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Abstract—Motivated by testing for pathogenic diseases we con-
sider a new nonadaptive group testing problem for which: (1)
positives occur within a burst, capturing the fact that infected test
subjects often come in clusters, and (2) that the test outcomes
arise from semiquantitative measurements that provide coarse
information about the number of positives in any tested group. Our
model generalizes prior work on detecting a single burst of positives
with classical group testing [1] as well as work on semiquantitative
group testing (SQGT) [2]. Specifically, we study the setting where
the burst-length ℓ is known and the semiquantitative tests provide
potentially nonuniform estimates on the number of positives in a
test group. The estimates represent the index of a quantization
bin containing the (exact) total number of positives, for arbitrary
thresholds η1, . . . , ηs. Interestingly, we show that the minimum
number of tests needed for burst identification is essentially only a
function of the largest threshold ηs. In this context, our main result
is an order-optimal test scheme that can recover any burst of length
ℓ using roughly ℓ

2ηs
+ logs+1(n) measurements. This suggests that

a large saturation level ηs is more important than finely quantized
information when dealing with bursts. We also provide results for
related modeling assumptions and specialized choices of thresholds.

I. INTRODUCTION

Group testing (GT) is a protocol for identifying relatively

small subsets of marked elements, referred to as positives, within

a larger collection of entities termed test subjects. The gist

of the approach is to group subjects into carefully selected

subpools and test the subjects in each subpool jointly so as

to reduce the number of tests compared to that needed for

individual testing. The first GT scheme comprising two stages of

testing was described by Dorfman [3] in the context of finding

individuals with venereal diseases. His scheme also represents

the first instance of adaptive testing, where measurements from

one round of testing can be used to inform the test selections

in subsequent rounds. Unlike adaptive testing, nonadaptive GT

requires that all tests be designed and conducted simultaneously.

Since Dorfman’s work, GT has been extended and generalized in

many different directions and has found numerous applications

in search systems, experimental and circuit design and computa-

tional biology. For comprehensive surveys, the interested reader

is referred to [4], [5].

In [1], Colbourn considered a specialized GT technique for

identifying one single burst of consecutive positives of length

≤ ℓ within an ordered list of n elements. For nonadaptive

techniques, Colbourn showed that the order-optimal number of

measurements equals ℓ + log(n). Follow-up works focused on

improving some aspects of the scheme [6]–[8], extending the

results to include new adaptive protocols [9], and generalizing

the approach to handle multiple bursts [10].

However, in many real-life scenarios, such as testing for

infections with viral pathogens based on quantitative PCR (quan-

titative polymerase chain reaction, qPCR), the outcomes are real-

valued and usually confined to an interval such as [10, 45]. A

measurement is known as the Ct (cycle threshold) value and

it conveys information about how likely an individual is to be

infected. For example, a Ct value close to 40 is highly indicative

of a negative subject, while a value below 20 is a strong sign that

the individual is highly virulent. One can therefore quantize the

Ct values using a carefully selected collection of s thresholds

η = (η1, . . . , ηs) so that each quantization bin provides an

estimate of the viral load in the pool and, consequently, an

estimate of the number of positives in the pool. This type of GT

approach is known as semiquantitative GT (SQGT) [2], [11].

Furthermore, whenever testing is done on large populations in

which individuals that cohabitate are naturally adjacent in the

order used for testing [12] (for example, families, dorm-mates

etc.), bursty positive models are appropriate and can result in

significant savings compared to classical GT approaches [1].

Given the additional quantitative information and the assump-

tion regarding consecutive orderings of positives, one can easily

envision performing SQGT for bursty positive that quantizes the

Ct values into quantization bins that indicate the level of the

viral load, or an estimate of the number of infected individuals

in the population [13], [14]. Here, for the first time, we study

the reduction in the number of group measurements achievable

in such a setting. In particular, we investigate two new bursty

SQGT models [2], one in which the length of the burst is known

and fixed to ℓ (henceforth referred to as the fixed-length burst

model, B(n, ℓ, η)); and another, in which the length of the burst

is known to be upper-bounded by ℓ (henceforth referred to as

the bounded-length burst model, B(n,≤ ℓ, η)).
Our main contributions include

1) Order-optimal constructions (i.e., constructive lower and

upper bounds that differ by a constant factor of 2) for the

B(n, ℓ, η) setting with quantization thresholds η for which

ℓ = Ω(ηs log2(ηs)).
2) Order-optimal constructions (i.e., lower and upper bounds

that differ by a constant factor of 4) for the B(n,≤ ℓ, η)
setting with SQGT thresholds η = (1, . . . , s) correspond-

ing to the so-called saturation model [13], [15].

Two important comments are in place. Semiquantitative measure-

ments significantly decrease the number of tests needed for the
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B(n,≤ ℓ, η) setting (the improvement is linear in the number of

thresholds s). Somewhat surprisingly, for the B(n, ℓ, η) setting

the number of tests is basically determined by the value of

the largest threshold ηs rather than by the total number of

thresholds s. These findings may have interesting consequences

for test schedules and quantization schemes used for practical

quantitative PCR protocols.

The paper is organized as follows. Section II introduces the

notation and provides the formal problem formulation. Section

III contains the results for the lower bounds, while Section IV

contains the main results of the work, pertaining to upper bounds

on the number of SQGT burst identification models for a fixed

and upper-bounded length of the burst.

II. PROBLEM FORMULATION

We start by introducing the relevant notation as well as

the fixed-length and bounded-length single burst identification

problems under SQGT measurements.

Let hM, wM,M (∗, i) ,M (j, ∗) denote the number of rows

(height), number of columns (width), i-th column and j-th

row of the matrix M
hM×wM , respectively. Our row indices

lie in [0, hM − 1], while the column indices are confined to

[0, hM − 1]. In addition, R (M) ,Mc,M∞ are used to denote a

matrix obtained from M by reversing the column order (so that

R (M) (∗, i) = M(∗, wM − i − 1), a c-fold horizontal concate-

nation of M (i.e, [M, . . . ,M] with c constituent matrices), and a

horizontal concatenation of matrices M such that wM∞ becomes

a value specified during the construction process, respectively.

Finally, we use M(i, j) to denote the entry in M in row i and

column j.

The single burst of positives problem requires introducing the

following notions.

Bursts: A burst is denoted by a binary n × 1 column vector

b, and is specified by a head and tail hb ≤ tb, which dictate its

length ℓb = tb − hb + 1. It comprises consecutive positives:

b(i) =











0, 0 ≤ i < hb,

1, hb ≤ i ≤ tb,

0, tb < i ≤ n.

When ℓb is fixed, b
i denotes the burst with hb = i, and the

distance between two burst bi, bj is defined as the difference of

their head position |i− j|.
SQGT measurements: An SQGT measurement is described by

a 1× n binary vector m such that

m (i) =

{

1, ith element is included in the test,

0, otherwise,

and a set of integer-valued quantized thresholds

η = (η1, . . . , ηs) with 0 < η1 < . . . < ηs ≤ n,

such that the SQGT measurement outcomes equal

η(mb) =











0, 0 ≤ mb < η1,

i, ηi ≤ mb < ηi+1,

s, ηs ≤ mb ≤ n.

Definition 2.1: When η = (1, 2, . . . , s), we refer to this

specialized SQGT scheme as the saturation SQGT model.

Correct burst detection: for any hidden burst b, the estimate

generated by the detection algorithm, denoted by b̂, should equal

b.

Definition 2.2: B(n, ℓ, η) and B(n,≤ ℓ, η) are used to denote

the fixed-length and bounded-length burst problem with burst-

lengths = ℓ and ≤ ℓ, respectively, and with n test elements and

SQGT quantized thresholds η.

A nonadaptive SQGT testing scheme with m measurements on

n elements is represented by a m×n binary measurement matrix

M with each row corresponding to a single SQGT measurement.

We say M solves the B(n, ℓ, η) (or the B(n,≤ ℓ, η) ) problem

if and only if

∀b 6= b
′

allowed by the B(n, ℓ, η) (B(n,≤ ℓ, η) ) problem,

one has η(Mb) 6= η(Mb
′

).

The smallest possible number of measurements possible to

meet this requirement, among all nonadaptive SQGT schemes

is denoted by m∗
B(n, ℓ, η) and m∗

B(n,≤ ℓ, η).

Our constructions will make use of Gray codes and general-

izations thereof. We say that Gs,h ∈ {0, . . . , s}h×sh represents

an s-ary Gray code with length h if it satisfies the following two

conditions:

1) Any two consecutive columns differ in exactly one posi-

tion, and the difference has magnitude one.

2) Gs,h includes all possible sh codewords exactly once.

Example 2.1: The following matrix has columns that constitute

a 3-ary Gray code of length two:
[

0 0 0 1 1 1 2 2 2
0 1 2 2 1 0 0 1 2

]

.

Fact 2.1: The Gray code Gs,h can be constructed by first

recursively constructing paired Gray code matrices Ps,h :=
[Gs,h,R (Gs,h)] using the rule below and then removing half

of the columns from the right side:










Ps,1 = [0, . . . , s− 1, s− 1, . . . , 0] ,

Ps,i =

[

Ps,1 ⊗ 1
si−1

P
s
s,i−1.

]

(1)

Here, ⊗ stands for the Kronecker product while 1
a is a row

vector of 1s.

Example 2.2: The following matrix P3,2 is constructed recur-

sively using (1). The left half, as claimed, equals G3,2 and was

illustrated in Example 2.1:
[

000 111 222 222 111 000
012 210 012 210 012 210

]

.

We also make use of the following property of binary Gray codes.

Fact 2.2: G2,h ((i, ∗)) contains 2i−1 runs of 1s for all i except

i = 0, which contains only one run of 1s. Consequently, the

matrix contains a total of
∑h−1

i=1 2i−1 + 1 = 2h−1 runs of 1s

within its rows. This is illustrated by the following example for

G2,3, with a total number of 23−1 = 4 runs of 1s.




0 0 0 0 [1 1 1 1]
0 0 [1 1 1 1] 0 0
0 [1 1] 0 0 [1 1] 0



 .



III. LOWER BOUNDS

We first provide lower bounds for the smallest number of mea-

surements needed for the m∗
B(n, ℓ, η) and m∗

B(n,≤ ℓ, η) settings.

The proofs mostly use ideas from [1].

Theorem 1: We have






m∗
B(n, ℓ, η) ≥ max

(

logs+1 (n− ℓ + 1) , ⌈ ℓ
2ηs

⌉
)

,

m∗
B(n,≤ ℓ, η) ≥ max

(

log2 (n) , ⌈
ℓ
ηs
⌉
)

.

The proof technique used for m∗
B(n,≤ ℓ, η) is similar to that for

m∗
B(n, ℓ, η); hence, we only provide the proof for m∗

B(n, ℓ, η). We

prove the first bound by establishing each of the bounds on the

right-hand side separately and combining them via maximization.

1) The bound logs+1 (n− ℓ+ 1) follows from a simple

counting argument: there are a total of n− ℓ+ 1 different

head positions and a total of s + 1 possible outcomes for

each measurement.

2) The bound ⌈ ℓ
2ηs

⌉: we show that even if we only require

to discriminate among the first ℓ + 1 bursts (i.e., bursts

b
i with 0 ≤ i ≤ ℓ), we still need ⌈ ℓ

2ηs
⌉ measurements.

For any measurement m, let m1 and m2 denote the

first and second block of ℓ bits of m. Only the last ηs
nonzero bits in m1 and the first ηs nonzero bits in m2

are relevant. For simplicity, we only provide a proof for

the m2 case. Let ℓ ≤ i1 < i2 < . . . < 2ℓ be the

elements included in m2. Since ℓb = ℓ and hb ≤ ℓ, if

ij is included in the burst b then i1, . . . , ij−1 must also

be included. Therefore, if j > ηs, by observing that ηs is

the largest threshold, one can remove ij from m2 without

changing the outcome. Hence one can only retain the first

ηs nonzero bits in m2 and still arrive at the same outcome.

As a result, it suffices to only consider those m for which
∑2ℓ−1

j=0 m(j) ≤ 2ηs. Let M
hM×2ℓ be our measurement

matrix restricted to the first 2ℓ columns. Suppose that

hM < ℓ
2ηs

; then
∑hM−1

i=0

∑2ℓ−1
j=0 M(i, j) ≤ 2ηshM < ℓ.

This implies that there exists a 0 ≤ j < ℓ such that

M(∗, j) = M(∗, j + ℓ) = 0
hM×1. Then η

(

Mb
i+1

)

=
η
(

Mb
i +M(∗, j + ℓ)−M(∗, j)

)

= η
(

Mb
i
)

. Therefore

m∗
B(n, ℓ, η) ≥ ⌈ ℓ

2ηs
⌉.

IV. MAIN RESULTS

In Section IV-A, we describe and order-optimal construction

of measurement matrices for the B(n, ℓ, η) problem pertaining

to two different cases, the case of general SQGT thresholds with

ℓ = Ω(ηs log(ηs)) and the saturation model with ℓ ≤ ηs = s. It

is interesting to note that for the first case, m∗
B(n, ℓ, η) basically

depends only on the largest threshold ηs. In other words, as

long as ℓ = Ω(ηs log2(n)) with sufficiently large constant, there

is no benefit of using multiple thresholds (SQGT) compared to

threshold group testing (TGT) with the single biggest threshold

ηs. In Section IV-B, we describe an order-optimal scheme (within

an approximation constant 4) for B(n,≤ ℓ, η) problem and the

saturation model.

A. The B(n, ℓ, η) Model

Since for this case the burst length is fixed, one only needs

to locate the position of the head hb ∈ [0, n − ℓ] of the burst

b. Vaguely speaking, the near-optimal construction follows a

two-step sketch-and-refine procedure. The first part, referred to

as the General Sketch Scheme, uses a measurement matrix K

(Theorem 2) that distinguishes bursts separated by > ℓ + 1
positions. The second part, referred to as the General Refinement

Scheme, uses a measurement matrix R (Theorem 3) that distin-

guishes bursts separated by < 2ℓ positions. Stacking the two

measurement matrices leads to the result reported in Theorem 4.

Theorem 2: For B(n, ℓ, η) , the measurement matrix K de-

scribed in Section IV-A1 can distinguish all bursts at distances

> ℓ+ 1 using ⌈logs+1

(

n−ℓ+1
ℓ

)

⌉ measurements.

Theorem 3: For B(n, ℓ, η) with parameters ηs = 2h−1+2 and

ℓ = c2h+1, where c, h ∈ N and c > 2(h+1), the measurement

matrix R described in Section IV-A2 can distinguish all bursts

at distances < 2ℓ using roughly ℓ
2ηs

measurements. The scheme

depends only on the largest threshold ηs.

Theorem 4: Combining the General Sketch matrix of Theo-

rem 2 and the General Refinement matrix of Theorem 3, leads

to the measurement matrix [K⊺,R⊺]⊺ which can be used to solve

B(n, ℓ, η) using roughly ℓ
2ηs

+ logs+1

(

n−ℓ+1
ℓ

)

measurements.

This number of measurement is at most twice the number of

measurement from the lower bounds reported in Theorem 1.

Remark 4.1: Note that scheme from Theorem 3 only uses the

largest threshold ηs. Therefore, if we only make use of ηs in the

General Sketch Scheme of Theorem2, the resulting measurement

matrix has height roughly ℓ
2ηs

+ log2
(

n−ℓ+1
ℓ

)

and depends on

one threshold, ηs. When ℓ = Ω(ηs log2(n)) with sufficiently

large constant, ℓ
2ηs

+ logs+1

(

n−ℓ+1
ℓ

)

= Ω(log2(n)) = ℓ
2ηs

+

log2
(

n−ℓ+1
ℓ

)

. Therefore, in this parameter regime, there is no

benefit from using multiple thresholds.

1) Proof of Theorem 2: We start with some relevant no-

tation. Let K
hK×n be the measurement matrix. We say that

K
hK×n results in the outcome matrix O

hK×n−ℓ+1 if O =
[

η
(

Kb
0
)

. . . η
(

Kb
n−ℓ+1

)]

represents the collection of out-

comes for all length-ℓ bursts b
i when using the measurement

matrix K.

Next, let ~Bℓ (x) := 0
ℓ−x

1
x and ~Bℓ (x) := 1

x
0
ℓ−x, for

all x ∈ {0, . . . , ℓ}. Also, let ~Bℓ (0)
i
, ~Bℓ (0)

i
stand for the

horizontal concatenation of i copies of ~Bℓ (x) and ~Bℓ (x).
Observe that ⌈logs+1

(

n−ℓ+1
l

)

⌉ (almost) matches the counting

bound logs+1

(

n−ℓ+1
ℓ

)

. The key idea is to first construct K with

wK ≥ n such that the outcome matrix satisfies

O = Gs+1,hK
⊗ 1

ℓ+1, (2)

and then truncate it to n columns. By the definition of O, K can

identify all bursts at distance ≥ ℓ+ 1 if and only if all columns

of Gs+1,hK
are different; that this is true follows from the fact

that Gray codes include all vectors {0, . . . , s}hK exactly once.

We need the following lemma for our subsequent derivations.

Lemma 4.1: The following measurement

m (c) :=
[

~Bℓ (0)
c
0 ~Bℓ (η1)

c
. . . 0 ~Bℓ (ηs)

c

1 ~Bℓ (ℓ)
c 1 ~Bℓ (ηs − 1)c . . . 1 ~Bℓ (η1 − 1)c 0

]∞

results in the outcome
(

[0, . . . , s, s, . . . , 0]⊗ 1
cℓ+1

)∞
.

Proof: The case c = 1 can be proved easily and is illustrated

by the following example. For η = (1, 2, 4) and ℓ = 6, m(1)



equals

(000000 0000001 0000011 0001111

1111111 1111000 1100000 1000000 0)

For c > 1, and any length-ℓ row-vector x, η
(

x
c
b
i
)

remains

unchanged for all bi, where i ∈ [0, (c− 1) ℓ].

∀i, η
(

x
c
b
i+1

)

= η
(

x
c
b
i + x

c(∗, i+ ℓ)− x
c(∗, i)

)

= η
(

x
c
b
i
)

We are now ready to present our construction. Let M [i] be the

measurement matrix recursively constructed as follows:














M [1] = m (1) ,

M [i] =

[

m

(

(ℓ+1)(s+1)i−1−1
ℓ

)

M [i− 1]
s+1

]

.
(3)

Note that
(ℓ+1)(s+1)i−1−1

ℓ
may not be an integer. We therefore

first focus on the special case s = ℓ (therefore
(ℓ+1)(s+1)i−1−1

ℓ
=

(ℓ+1)i−1
ℓ

∈ N) and then generalize the result for s < ℓ through

slight modifications of the argument.

Lemma 4.2: For s = ℓ, M [i]
∞

results in the outcome matrix
(

Pℓ+1,i ⊗ 1
ℓ+1

)∞
. Where Pℓ+1,i is the ℓ+1-ary length-i paired

gray code matrix.

Proof: The proof is by induction.

1) For i = 1: by Lemma 4.1, M [i]
∞

= m (1)
∞

results

in the outcome matrix
(

[0, . . . , ℓ, ℓ, . . . , 0]⊗ 1
ℓ+1

)∞
=

(

Pℓ+1,1 ⊗ 1
ℓ+1

)∞
.

2) For i > 1: Suppose that the claim holds for i− 1. Then

M [i]∞ =

[

m

(

(ℓ+1)i−1
ℓ

)

M [i − 1]
ℓ+1

]∞

results in the outcome matrix
[

[0, . . . , ℓ, ℓ, . . . , 0]⊗ 1
(ℓ+1)i

P
ℓ+1
ℓ+1,i−1 ⊗ 1

ℓ+1

]∞

=
(

Pℓ+1,i ⊗ 1
ℓ+1

)∞
.

By Lemma 4.2, M [hK] truncated to (ℓ+1)hK+1+ℓ−1 columns

from the right results in the outcome matrix Gℓ+1,hK
⊗1

ℓ+1, and

can consequently distinguish all bursts within distance > ℓ+1. It

is not hard to show that a single measurement 0ℓ
(

1
ℓ+1

0
ℓ+1

)∞

results in the outcome matrix (0, . . . , ℓ, ℓ, . . . , 0)
∞

. Hence we

have the following theorem.

Theorem 5: For the saturation SQGT model with ℓ thresholds

η = (1, . . . , ℓ),

[

M
[

⌈logℓ+1 (n− ℓ+ 1)− 1⌉
]∞

0
ℓ
(

1
ℓ+1

0
ℓ+1

)∞

]

truncated to

n columns on the right can be used as the test matrix for the

B(n, ℓ, η) model with ⌈logℓ+1 (n− ℓ+ 1)⌉ measurements.

For the case s < ℓ, some modifications in the recursion given by

(3) are required. The modification involves truncating a certain

number of columns from the left, right, or both sides of M
′

[i]
at each stage of recursion i:











M
′

[1] = m (1) ,

M
′

[i] =

[

0
α mod ℓ

m
(

⌊α
ℓ
⌋
)

0
α mod ℓ

M
′

r [i− 1] M
′

lr [i− 1]
s−1

M
′

l [i− 1]

]

,

where α =
w

M
′
[i−1]

2 −1, and M
′

r [i− 1] ,M
′

l [i− 1] ,M
′

lr [i− 1]

denotes M
′

[i− 1] truncate α mod ℓ columns from the right, left,

and both sides, respectively.

By using a similar proof as the one described above and

some simple but tedious calculations, one can show that

M
′
[

⌈logs+1

(

n−ℓ+1
ℓ

)

⌉
]

truncated to n columns from the right

can be used as K. Hence, K can distinguish all bursts at distance

> ℓ+ 1 using ⌈logs+1

(

n−ℓ+1
ℓ

)

⌉ measurements.
2) Proof of Theorem 3: We now focus our attention on the

General Refinement Scheme. Let ~B to denote the cyclic shift of

columns in B one position to the left so that ~B(∗, i) = B(∗, i+
1 mod ℓ). We need the following lemma.

Lemma 4.3: Suppose that a binary matrix B
hB×ℓ satisfies the

following three conditions:

1) All columns and their binary complement

{B(∗, i), B̄(∗, i)}ℓ−1
i=0 are distinct.

2) The first column is the zero vector, B(∗, 0) = 0
hB×1.

3) Each row of ~B−B has ηs − 1 elements equal to −1.

Then the following measurement matrix can be used to distin-

guish all bursts b 6= b
′

at distance < 2ℓ:

R :=
[

R
−
R

+
R

−
R

+ . . .
]

, (4)

where R
− denotes the “negative” part of ~B − B (obtained by

setting 1s to 0s and −1s to 1s), while R
+ denotes the positive

part of ~B−B (obtained by setting −1s to 0s), and the last column

is changes from 0
hB×1 to 1

hB×1 (note that the last column

of ~B − B before the modification is B(∗, 0) − B(∗, ℓ − 1) =
−B(∗, ℓ− 1), which implies that the positive part is zero).

Proof: Since R is a repeated horizontal concatenation of

R
− and R

+, it suffices to show that

∀0 ≤ i 6= j < 2ℓ, η
(

Rb
i
)

6= η
(

Rb
j
)

. (5)

In particular, we prove that

Rb
i =

{

(ηs − 1)1hB×1 +B(∗, i) 0 ≤ i < ℓ,

ηs1
hB×1 −B(∗, i) ℓ ≤ i < 2ℓ.

(6)

Note that each entry of Rb
i is either ηs−1 or ηs. By condition 1,

all Rb
i are different. Consequently, all η

(

Rb
i
)

are different as

well. Therefore, R can distinguishes all bursts at distance < 2ℓ
using hB measurements; only the largest threshold ηs is relevant.

Next we prove (6).

For 0 ≤ i < ℓ,

Rb
i −Rb

0 =
i

∑

j=1

Rb
j −Rb

j−1 =
i

∑

j=1

R
(

b
j − b

j−1
)

=
i

∑

j=1

R
+(∗, j − 1)−R

−(∗, j − 1)

=
i

∑

j=1

R(∗, j − 1)
(1)
= B(∗, i).

For ℓ ≤ i < 2ℓ,

Rb
i −Rb

ℓ =

i
∑

j=ℓ+1

Rb
j −Rb

j−1 =

i
∑

j=ℓ+1

R
(

b
j − b

j−1
)

=

i
∑

j=ℓ+1

R
−(∗, j − 1)−R

+(∗, j − 1)

= −
i−ℓ
∑

j=1

R(∗, j − 1)
(1)
= −B(∗, i).



The equalities
(1)
= follows from Condition 2. Finally, by Condi-

tion 3 and the fact that we changed the last column of R+ from

0
hB×1 to 1

hB×1, Rb
0 = (ηs − 1)1hB×1 and Rb

ℓ − Rb
0 =

1
hB×1 ⇒ Rb

ℓ = ηs1
hB×1.

It remains to construct a matrix B that satisfies Conditions 1-

3 in Lemma 4.3 with hB roughly equal to ℓ
2ηs

. Let Gh×2h

2,h be

the code matrix of a binary Gray code of length h such that

2(h+ 1) < hB. We construct ḠhB×2h

2,h,i as

Ḡ
⊺

2,h,i =
[

0
2h×i

1
2h×1

G
⊺

2,h 0
(2h×hB−i−h−1)

]⊺

.

Then, B is constructed as follows:

B =
[

0
hB×1

Ḡ2,h,hB−1 . . . Ḡ2,h,0

]

.

Example 4.1: The matrix B is constructed using G2,2 and for

hB = 7:




















0 0011 0110 1111
0 0110 1111 0011
0 1111 0011 0110
0 1111 0011 0110
0 1111 0011 0110
0 1111 0011 0110
0 1111 0011 0110





















• Condition 1: we demonstrate a 2-step procedure for recov-

ering the index of each column based on its content which

establishes that all columns are different. The idea is first

to use 1
1×2h to recover i (the index of Ḡ2,h,i) and then use

the following h bits from the Gray code to locate the exact

column. To do so, in the first step, we need an additional

constraint hB ≥ 2(h + 1). In a nutshell, we can recover i

by looking at the first 1 after a length-h+ 1 burst of 0 in

each column. Moreover, by this constraint, each column in

B has more zeros than ones. Consequently, all B(∗, i) and

B̄(∗, i) must be distinct.

• Condition 2: this condition is easy to verify.

• Condition 3: by the construction from (IV-A2), each row

B (i) is a horizontal cyclic shift of

v :=
[

1
2h ,G2,h(0, ∗), . . . ,G2,h(h− 1, ∗)

]

with an additional 0 appended at the left. In Example 4.1, we

have v = [111100110110]. By this construction, the number

of −1s in each row of ~B−B equals the number of runs of

1s in B(i, ∗), which equals the sum of the number of runs

of 1s in 1
1×2h and each row of the Gray code G2,h(i, ∗).

By Fact 2.2, the total number of runs of 1s in each B(i, ∗)
equals h−1

∑

i=1

2i−1 + 2 = 2h−1 + 1.

Finally, we set ηs = 2h−1 + 2. Then, ℓ
hB

= hB2h+1
hB

> 2h =
2ηs− 4 with the minor restriction that hB > 2(h+ 1).

B. The Saturation SQGT Model for B(n,≤ ℓ, η)

For the bounded-length burst problem B(n,≤ ℓ, η) , one needs

to recover both hb and tb in order recover the burst. We describe

next an order-optimal scheme for B(n,≤ ℓ, η) restricted to the

saturation SQGT model. First, for ηs = s ≥ l, we describe an

optimal scheme termed the Integer code. Then, for ηs = s < l,

by adapting the bursty GT scheme from [1], we arrive at an

order-optimal scheme (within a constant factor of 4).

Theorem 6: For B(n,≤ ℓ, η) and the saturation SQGT model

for which η = (0, . . . , s) and s ≥ ℓ, there exists and order-

optimal scheme N that solves B(n,≤ ℓ, η) using ⌈log2 (n)⌉+1
measurements.

Proof: The matrix N is a vertical concatenation of a

⌈log2(n)⌉×n Index matrix and an 1
1×n. Note that the ith column

of the Index matrix is the binary representation of i.

Example 4.2: For n=8, we have

N =









0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1









.

Since ℓ ≤ s, η (Nb) = Nb. We then treat the outcome vector as

a binary representation of an integer k equal to

k : =

⌈log2(n)⌉
∑

i=0

2i (Nb) (i, 0) =

⌈log2(n)⌉
∑

i=0

2i
tb
∑

j=hb

N(i, j)

=

tb
∑

j=hb

⌈log2(n)⌉
∑

i=0

2iN(i, j) =

tb
∑

j=hb

j =
hb + tb

2
ℓb.

We can deduce ℓb from the outcome corresponding to 1
1×n.

Hence, N recover the burst b using ⌈log2(n)⌉+1 measurements.

Theorem 7: For B(n,≤ ℓ, η) under the saturation SQGT model

with η = (0, . . . , s) and s < ℓ, there exists an order-optimal

scheme (within a constant factor 4) C that solves B(n,≤ ℓ, η)

using ≤ 2ℓ
s
+ 2 log2(n) + 3 measurements.

Proof: The matrix C is as follows:

C =
[

C
⊺

1 C
⊺

2 C
⊺

3

]⊺

,

where C1 is the Phase 1 matrix from Theorem 3.2 of [1]. By

an argument described in [1], C1 can distinguish all bursts b

within distance ≥ 2(ℓ− 2). Next, we use C2 :=
[

I⌈ 2ℓ
s
⌉ ⊗ 1

s
]∞

truncated to n columns from right. The outcome vector corre-

sponding to C2 is a single run (in a circular sense) of non-zero

of the form oh, s, . . . , s, ot, where oh, ot ∈ {1, . . . , s}. Then,

1) For ℓb > s: since ℓb
s

> 1 and ⌈ 2ℓ
s
⌉ ≥ ⌈ 2ℓb

s
⌉ ≥ ⌈ ℓb

s
⌉ + 1,

h 6= t. Therefore, one can use oh, ot to recover hb mod
2ℓ, tb mod 2ℓ. Consequently, C2 can distinguish all bursts

at distance < 2ℓ such that ℓb > s.

2) For ℓb ≤ s: from the outcome of C2, one can recover ℓb.

If ℓb ≤ s, then by Theorem 6, C3 := N can distinguish

all bursts with ℓb ≤ s.

Therefore C can be used to solve B(n,≤ ℓ, η) using hC1+hC2+

hC3 ≤ log2(n) + ⌈ 2ℓ
s
⌉ + ⌈log2 (n)⌉ + 1 ≤ 2ℓ

s
+ 2 log2(n) + 3

measurements, which is at most 4 times the lower bound of

Theorem 1.
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