zero, one, then the latter expression ap-
proaches 1

2
, 1, respectively.

Fig. 4 presents a comparison between the lower bounds of Lemma 3 and Corollary 6 as a function
of the code rate R = k

n
. As can be seen in the figure, in most cases, the bound in Corollary 6

is tighter than the one from Lemma 3. More than that, the code rate from which the bound in
Corollary 6 is tighter than the bound from Lemma 3 decreases with k.

Finally, we give in Fig. 5 a comparison of the normalized expected singleton coverage depth for
different codes with rate of exactly R = 0.5. It can be seen in the figure that the k-non systematic
MDS code achieves the worst results, while the code in Theorem 10 achieves the best results,
which are roughly 55% lower than the k-non systematic MDS code and roughly 10% lower than a
systematic MDS code. To offer a better understanding of these results, the lower bounds discussed
in Lemma 3 and Corollary 6 are also given in the figure.
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Fig. 4: Comparison of the lower bounds (Lemma 3 and Corollary 6) as a function of the rate
R = k

n
. The presented results are normalized by k.

Fig. 5: Comparison of the normalized expected singleton coverage depth for code with rate R = 0.5.

VII. CONCLUSION

In this paper, we have introduced and extensively investigated the novel problem of DNA cov-
erage depth, aiming to reduce sequencing costs and latency while ensuring high-accuracy retrieval.
Our contributions encompass the MDS coverage depth problem, demonstrating the superiority
of MDS codes in the noiseless channel. For noisy channels, we proved several bounds on the
probability of successfully retrieving the information for a given sample size. Additionally, we
have explored the singleton coverage depth problem, revealing insights into code properties and
retrieval times, as well as presenting code constructions that can improve the retrieval time. These
findings collectively provide a foundational framework for designing efficient and reliable DNA
storage systems, with potential implications for advancing the field.
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Nonetheless, future research should address the diverse challenges posed by different noise
models, investigate coding schemes beyond MDS codes, and extend the coverage depth problem
for additional scenarios. Several possible directions and open problems are listed below.

1) Extend the results presented in this paper with respect to Problem 1 from a uniform distri-
bution to additional channel distributions p; e.g. the normal distribution.

2) In this work, the noisy channel was modeled by a parameter t, under the assumption that
retrieval succeeds with probability 1 given t or more noisy copies and fails otherwise. A
very relevant extension to this noise model is to consider the more realistic behavior of the
channel, in which the success probability can increase or decrease as a function of the number
of noisy copies, i.e., as a function of the cluster size.

3) Define and study the coverage depth random access problem for the case in which a subset
of size greater than one should be retrieved. This can be considered for arbitrary subsets of
the information strands or for pre-defined subsets, that represent units of information (e.g.
files).

4) Study the coverage depth random access problem under the assumption of noisy channel
and/or channel with non-uniform distribution.
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APPENDIX A
Claim 6. For n > 16, it holds that,

t−1∑
j=0

(
r

j

)(
1

n

)j (
1− 1

n

)r−j

≤ t ·
(

r

t− 1

)(
1

n

)t−1(
1− 1

n

)r−(t−1)

Proof: To prove the claim, we show that for 0 ≤ j ≤ t− 1,(
r

j

)(
1

n

)j (
1− 1

n

)r−j

≤
(

r

j + 1

)(
1

n

)j+1(
1− 1

n

)r−(j+1)

.

The latter can be proved by showing the following equivalent inequality

n ≤ r − j

j + 1

(
1− 1

n

)−1

.

The expression r−j
j+1

(
1− 1

n

)−1 is minimized at j = t−1 (considering only j ∈ {0, 1, . . . , t−1}),
thus it is enough to show that, n ≤ r−t+1

t

(
1− 1

n

)−1
= r−t+1

t

(
n

n−1

)
, which follows if

r = r(n, k, t) ≥ t(n− 1) + (t− 1).

Lastly, it can be verified that r(n, k, t) ≥ t(n− 1) + (t− 1) for any integers n > 16 and t > 1.

Proof of Theorem 4
Denote rf ≜ rf (n, k, t). Similarly to the proof of Theorem 3, when n is large enough, the

probability that urn i has at most t − 1 balls after rf draws is denoted by P (zi(n, rf ) ≤ t − 1),
where zi(n, rf ) is a defined as in the proof of Theorem 3. Thus, the probability is given by,

P (zi(n, rf ) ≤ t− 1) ≤ 3t ·
(rf
n

)t−1
(
1− 1

n

)n(
rf
n
− t−1

n )

≤ 6tt
(2 · f(n))t−1

et·f(n)
· (1−R)

Now let us define a random variable Y as the number of urns with less than t balls. As in the
proof of Theorem 3, we have that,

P (E
(rf )
t ) = P (Y ≥ n− k + 1) ≤ 6tt

(2 · f(n))t−1

et·f(n)
(1−R),

where the last inequality follows from Markov’s inequality.

APPENDIX B
Theorem 14. For any ε > 0, n > e

6t·2t−1

ε ≥ 15, and any integer h ≥ 1, we have that,

P [νt(n, k) > h · r(n, k, t)] < ε · ht−1

logt(h−1)(n)
.

Proof. Denote r ≜ r(n, k, t) and recall that within the context of the urn problem (see Sec-
tion III-B), the random variable νt(n, k) denotes the number of balls (or rounds) necessary to
guarantee that we have a set of k urns where each urn has at least t balls.
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If r balls are drawn, we show that the probability that there are at least k urns each with at least
t balls is approaching one when n grows. Analogous to the approach used in the previous section,
we will show that if the number of balls thrown is at least r, then the probability to have at most
n− k + 1 urns which are not filled with t balls is approaching zero.

The approach leveraged in this section is inspired by a technique first employed by Erdős and
Rényi in [11]. First, we define the following event.
E

(r)
t : After r rounds, there exists a set St, of n− k + 1 urns, each containing less than t balls.

Next, we show that the probability of E(r)
t approaches zero when n is large. We first define zi(n, r)

for 1 ≤ i ≤ n, as a random variable that governs the number of balls in the i-th urn, after r draws.
For n large enough, the probability that urn i has at most t− 1 balls after h · r draws is denoted
by P (zi(n, r) ≤ t− 1) and is given by,

P (zi(n, h · r) ≤ t− 1) =
t−1∑
j=0

(
h · r
j

)(
1

n

)j (
1− 1

n

)h·r−j

≤ t ·
(
h · r
t− 1

)(
1

n

)t−1(
1− 1

n

)h·r−(t−1)

≤ t ·
(
h · r · e
t− 1

)t−1(
1

n

)t−1(
1− 1

n

)h·r−(t−1)

,

where the last inequality follows from the fact that
(
h·r
t−1

)
≤ hre

t−1

t−1. Note that ( e
t−1

)t−1 < 3, for
t > 1. Thus,

P (zi(n, r) ≤ t− 1) ≤ 3t ·
(
hr

n

)t−1(
1− 1

n

)n( r
n
− t−1

n )
.

We have that,

P (zi(n, r) ≤ t− 1) ≤ 3t ·
(
h log

(
n

n− k

)
+ ht log log(n) + 2h log(t+ 1)

)t−1 (
e(

−hr
n

+ t−1
n )
)

≤ 3t · (2h log n)t−1

(
n− k

n

)h(
1

loght n

)(
1

(t+ 1)2h

)
e

t−1
n

= 3t · e
t−1
n

(t+ 1)2h
· (2h log n)

t−1

loght(n)
·
(
n− k

n

)h

= 3t · e
t−1
n

(t+ 1)2h
· (2h)t−1

logt(h−1)+1(n)
·
(
n− k

n

)h

,

where the second inequality holds since for n large enough h log( n
n−k

)+ th log log(n)+2h log(t+

1) ≤ (2h log n). It should be noted that for n > t, we have that 3t · e
t−1
n

(t+1)2h
≤ 6t, and hence,

P (zi(n, r) ≤ t− 1) ≤ 6t · (2h)t−1

logt(h−1)+1(n)
·
(
n− k

n

)h

.
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Now let us define a random variable Y as the number of urns with less than t balls. From the
linearity of expectation, regardless if the urns are independent or not, the expected number of urns
that have less than t balls is,

lim
n→∞

E[Y ] = lim
n→∞

Σn
i=1E[zi(n, r)]

= lim
n→∞

nP (zi(n, r) ≤ t− 1) ≤ lim
n→∞

(n− k)

(
n− k

n

)h−1

· 6t · (2h)t−1

logt(h−1)+1(n)

Note that
P (E

(r)
t+1) = P (Y ≥ n− k + 1)

Using Markov’s inequality with n− k + 1 as the parameter we can conclude that,

P (Y ≥ n− k + 1) ≤
(
n− k

n

)h−1

6t · (2h)t−1

logt(h−1)+1(n)
.

Let us denote ε∗ = 6t · 2t−1

log(n)
, then we get that,

P (Y ≥ n− k + 1) ≤ ε∗
(
n− k

n

)h−1

· (h)t−1

logt(h−1)(n)
≤ ε∗ · (h)t−1

logt(h−1)(n)
.

Hence, we get that P (E(r)
t ) → 0 for n large enough which implies the statement in the theorem.

APPENDIX C
In this appendix, we prove Theorem 6. The proof is partially based on Claim 3 which is proven

next.

Proof of Claim 3:
Recall that by (9), for r ≥ nt we have that

E[X(r)] ≤ ne−(t−1) log2
n(t−1)

r
−(r−(t−1)) log2

(r−(t−1))n
r(n−1) .

Hence, a sufficient condition for E[X(r)] ≤ n− k = n(1−R), it that

e−(t−1) log2
n(t−1)

r
−(r−(t−1)) log2

(r−(t−1))n
r(n−1) ≤ (1−R). (12)

Note that

e−(t−1) log2
n(t−1)

r
−(r−(t−1)) log2

(r−(t−1))n
r(n−1) = e−

t−1
ln 2

ln(
n(t−1)

r
)− (r−(t−1))

ln 2
ln( (r−(t−1))n

r(n−1) )

=

(
n(t− 1)

r

)− t−1
ln 2
(
(r − (t− 1))n

r(n− 1)

)− (r−(t−1))
ln 2

=

(
r

n(t− 1)

) t−1
ln 2
(

rn− r

rn− (t− 1)n

) r−(t−1)
ln 2

,

and by denoting r = βn(t− 1), for some β ≥ 1 we can rewrite the sufficient condition in (12) as
follows.

β

(
1− (β − 1)

βn− 1

)βn−1

≤ (1−R)
ln 2
t−1 . (13)
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By the definition of e, for any constant β we have that
(
1− (β−1)

βn−1

)βn−1

≤ e−(β−1). Hence, if

βe−β ≤ 1
e
(1−R)

ln 2
t−1 holds than (13) also holds.

By the assumption,

− r

n(t− 1)
e−

r
n(t−1) = −βe−β ≥ −1

e
(1−R)

ln 2
t−1

or equivalently

βe−β ≤ 1

e
(1−R)

ln 2
t−1

which completes the proof.
The following two claims are known results related to the Lambert W function and are given as

part of the proof of Theorem 6.

Claim 7. [10, Section IV] For any real numbers −1
e
≤ x < 0 and y, the equation yey = x has

exactly two solutions which are given by y = W0(x) and y = W−1(x), where W0 and W−1 are
branches of the Lambert W function.

Claim 8. [7, Theorem 1] For any u > 0 we have that

−1−
√
2u− u < W−1(−e−u−1) < −1−

√
2u− 2

3
u.

Proof of Theorem 6

Denote x = 1
e
(1−R)

ln 2
t−1 and y = r

n(t−1)
, by Claim 7, the equation

− r

n(t− 1)
e−

r
n(t−1) = −ye−y = −x = −1

e
(1−R)

ln 2
t−1

has exactly two solutions which are y = −W0(−x) and y = −W−1(−x). Note that for any y ≥ 1
the function −ye−y is continuous and monotonically increasing with y. Hence, for any given R = k

n
only the branch W−1 is relevant. This implies that for r ≥ n(t − 1), Equation (10) holds if and
only if y ≥ −W−1(−x).

By Claim 8, we know that −W−1(−e−u−1) < 1 +
√
2u + u for any u > 0. We can rewrite −x

as
−x = −1

e
(1−R)

ln 2
t−1 = −e

ln 2
t−1

ln (1−R)−1

with u = − ln 2
t−1

ln (1−R) > 0 to obtain

−W−1(−x) < 1 +
√
2u+ u

= 1 +

√
−2 ln 2

t− 1
ln (1−R)− ln 2

t− 1
ln (1−R)

Hence, a sufficient condition for E[X(r)] ≤ n− k is that

y =
r

n(t− 1)
≥ 1 +

√
−2 ln 2

t− 1
ln (1−R)− ln 2

t− 1
ln (1−R),

or equivalently,

r ≥ n(t− 1)− n ln 2 ln(1−R) + n(t− 1)

√
−2 ln 2

t− 1
ln (1−R).



40

APPENDIX D
Proof of Theorem 7:

We denote by ωi the probability of collecting an error-free new strand, given that i−1 strands were
collected. In this case, ωi = αn−(i−1)

n
= αn−i+1

n
We denote by ωi the probability of collecting an

error-free new strand, given that i−1 strands were collected. In this case, ωi = αn−(i−1)
n

= αn−i+1
n

.
We let ti be the time to collect a new error-free strand, given i−1 such strands were already sampled.
Since ti is geometric random variable it holds that ti = 1

ωi
. Thus, from the linearity of expectation,

we have that

E [ωα(n, k)] = E[t1 + t2 + . . . tn]− E[tk + tk+1 + . . . tn]

= E[t1] + E[t2] + . . .E[tn]− E[tk] + E[tk+1] + . . .E[tn]

=
n

α

(
1

1
+

1

2
+ · · ·+ 1

n

)
− n

α

(
1

1
+

1

2
+ · · ·+ 1

n− k

)
=
n

α
(Hn −Hn−k)

APPENDIX E
Proof of Theorem 9:

Let Wk,n be the random variable that represents the number of samples needed to obtain k
distinct coupons where each draw is taken from a pool of n total coupons. We denote by Wk,n(x)
the generating function for Wk,n. For x < 1

1−n−k+1
n

= n
k−1

it is known [25] that,

Wk,n(x) =
x∑

r=0

P [Wk,n = r] · xr =
k∏

i=1

(n− i+ 1)x

n− (i− 1)x
.

Additionally, let Vr,n be the random variable that represents the number of distinct coupons in
the first r draws, where each coupon is taken from a pool of n total coupons. Note that

P [Wk,n = r] = P [Vr−1,n = k − 1] · P [Vr,n = k|Vr−1,n = k − 1]

=
n− (k − 1)

n
P [Vr−1,n = k − 1],

and hence,

P [Vr−1,n = k − 1] =
n

n− (k − 1)
P [Wk,n = r]. (14)

We let Dk,i,n denote the random variable that represents the required number of draws to obtain
k distinct coupons or to retrieve coupon i (whichever occurs first), where each draw is taken from
a pool of n total coupons. We denote by Dk,i,n(x) the generating function for Dk,i,n. To this end
we define D

(j)
k,i,n for 0 ≤ j ≤ k − 1, to be the random variable that represents the number of

samples needed to obtain j distinct coupons (each not equal to the i-th coupon), followed by the
i-th coupon. Additionally, let D(k)

k,i,n, be the random variable that represents the number of samples
needed to obtain k distinct coupons (each not equal to the i-th coupon).

It holds that,

P [D
(k)
k,i,n = r] =

(
1− 1

n

)r

· P [Wk,n−1 = r],
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and

D
(k)
k,i,n(x) =

∞∑
r=0

xr · P [D(k)
k,i,n = r]

=
∞∑
r=0

xr ·
(
1− 1

n

)r

· P [Wk,n−1 = r]

= Wk,n−1

((
1− 1

n

)
x

)
=

k∏
ℓ=1

(n− ℓ)(1− 1
n
)x

n− 1− (ℓ− 1)(1− 1
n
)x
.

For 1 ≤ j ≤ k − 1, using (14), we have that

P [D
(j)
k,i,n = r] =

(
1− 1

n

)r−1

·
(
1

n

)
· P [Vr−1,n−1 = j]

=

(
1− 1

n

)r−1

·
(
1

n

)
· n− 1

n− 1− j
· P [Wj+1,n−1 = r]

and,

D
(j)
k,i,n(x) =

∞∑
r=0

xr · P [D(j)
k,i,n = r]

=
∞∑
r=0

xr ·
(
1− 1

n

)r−1

·
(
1

n

)
· n− 1

n− 1− j
· P [Wj+1,n−1 = r]

=
n− 1

n− 1− j
· 1
n
·
(
1− 1

n

)−1

·
∞∑
r=0

xr ·
(
1− 1

n

)r

· P [Wj+1,n−1 = r]

=
1

n− 1− j
·Wj+1,n−1

((
1− 1

n

)
x

)
=

1

n− 1− j

j+1∏
ℓ=1

(n− ℓ)
(
1− 1

n

)
x

n− 1− (ℓ− 1)
(
1− 1

n

)
x
.

Note that, P [D(0)
k,i,n = r] = 1

n
if r = 1 and otherwise P [D(0)

k,i,n = r] = 0. Therefore, we have that
D

(0)
k,i,n(x) =

x
n

. Next, we present Dk,i,n(x) as a function of D(j)
k,i,n for 0 ≤ j ≤ k.

Dk,i,n(x) =
∞∑
r=0

xr · P [Dk,i,n = r]

=
∞∑
r=0

xr
k∑

j=0

P [D
(j)
k,i,n = r]

=
k∑

j=0

∞∑
r=0

xr · P [D(j)
k,i,n = r]

=
k∑

j=0

D
(j)
k,i,n(x).
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From the above, it can be derived that,

E[Dk,i,n] = D′
k,i,n(1) =

1

n
+

k−1∑
j=1

n(n− (j + 1))(ψ(−n)− ψ(j + 1− n))

n(n− (j + 1))
+
n(n− k)(ψ(−n)− ψ(k − n))

n

=
1

n
+

k−1∑
j=1

(ψ(−n)− ψ(j + 1− n)) + (n− k)(ψ(−n)− ψ(k − n)),

where ψ(z) ≜
∫∞
0

(
e−t

t
− e−zt

1−e−t

)
dt is the digamma function. In [16], it is claimed that for any

z ∈ C and j ∈ N, we have that, ψ(z + j) = ψ(z) +
∑j

h=1
1

z+h−1
, which implies that, ψ(−n) −

ψ(j − n) = Hn −Hn−j.
Hence,

E[τi(C)] = E[Dk,i,n] =
1

n
+

k−1∑
j=1

(Hn −Hn−j−1) + (n− k) (Hn −Hn−k)

=
1

n
+ (n− 1)Hn − (n− k)Hn−k −

k−1∑
j=1

Hn−j−1

=
1

n
+ (n− 1)Hn − (n− k)Hn−k −

(
n−2∑
j=1

Hj −
n−k−1∑
j=1

Hj

)
(a)
=

1

n
+ (n− 1)Hn − (n− k)Hn−k − ((n− 1)(Hn−1 − 1− (n− k)(Hn−k − 1)))

=
1

n
+ (n− 1)(Hn −Hn−1 + 1)− (n− k)

=
1

n
+
n− 1

n
+ (n− 1)− n+ k

= k,

where (a) follows since for any integer n > 0 we have that
∑n

j=1Hj = (n+ 1)Hn − n.

APPENDIX F
Proof of Theorem 10:

Let Ck be the systematic (2k, k) code that is defined by Uk = (u1,u2, . . . ,uk) and

Xk = (u1, . . . ,uk,u1 + u2, . . . ,uk−1 + uk,uk + u1).

Similarly to Example 2, we have that

P [τ1(C) ≥ r] =
2k−3∑
i=1

P [τ1(C) ≥ r|Er−1 = i] · P [Er−1 = i] ,

and

P [Er = i] =

(
2k
i

)
(2k)r

i∑
j=0

(
i

j

)
(−1)i−j(i− j)r.
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Since P [τ1(C) ≥ r|Er−1 = i] does not depend on r, let us denote Pi = P [τ1(C) ≥ r|Er−1 = i]. We
have that

E[τ1(C)] =
∞∑
r=0

P [τ1(C) ≥ r] = 1 +
∞∑
r=1

2k−3∑
i=1

Pi · P [Er−1 = i]

= 1 +
2k−3∑
i=1

Pi

∞∑
r=1

P [Er−1 = i]

= 1 +
2k−3∑
i=1

Pi

∞∑
r=1

(
2k

i

) i∑
j=0

(−1)i−j

(
i

j

)(
j

2k

)r−1

= 1 +
2k−3∑
i=1

Pi

(
2k

i

) i∑
j=0

(−1)i−j

(
i

j

) ∞∑
r=0

(
j

2k

)r

= 1 +
2k−3∑
i=1

Pi

(
2k

i

)
(−1)i

i∑
j=0

(−1)j
(
i

j

)
· 2k

2k − j

= 1 +
2k−3∑
i=1

Pi · 2k ·
(
2k

i

)
· (−1)i · (−1)i

(2k − i)
(
2k
i

)
= 1 +

2k−3∑
i=1

Pi ·
2k

(2k − i)
.

Hence, our goal is to calculate Pi. Let A(2k− 1, i) be the number of options to draw r− 1 strands
such that u1 cannot be recovered from this set of draws, knowing that the set of different encoded
strands that were drawn is of size exactly i. Then, we have that Pi =

A(2k−1,i)

(2ki )
.

To present a recursive expression for the values A(2k − 1, i), we describe an equivalent way to
represent the options that contribute to A(2k − 1, i). Let Gk = (V,E) be the directed graph with
the 2k − 1 nodes that correspond to the symbols in X excluding u1. The set E consists of the
following edges:

• For each 2 ≤ j ≤ k − 1, the vertex uj + uj+1 has four outgoing edges. Two green outgoing
edges to the nodes uj and uj−1 + uj , and two blue outgoing edges to the nodes uj+1 and
uj+1 + uj+2 (where uj+2 = u1 if j = k − 1).

• There are two blue outgoing edges from u1 + u2, to the nodes u2 and u2 + u3.
• There are two green outgoing edges from uk + u0, to the nodes uk and uk−1 + uk.

Fig. 6: Schematic description of Gk

Denote the nodes u1 +u2 and uk +u1 by S2 and Sk, respectively. Additionally, denote the nodes
uj , for 2 ≤ j ≤ k by ending nodes. For a set J ⊆ [2k]\{1}, let G(J)

k be the subgraph of Gk that
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contains all the nodes that correspond to J (considering their locations in X). Note that any set
J ⊆ [2k] of size i is not a retrieval set of u1 if and only if the subgraph of G(J)

k , does not contain
a monochromatic path from S2 or Sk to one of the ending nodes (if S2, Sk is not in G(J)

k , we say
that there is no such path from S2, Sk, respectively). Hence, A(2k − 1, i) is equal to the number
of subgraphs G(J)

k of Gk, such that J ⊆ [2k]\{1} and G
(J)
k does not contain a monochromatic

path from S2 or Sk to one of the ending nodes. Denote the nodes of G(J)
k by V ′ and consider the

following cases.
1) If S2, Sk /∈ V ′ then any such a subgraph G

(J)
k cannot contain a valid monochromatic path

and there are
(
2k−3

i

)
such subgraphs.

2) If S2 ∈ V ′ then we have that u2 /∈ V ′ and there are A(2k − 3, i− 1) such sub-graphs.
3) If Sk ∈ V ′ then we have that uk /∈ V ′ and there are A(2k − 3, i− 1) such sub-graphs.
4) If S2, Sk ∈ V ′ then we have that u2,uk /∈ V ′ and there are A(2k− 5, i− 2) such subgraphs.

Thus,

A(2k − 1, i) =

(
2k − 3

i

)
+ 2A(2k − 3, i− 1)− A(2k − 5, i− 2).

By denoting B(k, i) = A(2k + 1, i), we can write the latter as

B(k, i) =

(
2k − 1

i

)
+ 2B(k − 1, i− 1)−B(k − 2, i− 2),

for any k ≥ 2, i ≥ 2, and for all k ≥ 0 we have that B(k, 0) = 1 and B(k, 1) = 2k+1. Additionally
A(1, 2) = 1, for i ≥ 2 we have A(0, i) = 0 and for i ≥ 3 we have B(1, i) = 0.

Thus, we have that

E[τ1(C)] = 1 +
2k−3∑
i=1

B(k, i) · 2k

(2k − i)
(
2k
i

) .
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