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Abstract

Machine learning based approaches are being increasingly used for designing decoders for next
generation communication systems. One widely used framework is neural belief propagation
(NBP), which unfolds the belief propagation (BP) iterations into a deep neural network and the
parameters are trained in a data-driven manner. NBP decoders have been shown to improve
upon classical decoding algorithms. In this paper, we investigate the generalization capabilities
of NBP decoders. Specifically, the generalization gap of a decoder is the difference between em-
pirical and expected bit-error-rate(s). We present new theoretical results which bound this gap
and show the dependence on the decoder complezity, in terms of code parameters (blocklength,
message length, variable/check node degrees), decoding iterations, and the training dataset size.
Results are presented for both regular and irregular parity-check matrices. To the best of our
knowledge, this is the first set of theoretical results on generalization performance of neural net-
work based decoders. We present experimental results to show the dependence of generalization

gap on the training dataset size, and decoding iterations for different codes.

1 Introduction

E| Deep neural networks have emerged as an important tool in 5G and beyond for hybrid beam-
forming , channel encoding, decoding, and estimation , modulation classification ,
and physical layer algorithms . Within the context of channel decoding, prior works have
demonstrated that deep neural network based decoders achieve lower bit/frame error rates than

conventional iterative decoding algorithms such as belief propagation in several signal-to-noise ratio
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(SNR) regimes [5}/6,9/14-16]. In another line of works [26-28], deep neural networks have been
used to jointly design both encoder and decoder. Given the expansive applicability of deep neu-
ral networks for channel encoding and decoding, we note here that determining neural network
architectures that generalize well to large block length codewords is an active area of research.

Iterative decoding algorithms (such as belief propagation (BP)) are commonly deployed for
decoding linear codes; and are known to be equivalent to maximum aposteriori (MAP) decoding
when the Tanner graph does not contain short cycles [29]. However, if the Tanner graph contains
short cycles, then BP can be sub-optimal i.e., the messages passed between the variable nodes and
parity check nodes cannot correctly recover the transmitted codeword [530,/31]. One approach
to mitigate the effect of short cycles is by generalizing the BP algorithm by means of a deep
learning based approach [5-13]. It is shown that the weights learnt by optimizing over the training
data ensure that any message repetition between the variable nodes and parity check nodes do
not adversely impact the performance of BP based decoders [5,/6]. We refer to this class of belief
propagation decoders as Neural Belief Propagation (NBP) decoders. The salient aspect of NBP
decoders is that its structure is determined from the corresponding Tanner graph, and therefore its
architecture is a function of the code parameters itself. Several variants of NBP decoders have been
a subject of recent study |7H13|. In [7], the authors propose a hardware efficient implementation of
the NBP decoder by reducing the number of matrix multiplications. The authors in [9] implement
message passing on graph neural networks wherein the output of each variable node is computed
using a sub-network. An interesting variant of NBP decoder was proposed in [11] in which the
unimportant check nodes were pruned in each decoding iteration thereby resulting in a architecture
that corresponds to a different parity check matrix at each iteration. The authors in |12] propose
correcting the output of conventional decoding algorithms using a NBP decoder thereby combining
the desirable features of both conventional and NBP decoders. A knowledge distillation based
technique to learn the node activations in NBP decoder was proposed in [13].

Post-training, it is important that the NBP decoder achieves low bit-error-rate (BER) on unseen
noisy codewords. Prior works on NBP decoders [7-13] are empirical; to the best of our knowledge
there are no theoretical guarantees on the performance of NBP decoders on unseen data. To this
end, given a NBP decoder, our goal is to understand how its architecture impacts its generalization
gap [32], defined as the difference between empirical and expected BER(s). Motivated by the
above discussion, we ask the following fundamental question: Given a NBP decoder, what is the
expected performance on unseen noisy codewords? And how is the generalization gap related to code
parameters, neural decoder architecture and training dataset size?

There are several approaches to obtaining generalization gap bounds in the theoretical machine
learning literature, which can be classified into two primary categories. The first category comprises
data-independent approaches, such as VC-dimension, Rademacher complexity of the function class,
and PAC-Bayes [3241]. The second category focuses on data-dependent approaches, which analyze
the mutual information between the input dataset and the algorithm output [42,43]. VC-dimension
is a measure of the number of samples required to find a probably approximately correct (PAC)
hypothesis from the entire hypothesis class [44-46]. Rademacher complexity measures the correla-

tion between the function class and the random labels [32]; it is known that generalization bounds



obtained via Rademacher complexity (and it’s variants) are tighter than the bounds obtained using
the VC-dimension approach [37]. Another method is the PAC-Bayes analysis, where generalization
gap is bounded by the Kullback-Leibler divergence between the prior and the posterior on the
learned weights. The prior is chosen to be a multi-variate normal distribution centred around the
initial weights [35,47-49]. In [50], the authors propose the measuring the change in the training
error with respect to perturbations in the model weights as a measure of its generalizability. Recent
literature has increasingly focused on analyzing machine learning-based communication systems,
particularly in terms of the generalization gap. For instance, [51] investigates generalization bounds
in the context of codebook design and decoder selection in both uncoded and coded communication
systems. This paper specifically examines a setting where the encoder and decoder are learned in a
data-driven manner. In uncoded systems, the authors consider minimum distance decoders, while
in coded systems, they focus on learning decoders by maximizing the mutual information between
the input and the channel output. The study highlights how the generalization gap scales with
codebook size, the number of noise samples, and input dimensionality. Additionally, [52] addresses
the learning of decoders for predetermined codebooks. Drawing inspiration from the support vec-
tor machine paradigm, the authors propose a nearest neighbor decoder, the parameters of which
are learned in a data-driven manner. The paper also derives bounds for the generalization gap
of this learned decoder. For the scope of this paper, we adopt the PAC learning framework and
use Rademacher Complexity to understand the generalization gap of NBP decoders. The nota-
tions introduced throughout the paper are summarized in Table [II We next summarize our main
contributions.

Main Contributions:

1. Generalization gap as a function of the covering number of the NBP decoder: In this paper,
we first upper bound the generalization gap of a generic deep learning decoder as a function of
the Rademacher complexity of the individual bits of the decoder output (which we denote as
the bit-wise Rademacher complexity). We next consider NBP decoders which belong to the
class of belief propagation decoders whose architecture is a function of the code parameters.
We upper bound the bit-wise Rademacher complexity as a function of the covering number
of the NBP decoder, which is the cardinality of the set of all decoders that can closely
approximate the NBP decoder. The covering number analysis provides an upper bound with
a linear dependence of the generalization gap on spectral norm of the weight matrices and
polynomial dependence on the decoding iterations. The bound we obtain is tighter than
the other approaches such as VC-dimension and PAC-Bayes approaches in which the upper

bound exponentially depends on the decoding iterations.

2. Upper bounds on bit-wise Rademacher complexity for regular and irregular parity check matri-
ces: We upper bound the covering number of NBP decoder in terms of the code-parameters
(blocklength, variable node degree, check node degree), and the training dataset size for both
regular and irregular parity check matrices. From our results, we show that the generalization
gap scales with the inverse of the square root of the dataset size, linearly with the variable

node degree and the decoding iterations, and the square-root of the blocklength. To the best



y[i] = i-th index in y

n — Blocklength

k — Dimension of the code
d, — Variable node degree
k — Message vector

k — Code rate

T — Decoding iterations
lBER(‘) — BER loss

Fr v — Hypothesis class
H — Parity check matrix
G — Tanner graph

VY — Variable nodes set

P — Parity check nodes set
£ — Edge set in graph G
W, — Weight matrices

B — Norm bounds

b — Absolute value bound
by — Bit-wise bound on A
w — Bound on weights

[| - [l2 = Spectral norm

|| - ||F — Frobenius norm

|| - |]1 = Max. column sum
|| - [loo = Max. row sum
By, — Bound on ||[W;|2

H]i, j] — i-th row and j-th column entry in H

C — Linear block code of length n and dimension &

f(A)[j] — j-th output bit of NBP decoder for input A

S ={(Aj,x;)}L; — Dataset to train NBP decoder f

X, ¥, z — Channel input, output, and noise, respectively

A, X — Decoder input, decoder output, respectively

Fr — Function class of NBP decoders with T iterations

N (Fr, € ||-||x) — Covering number of Fr with respect to k" norm
M(Fr,e |- |lx) — Packing number of Fr with respect to k' norm
P(Fr,e| - |lx) — Packing of Fr with respect to the k** norm
Rper(f) = True risk of NBP decoder f

ﬁBER( f) — Empirical risk of NBP decoder f

Ry, (Fr,r) — Empirical Rademacher complexity

R, (Fr[j]) — Bit-wise Rademacher complexity

{vi,p;j} — Edge connecting variable node v;, parity check node p;
vt — Output of variable node hidden layer in ¢-th iteration

Pt — Output of parity-check node hidden layer in ¢-th iteration
vi[{l,m}] — Message from variable node v; to parity node py,
pt[{l,m}] — Message from parity node p,, to variable node v

W [{l,m},1] — Weight between I-th input A[/] and node v¢[{l, m}]
W3 [{l,m},{l,m'}] — Weight between nodes v¢[{l, m}],pt[{l,m }]
W31, {l,m}] — Weight between vr[{l,m}] and I-th output X[I]
Wy[l, 1] — Weight between A[l] and X[I]

By, = Lo norm bounds of rows in W;, where i € {1,2,3,4}

Table 1: Notations used in the paper.

of our knowledge, this is the first result that determines upper bounds on the generalization

gap as a function of the code-parameters.

3. Experimental evaluation of the generalization gap bounds: We also present simulation results

to validate our theoretical findings. To the best of our knowledge, this is the first work that

empirically studies the generalization gap of NBP decoders. In the experimental results, we

consider binary phase shift keying (BPSK) modulation and additive white Gaussian noise

(AWGN) channel. We use Tanner code to illustrate the dependence of the generalization

gap on the decoding iterations, and training dataset size. To study the dependence of the

generalization gap on the blocklength, we consider two QC-LDPC parent codes, and generate

descendent codes with smaller blocklengths by puncturing the parent code. We assume that

all-zero codewords are transmitted, and the NBP decoder is trained on the noisy realizations

generated for a given channel signal-to-noise ratio (SNR). In our empirical results, we observe

that the generalization gap has a linear dependence on the decoding iterations, and it increases

with the blocklength, thereby agreeing with the theoretically derived bounds.



Iteration 1 Tteration 2 Iteration T’

Linear block X q Channel
u code encoder bl e LLRs tanh activation

A Decoded
codeword
Channel All S
2 = %
X = f(}\) NBP decoder A Compute ‘}j Aln]
i () channel LLRs

(a) (b)

Figure 1: (a) End-to-End block diagram for communication using neural belief propagation (NBP)
decoders for linear block codes; (b) Architecture of the NBP decoder for T" decoding iterations
where each decoding iteration corresponds to 2 hidden layers: (1) variable node layer, (2) parity
check node layer.

2 Preliminaries and Problem Statement

In Fig. we consider a linear block code denoted by C of blocklength n and message length
k. Let the code C be characterized by a regular parity check matrix H € {0, 1}(”_k)x'”, and we
denote the Tanner graph as G = (V,P,&); where V = {v1, -+ ,v,} is the set of variable nodes,
P = {p1, - ,pn—k} is the set of parity check nodes, and £ = {e1, - ,epnq,} is the set of edges.
Here, d, represents the variable node degree, i.e., the number of parity checks a variable node
participates in. Let {v;,p;} denote the edge in the Tanner graph G connecting variable node v; to
parity check node p;. V(v;) = {p;|H[i,j] = 1} denote the set of parity check nodes adjacent to
the variable node v; in the Tanner graph G. Similarly, P (p;) = {v;|H[i, j] = 1} denote the set of
variable nodes adjacent to the parity check node p; in G.

Let Y C R™ be the space of n dimensional channel outputs, X C {0,1}" be the space of n
dimensional codewords, U C {0, 1}”c be the space of k dimensional messages, and Z C R" be the
space of n dimensional channel noise. The message u = [u[l],--- ,u[k]]T € U is encoded to the

T € X. The channel is assumed to be memoryless, described by

codeword x = [x[1], -+, x[n]]
Pr(y|x) = [}, Pr(y[i]|x[i]). The receiver receives the channel output y = [y[1],---,y[n]]T € V;
which is the codeword x modulated, and corrupted with independently and identically distributed
(ii.d.) additive noise z = [z[1],--- ,z[n]]" € Z.

The goal of the decoder is to recover the message u from the channel output y. The input to
the decoder is the log-likelihood ratio (LLR) of the posterior probabilities denoted by A € R™*!
and is given as Afi] = log %, for 1 <i < n. Denote the output of the NBP decoder with
T decoding iterations as X = f(A), where f(-) denotes the decoding function.

The architecture of the NBP decoder is derived from the trellis representation of G and illus-
trated in Fig. [I[b). Each decoding iteration ¢ (where, 1 <t < T') corresponds to two hidden layers
each of width |&| = nd,, namely: (1) variable layer vy, (2) parity check layer pt. The hidden nodes
in layers v¢ and pt correspond to the messages passed along the edges of the Tanner graph G. For
instance, the output of the node v¢[{l, m}] in the NBP decoder corresponds to the message passed

from variable node v; to parity check node p,, in the t-th iteration, and is given as,



vel{t,m}] = WL mb gAl + Y W[t m), {1 m pe-1 [{1,m'}], (1)

m'eV(I)\m

where, pt—1[{l,m’}] corresponds to the message passed from the parity check node p,, to the
variable node v; in the (t—1)-th iteration. For ¢ = 1, we have pg = [0,--- ,0]". Wgt) € R"xn and
Wgt) € R >ndv gre sparse weight matrices trained using backpropagation in the t-th decoding
iteration. WY) is strictly a lower triangular matrix with exactly d, non-zero entries in every

t)

column, and one non-zero entry in every row. Wg has exactly d, — 1 non-zero entries in every

row, and d, — 1 non-zero entries in every column. We consider that the ¢-th decoding iteration is
characterized by weight matrices Wgt) , and Wg) , where t can take integer values ¢t € {1,---,T}.

The output of the parity check node layer in the ¢t-th decoding iteration for the NBP decoder is,

pe[{l,m}] = 2tanh ' [ [ tanh (W) o)

reP(m)\l

Implementing is computationally expensive in hardware due to the multiplicative operations
and hyperbolic functions. For practical implementation, can be made computationally feasible

by using the min-sum operation, which is described as follows:

pel{l,m}] = [ sign(ve[{l', m}]) mln \vt[{l m}]|. (3)

'eP(m)\l

We note that learnable parameters can be incorporated into the min-sum operations. Specifically,

the output of the parity check node layer can be scaled with weights as follows:

pe[{l.m}] = Bel{l.m}] [ sign(ve[{’, m}]) Be[{L, m}]. (4)

reP(m)\l

The parameter vector 3 is learned in a data-driven manner. Alternatively, the output of the parity

check node layer can be offset using the parameter 3; as follows:

pe[{l.m}] =[] sign(ve[{',m}]) ReLu (Be[{l, m}] — Bel{l,m}]) . ()

reP(m)\l

In this paper, we concentrate on the scenario where the learnable parameters are used solely
for computing the output of the variable node layer. The estimated codeword after 1" decoding

iterations in the NBP decoder is given as,

X[l =s(W A+ > WL {1 m V({1 m'}) (6)

m/eV(l)

where, W3 € R™"d W, ¢ R™" and s(-) is the sigmoid activation. W3 is strictly an upper



triangular matrix with exactly d, non-zero entries in every row, while Wy is a diagonal matrix.
The NBP decoder (denoted by f(-)) is characterized by the following four sparse weight matrices:
(a) Wgt), where t = 1,--- T, (b) Wét), where t = 1,--- T, (¢c) W3, and (d) Wy. The weight
matrices are learnt by training the NBP decoder to minimize the bit error rate (BER) loss that is
defined as,

da(f(N),x) 2251 LN # x[5])

IBER(f(A),x) = " = - : (7)

Here, dg(-,-) denotes the Hamming distance, and 1(-) denotes the indicator function. In prac-
tice, we train the NBP decoder to minimize the BER loss over the dataset S = {(X;,x;)}].,

comprising of pairs of log-likelihood ratio and its corresponding codeword. Then, we define the

empirical risk of f as Rpgr(f) = L 5" Iger(f(A)),x;). The true risk of f is defined as Rpgr(f) =
j=1

Exx[lBER(f(A),x)]. X

Problem Statement. The generalization gap is defined as the difference Rpgr(f) — Rer(/f)-
The main goal of this paper is to understand the behavior of the generalization gap (specifically
upper bounds) as a function of a) training dataset size, m, b) the complezity of the NBP decoder,
in terms of the number of decoding iterations 7" and ¢) code parameters, such as message length &,

blocklength n, variable node degree d,,, parity check node degree d..

3 Main Results

In this section, we present our main results on the generalization gap for NBP decoders. Let
S = {(Xj,x;)}]L; be the training dataset, and we assume that the dataset is i.i.d from a fixed
distribution. Let Fr be a class of NBP decoders with T' decoding iterations. For the scope of
this paper, we focus on the family of NBP decoders whose non-zero weight entries are bounded
by a constant w. Specifically, we assume that for every (i,j) and 1 < ¢t < T, |W§t) [, 7]] < w,
\Wét) [, 7]] < w, [W3]i,j]| < w and [W4[i,j]| < w, i.e., the maximum absolute value of the (i, j)
coordinates for all the weight matrices are bounded by a non-negative constant w. In addition, we
also assume that input log-likelihood ratio |A[i]| < by for all i =1,...,n.
We define the hypothesis class F, r, derived from the class 7 of NBP decoders as follows:

.FL7T = {()\,X) — lBER(f()\),X) : f c .FT} . (8)

Intuitively, for each f € Fr, the output of the corresponding function in F7, r is the BER loss of
the decoder f. We next define the empirical Rademacher complexity of F7, .

Definition 1. (Rademacher complexity of Fr,v) The empirical Rademacher complexity of Frr is
defined as

R (Frr) = E | sup L > ailper(f(X), %) |, 9)

rerr ™ i)



where o;’s are i.i.d. Rademacher random variables, i.e., Pr(o; = 1) = Pr(o; = —1) = 3.

We note that the loss function Iggr takes the values between [0, 1]; and consequently using a
standard result from PAC learning literature (Theorem 3.3 in [32]), one can bound the generalization
gap in terms of R,,(Frr). Specifically, for any 6 € (0,1), with probability at least 1 — ¢, the
generalization gap for any f € Frp is bounded as follows:

log(1/9)

Reer(f) — RBer(f) < 2Rim(Frr) + o (10)

To proceed further, we introduce bit-wise Rademacher complexity of Fp; which is a new notion
and captures the correlation between j-th channel output of the NBP decoder and a random decision

(Rademacher random variable).

Definition 2. (Bit-wise Rademacher complexity of Fr) For a NBP decoder class Fr, the empirical

bit-wise Rademacher complexity corresponding to its j-th output bit is defined as:

m

B Frli) 2 E | sup — 3 o FOM)1| (11)

7 e Mo

We next present Proposition [I] in which we upper bound the generalization gap as a function of

the empirical bit-wise Rademacher complexity R, (Fr[j]).

Proposition 1. For any § € (0,1), with probability at least 1 — §, the generalization gap for any
NBP decoder f € Fr can be upper bounded as follows,

Rper(f) — Rper(f) < %ZRm(}—TU]) + Iog(1/5)7 (12)
=1

2m
where Ry, (Fr[j]) denotes the bit-wise Rademacher complexity for the jth output bit.

The proof of Proposition [1] is presented in Appendix [A] We now present Theorem [I] which is
the main result of this paper. The main technical challenge is to bound the bit-wise Rademacher
complexity R,,(Frl[j]) as a function of the number of decoding iterations 7', training dataset size

m and code parameters (blocklength n and variable node degree d,).

Theorem 1. For any § € (0,1), with probability at least 1 —§, the generalization gap for any NBP
decoder f € Fp can be upper bounded as follows,

Roen(f) - Rosn($) < & 4 (/B 1g JORTEDT LD, (s rma,py), (13

where n denotes the blocklength, d,, is the variable node degree, T is the number of decoding iterations

(number of layers in NBP), m is the training dataset size; w and by are upper bounds on the weights

in the NBP decoder and input log-likelihood ratio, respectively.



Proof-sketch of Theorem [I} The detailed proof of Theorem [I]is presented in Appendix [B] and
here we briefly describe the main ideas. We first upper bound the bit-wise Rademacher complexity
in terms of Dudley entropy integral (specifically, leveraging Massart’s Lemma in [39] and adapting
it to our problem). The resulting bound is expressed in terms of the covering number of the NBP
decoder class, i.e., the smallest cardinality of the set of functions in F7 that can closely approximate
the NBP decoding function f. To further bound the covering number, we first show that the NBP
decoder is Lipschitz in its weight matrices which is proved in Lemma [l| (see Appendix . In other
words, for a given input, the output of the NBP decoder remains invariant to small perturbations
in its weight matrices. Using this fact, we obtain a bound on the covering number of the NBP
decoder class in terms of a product of covering numbers (each corresponding to a weight matrix).
We then observe that the weight matrices for the NBP decoder are sparse, where the structure and
number of non-zero entries is determined by the parity check matrix and the code parameters (such
as blocklength n, variable node degree d,, etc.). We then use the fact that the covering number of
a sparse weight matrix is always smaller than that of a non-sparse vector (of the same size as the
total non-zero entries in the original sparse matrix). Using our result in Lemma |3 we can finally
upper bound the bit-wise Rademacher complexity as a function of the code parameters to deduce
the result in Theorem [l

Remark 1 (Representation in Terms of Code-rate and Parity Check Node Degree).

The result in Theorem[] can also be expressed as follows:

Rper(f) — Rper(f) < 2+W+1z\/("d5(1 - ”)251 DT+, (8y/mnwdyby). (14)

We use the fact that the blocklength, message length, variable node degree, and parity check node
degree are related as nd, = (n — k)d.. Using this relation in Theorem we obtain . From the
result in we note that the generalization gap reduces for codes with a high code-rate k.

Remark 2 (Impact of the Code-parameters). We plot the generalization gap bound obtained
in Theorem [1] in Fig. [4 for blocklength n = 100, variable node degree d,, = 10, decoding iterations
T = 10, and dataset size m = 105. To understand the dependence of the generalization gap on
a parameter, we vary that parameter while keeping the values of the remaining parameters fixed.
Smaller training dataset size results in overfitting, and therefore corresponds to a larger generaliza-
tion gap. We observe this in Fig. @(a), wherein the generalization gap decays as (’)(\/—%) While
more decoding iterations (i.e., more hidden layers) are expected to improve decoding performance,
it can also overfit the training data. Therefore, we expect the generalization gap to increase with the
number of decoding iterations. As seen from Fig. @(b), we note that the generalization gap of the
NBP decoder scales linearly as O(T'). Our theoretical result in Theorem tells us that the general-
ization gap scales with the blocklength as O(y/n) as shown in Fig. [J(c). However, the generalization
gap scales linearly with the variable node degree as O(d,) as shown in Fig. @(d)

Remark 3 (Comparison with Other Approaches for Bounding the Generalization Gap).
Vapnik-Chervonenkis (VC) dimension bounds [33,|34], PAC-Bayes analysis [35,36,|49] are other



n
d,
T
w
by
J

Generalization gap
Generalization gap

40

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Dataset size (m) Decoding iterations (')

(a) (b)

Generalization gap
3
Generalization gap

8
10 20 30 40 50 60 70 80 90 100 1 2 3 4 5 6 7 8 9 10
Codeword length (n) Variable node degree (d,)

(©) (d)

Figure 2: (a) RHS in Theoremvs Dataset size (m), (b) RHS in Theoremvs Decoding iterations
(T'), (c¢) RHS in Theorem [1f vs Blocklength (n), (d) RHS in Theorem [l vs Variable node degree

(dy).

techniques to upper bound the generalization gap. While VC-dimension approach yields a bound
independent of the data distribution, it is found that these bounds are vacuous [35,55] and scales
exponentially with the number of parameters of the neural network. To obtain tighter and non
vacuous generalization bounds, prior works [35|54.,55] have proposed the use of PAC-Bayes analysis.
For any § € (0,1), with probability at least 1 — §, the generalization gap using PAC-Bayes analysis
is upper bounded as, Rprr(f) — ﬁBER(f) < \/KL((||F)+10§"\{E+log(2/6)‘ The PAC-Bayes prior on
the space of neural network decoders ¢ is chosen independent of the training data [54,/56]. The KL

divergence term between the PAC-Bayes prior ¢ and posterior I is typically the dominant term in the
bound for the generalization gap. While the posterior 1" achieves minimal empirical risk, and is data-
dependent; the KL divergence term can be large as the data-independent priors are chosen arbitrarily
causing the bound to be vacuous [560]. In [49], the PAC-Bayes framework is utilized to establish an
upper bound on the generalization gap as a function of the network’s sharpness, where sharpness
1s defined as the change in network output relative to the perturbation of the weight matrices. The
resulting bound is a function of the spectral and Frobenius norms of the weight matrices, assuming
that both the perturbation and the prior are from a Gaussian distribution. Fxploring PAC-Bayes
analysis for the NBP (Neural Belief Propagation) decoder paradigm, and understanding how the
bound scales with different priors, is an interesting future direction. PAC-Learning approach used
in this paper leads to a cleaner analysis (inspired by recent results on generalization bounds for
graph neural networks and recurrent neural networks [57,[58]), and the bound obtained has a closed-
form expression with explicit dependence on code parameters, decoding iterations, and the training

dataset size.

We next show that Theorem [I] can be readily generalized to irregular parity check matrices. Specif-

10



ically, consider an irregular parity check matrix H € {0, 1}("”“)“1

where d,, is the variable node
degree of the i-th bit in the codeword, and d.; is the parity check node degree of the j-th parity
check equation. The NBP decoder corresponding to such this irregular parity check matrix is char-
acterized by the weight matrices {Wgt)\l <t<T}, {Wét)ll <t < T}, W3, Wy. Here, for every
1 <t<T, and =3 d,, we have that W) ¢ R?n W) ¢ R0, W ¢ R0, and W, € R,
i=1
For any value of ¢, the weight matrix Wgt) has one non-zero entry in every row, and d,, non-zero
entries in the i-th column. In the weight matrix Wg), the ¢-th bit in the codeword with variable
node degree d,, corresponds to d,, rows and d,, columns, and these rows and columns each have

exactly d,, — 1 non-zero entries.

Theorem 2. For any § € (0,1), with probability at least 1 —§, the generalization gap for any NBP

decoder f € Fr corresponding to irreqular parity check matrix can be upper bounded as follows,

S d2 (T +1)?
4 | -1
1, flos1/8) |
m 2m

Reer(f) — Rper(f) < log (8\/7%10 max dvibA>. (15)

The proof of Theorem [2|follows similar steps used to prove Theorem I} and is presented in Appendix
[El

In Theorem 1} we assumed that the log-likelihood ratios are bounded and this result does not take
the channel SNR into account. We study the impact of the bound on input log-likelihood ratios
and the channel SNR in Theorem [3[ which is presented next.

Theorem 3. For any § € (0,1), with probability at least 1 —§, the generalization gap for any NBP
decoder f € Fr with unbounded log-likelihood ratios is upper bounded as follows,

. ) 4 log(1/6
Rper(f) — Rper(f) < min ¢(n,dy, Ty m,w,by) + —+ M (16)
A

2m

where, p(n,d,, T,m,w,by) = 12\/(7“7[%7%# log (8y/mnwd,by)+Pr (Fi € [n],s.t.|Ali]| > by). Sup-
pose the symbols are modulated using binary phase shift keying (BPSK) modulation, and the channel
is AWGN with variance 3%, then Pr (i € [n] s.t. |A[i]] > by) = (1 -Q (6237%4'2) -Q (%)) .

The proof of Theorem [3] is presented in Appendix [F] To take the unbounded input log-likelihood
ratio into account for analysis, we use the law of total expectations, and condition the true risk
with the event that the input log-likelihood ratio is not bounded, i.e., |A[i]| > by for any ¢ € [n].
We bound the probability that log-likelihood ratio is unbounded assuming BPSK modulation, and
AWGN channel. In addition, we have the true risk conditioned on the event that the input log-
likelihood ratio is bounded which directly follows from Theorem [1|in this paper. In , the term

12/ @ETHDTH) 146 (g mnwd,b)) is an increasing function of by, and Pr (3i € [n|,s.t.|A[7]| > by
\/ m g g ) )
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is a decreasing function of by. Therefore, minimizing the two terms over by provides the upper

bound on the generalization gap.

Remark 4 (Minimizing the generalization gap by selecting the bound on LLR (b))
based on Channel SNR). The generalization gap in Theorem [ comprises of two terms: (a)
12\/% log (8y/mnwd,by), which increases with by; (b) Pr(3i € [n],s.t.|A[i]| > by), which

18 a decreasing function of by, 8. The choice of by to minimize the total generalization gap is a

function of 5. To illustrate this, we plot the generalization gap bound obtained in Theorem[3, the
generalization gap bound obtained in Theorem[]] for bounded input LLR, and the probability that the
wput LLR is unbounded in Fig. @(a). We set blocklength n = 100, variable node degree d, = 10,
decoding iterations T = 10, and dataset size m = 10%. As seen in Fig. @(a), the generalization gap
terms obtained in Theorem are minimized in region R1 that corresponds to smaller values of B (or
large channel SNR). This behavior is attributed to lower values of by (i.e., by = 10) as observed in
Fig. [3(b). As the B is increased (or reducing the channel SNR) in region R2 in Fig. [](a), the min-
imum generalization gap is obtained for larger values of by. The term Pr(3i € [n],s.t.|A[i]| > b))

also decreases with increase in 3 (or lower channel SNR values). In other words, there is a trade-off

between the terms 12\/% log (8y/mnwd,by), and Pr (Ji € [n],s.t.|A[i]| > by) based on the
channel SNR. We adopt this approach to establish a dependency on the channel SNR, considering

that our method for bounding the generalization gap was previously data-independent. In contrast,
data-dependent bounds create a direct link between the gemeralization gap and the mutual infor-
mation involving the input dataset and the algorithm output [42,45]. This methodology implicitly
accounts for various factors, including the dataset, hypothesis set, learning algorithm, and the loss
function employed. Consequently, the integration of mutual information-based approaches could be

crucial in demonstrating a direct correlation between the generalization gap and the channel SNR.

4 Experimental Results

In this section, we present some numerical results to complement our theoretical bounds. We
consider binary phase shift keying (BPSK) modulation and AWGN channel, and the received
channel output for 1 < i < n is given as y[i] = (—1)*l + z[i]. We focus on Tanner codes with:
(i) n = 155, k = 64, d, = 3, d. = 5; (ii)) n = 310, k = 128, d, = 3, d. = 5 and study the
empirical generalization performance of NBP decoders whose architecture was proposed in [5], and
also described in Section [2] of this paper. We adopt the software provided with the papers [6,(7]
for our experiments. We train the weights of the NBP decoder until convergence by minimizing
the cross-entropy loss between the true and the predicted codeword. We use ADAM optimizer for
training with a learning rate of 0.01. We evaluate the NBP decoder by measuring the generalization
gap (difference between average BER attained on the test and training datasets). We perform each
experiment for 10 trials, and the distribution of the generalization gap over these 10 randomized
runs are plotted on a boxplot. We next discuss the impact of the dataset size (m), and the decoding

iterations (7') on the generalization gap.

12



—E— Total generalization gap
5 12
N iwaogu/o) +12\/(nd1,T+1)(T+1) log (8vmmmuod,by)
m 2m m
B2by +2 B2y —2\\"
—o— 1 (1e(757) o(57))

R1 R2 n = 100 R1 R2
dy =10 |
T =10
% m = 10° 2
&0 - 2 |
. w=1
8 —— §=0.01 22
§ b>\ 20
- 18 |
=
g 16 |
g 1|
@) e — 12 |
01 02 03 04 05 06 07 08 09 001 62 03 04 05 06 07 08 0.9
(a) (b)

Figure 3: (a) The total generalization gap from Theorem [3| generalization gap from Theorem
and the generalization gap due to unbounded log-likelihood ratio as a function of the channel SNR,
(b) Selecting the bound on LLR (b)) to minimize the generalization gap.
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Figure 4: Generalization gap as a function of the dataset size m at channel SNR = 2 dB for (a)
Tanner code with n = 155, and k£ = 93, (b) Tanner code with n = 310, and k = 186.

a. Impact of training dataset size (m): We consider the NBP decoder with 7' = 3 decoding
iterations (equivalently, 6 layers) trained for channel SNR of 2 dB; we vary the training data set
size from m = 103 to m = 10* in steps of 1000. From the results in Fig. (a)7 (b), we observe that
the generalization gap is the largest for m = 1000, and generally decays with m. For a smaller
dataset size, the overfitting on the training samples is severe. Therefore, the NBP decoder fails to
generalize on unseen samples in the test data. We also repeated the above experiment for various
values of T as well as by changing SNR. We found the inverse monotonic dependence on m to be
consistent across different values of T and SNR (plots are omitted due to lack of space).

b. Impact of decoding iterations (7"): In this experiment, we study the impact of decoding

iterations (which is proportional to the number of hidden layers) in the NBP decoder on the
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Figure 5: Generalization gap as a function of the decoding iterations 7' (ox number of layers) at
channel SNR = 2 dB for (a) Tanner code with n = 155, and k& = 93, (b) Tanner code with n = 310,
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Figure 6: Generalization gap as a function of the standard deviation of the Gaussian noise S for
(a) Tanner code with n = 155, and k = 93, (b) Tanner code with n = 310, and k& = 186.

generalization gap. Here, we fixed channel SNR of 2 dB, training dataset size m = 10* and varied
T from {2,3,...,10}. As seen in Fig. [5| the generalization gap grows linearly with 7', which is
consistent with Theorem [1| (which behaves as O(T)). Increasing the number of parameters will
cause overfitting of the NBP decoder resulting in a larger generalization gap. We note that this
observation (i.e., linear dependence on T') was consistent for different dataset sizes, and channel
SNR values.

c. Impact of standard deviation of the Gaussian noise ((): In this experiment, we examine
the effects of varying the standard deviation of Gaussian noise, represented by 3, on the general-
ization gap of NBP decoders. We consider NBP decoders with T = 3 iterations and trained on a
dataset of size m = 10%. According to the results depicted in Fig. [6{a) and (b), we observe that
the generalization gap exhibits non-monotonic behavior in relation to 8. Specifically, for § < 1,
there is an increase in the generalization gap. Conversely, for 8 > 1, the generalization gap begins
to decrease. When f is substantially large, the channel output becomes statistically independent
of the input due to the increased channel noise. Consequently, this results in higher training and
test BER, which in turn leads to a reduced generalization gap.

d. Impact of blocklength (n): To study the impact of blocklength keeping the variable node
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Figure 7: Generalization gap as a function of the blocklength n at channel SNR = 2 dB for parent
QC-LDPC codes with (a) n = 1000, and k& = 500, (b) n = 680, and k£ = 340. The descendent codes
with shorter blocklengths are derived by masking columns of parity check matrix in parent code.

degree fixed, we use Progressive Edge-Growth (PEG) algorithm [59,/60] to construct two quasi-
cyclic LDPC (QC-LDPC) parity check matrices with: (i) n = 680, k = 340, d, = 3, d. = 6; (ii)
n = 1000, k£ = 500, d, = 3, d. = 7. We use the two codes as the parent code, and derive the
parity check matrices for varying blocklengths keeping the variable node degree fixed by masking
the columns of the parity-check matrix of the parent codes. Specifically, in Fig. [7| (a) we consider
codes with blocklengths n = 425, 510, 595 derived from QC-LDPC parity check matrix with
n = 680, k = 340; and in Fig. (7] (b) we consider codes with blocklengths n = 600, 700, 800, 900
derived from QC-LDPC parity check matrix with n = 1000, £ = 500. We note that in addition to
the blocklength, the descendent codes have different code-rates than the parent QC-LDPC code.
However, this method allows us to generate descendent codes that have the same structure (or same
nature) as that of the parent code, thereby, eliminating the impact of varying code structures on
the generalization gap. To account for the different training bit-errors for codes with varying code
rates, we normalize the generalization gap with the training bit-error-rate (or the empirical risk).
We also plot the theoretical bound derived in Theorem [I| normalized with the training bit-error-
rate (i.e., 12\/W%T+# log (8y/mnwdy,by)/Reer(f)). We consider NBP decoder with T' = 3

decoding iterations trained for channel SNR of 2 dB using dataset whose size m = 10%. As seen in

Fig. [7| the generalization gap grows with n, which is consistent with Theorem |1} The implication
of this result is that for a fixed set of parity check equations, the decoding complexity increases
with the blocklength; and the generalization gap is expected to increase with the blocklength for

the codes with same structure.

5 Conclusions

In this work, we presented results on the generalization gap of NBP decoders as a function of train-
ing dataset size, decoding iterations and code parameters (such as blocklength, message length,
variable node degree, and parity check node degree). We utilize the PAC-learning theory to express

the generalization gap as a function of the Rademacher complexity of class of NBP decoders. The
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sparse connections in the NBP decoder architecture plays a critical role in further upper bound-
ing the Rademacher complexity term as a function of the code parameters. Our bounds exhibit
mild polynomial dependence on the blocklength n and the decoding iterations (layers) 7. To the
best of our knowledge, our work is the first to provide theoretical guarantees for NBP decoders
corresponding to both regular and irregular parity check matrices. We also present generalizations
of our theoretical result to account for different channel characteristics. We also presented com-
prehensive set of experiments using Tanner codes and Quasi-cyclic LDPC codes to evaluate our
theoretical bounds in this paper. In our empirical results, we observe that the generalization gap
increases linearly with the decoding iterations, and grows with the blocklength. In addition, we
observe that the generalization gap decays with the training dataset size, thereby supporting the
theoretical results in this paper. There are several interesting directions for future work, including
a) obtaining generalization gap bounds for NBP decoders when the decoder is trained and tested
over a range of SNR values; b) obtaining generalization bounds for ML based decoders with prac-
tical constraints (such as quantized weights); c) extending the ideas for other type of ML based
codes/decoders (i.e., beyond BP type decoder architectures); d) a framework to select the code
parameters (i.e., blocklength and variable node degree pairs) that minimize the generalization gap

for a given channel SNR is also an important research direction.
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Appendix A Proof of Proposition

The proof of Proposition [1| directly follows from the Definition [I] of empirical Rademacher complex-
ity.

1 m
Ry (Frr)=E|sup — » oilger(f( i), %;
Fur) =B | sup 0SS olsen70).x)
_E SuplzaidH(f(Ai),Xi)
7 | feFr M n
a 1 m n 1— ; 1_ ; 2
@ g sip L3, < f)l] XM)
o |feFrmn i 2 2

i=1 j=1
1 1 m n
o fegmn;]z; S - (@i xil1)) (17)

where, in step (a), we consider the mapping such that x;[j] € {—1,1}, and f(N\;[j]) € {—1,1}; and
in step (b), we express the Hamming distance dg(f(A;),x;) = %Z?Zl (1= f(N)[J] x x;[4])- In
what follows, we take the supremum over Fr inside the summation. We note that the distribution

of —o;x;[j] and o; is the same, and we obtain:

In , the last step follows from the Definition

Appendix B Proof of Theorem

In this appendix, we present the proof of Theorem We first define the covering number and
packing number of Fr which is the set of all NBP decoders with 7" decoding iterations.

Definition 3. (Covering Number) The covering number N (Fr,e,| - ||x) of the set Fr with
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respect to the k-th norm for € > 0 is defined as

N(Fr.e. |- &) = minf{gr. - . ga}. (19)
st min [1(3) = iAW) < e (20)

must be satisfied for any f € Fp and input log likelihood ratio X; then the set {g1, -+ ,gn} C Fr

is the e-cover of Fr.

Definition 4. (Packing number) For a set of NBP decoders Fr, its packing number M(Fr, ¢, || -
l) with respect to the k-th norm for e > 0 is defined as

M(FT)Eu || : Hk) = mT?‘X|{gl) e 7gn}|7 (21)

s.t. |lgi(A) — g;(N) ||k > e. (22)

must be satisfied for any gi,9; € {g1,--- ,gn}; and the set P(Fr,¢€, |- |lx) = {91, - ,9n} C Fr
that satisfies , is called the e-packing of Fr.

From Proposition we have that, Rppr(f) < QBER(f) + % 2?21 Ry (Frlj]) + %. Next,

we use a PAC-Learning approach to bound the bit-wise Rademacher complexity term R, (Fr[j])

as a function of m, and spectral norm of the weight matrices of the NBP decoder. We use similar

reasoning to that used in generalization bound results for graph neural networks and recurrent

neural networks in [57,/58]; and we can adopt Lemma A.5. in [39] to bound the bit-wise Rademacher
complexity as:

Jm

. . 4o 12 :

Ro(Frlj]) < nf | —= + — Viog N(Frljl e || - [l2)de | - (23)

«

To further upper bound the bit-wise Rademacher complexity, we make use of the upper bounds
on the spectral norm of the weight matrices. Recall our assumption made in Section [3| that the
maximum absolute value of the non-zero entries in the weight matrices are bounded by a non-
negative constant w. In addition, we also use the result in [61] that the spectral norm of any
matrix A can be upper bounded as a function of its maximum absolute column sum norm |[[A||1,
and maximum absolute row sum norm [|A/o as [|Al2 < v/JA]ls|]A[l1. Using the assumption and
the result in [61], the spectral norm of the weight matrices Wgt), Wgt) for any 1 <t < T can be

upper bounded as:

B, = [W||2 < wi/d,,
B, = [W[l2 < w(d, — 1). (24)
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Similarly, we obtain the Ls norm bounds on for any j—th row vector in matrices W3 and Wy as:

w3 = HW5 ||2 < w\/ Vs
By, = [[Wa[j,]|l2 < w. (25)

We use these spectral norm bounds in Lemmal[I]in which we show that the NBP decoder is Lipschitz

continuous with respect to its weight matrices. That is, for the j-th bit we have,

T
+ p
2 A pWQ“)
=2

(Walj,:] — Wilj,:

T
IF T = F DL <D e
i=1 1

(W[, = Walj. ][, + pu,

2

+ Py Iy (26)

In , Pw, s Pwys Puys Pu, are Lipschitz parameters that is a function of the spectral norm bounds

of the weight matrices, the Ly norm bound of input A, and are given as,

T—i
IOW(Z') = nb}\BwS (\/ﬁBWQ) Z?
1

5 (WnBw,) 1

_ n)T-1 -1
+ nb,\BWI Bw3 (BWQ)T 2 L

=nTb\B w )
Pgn = HEAEW Bus g T Vn—1
Bw,) 't -1 _
= VnBwibs <(V§) + (B ) ,
Wy — 1
pw4 = b/\’ (27)

As a result of (26), the covering number N (Fr[j], €, | - ||2) in can be upper bounded using the
covering number of all distinct weight matrices as follows,

N(Frljl e - ll2) <HN 1 ’W [IF) XHN WJH\F)

1(1) W2(7,)
€ €

x N(W3lj, 1], mv |- [17) x N(Walj, ], ma |- r)

(28)
We now upper bound the covering number of the set of decoders Fr in using Lemma (3| in
which we derive an upper bound on the covering number of sparse matrices as a function of the

number of rows, columns, number of non-zero entries in the sparse matrix, and the spectral norm

bound.
Bounding N (Fr[j], ¢ | - [2): We know that the matrices W1, W, W3, and Wy have 1, d, — 1

d,, and 1 non-zero entries in each row, respectively. Using Lemma (3], the covering number of the

23



weight matrices of the NBP decoder f for 1 <+¢ < T can be bounded as follows:

() 6 (4T + 2)\/ﬁBW1pW(Z) TLdv
NWY, el P < | 1+ !
(2T + 1)pwl<z-> €
o . (T +2)VndyBw,p_., (o =tnds
NWy, ol lF) < | 1+ 2
2T + 1)pwéi) €
€ (AT + 2) Buyp,,, \ ™
Wilj, ), ———— |- 1l2) < (1 3
N3, ) € (104 5 )
NG gl < (1 22 ) (29
wy
Substituting in , we obtain,
v dy—1)nd,
v [ (UT+2)aBwp \" 1 [ @T+2VadBup "
N(Frlil,e |l - | H - =) < JI{r+ - 2
=1 =2
AT 4+ 2)B dv AT +2)B
€ €

Substituting the values of Lipschitz parameters obtained in , and assuming nd, > (n+1) , the
term N (Frljl, ¢, || - [|l2) can be bounded as:

; (31)

nd (¢ c (nd2T+1)
N(Frlil e || - [2) < <1+(471+'2)N/dv( 1+ 2)) '

T—1_
where, ¢; = nT By, BWQBwaA%, c2 = nByy, By, b (\/ﬁBWQ)Tfl. This value of ¢, and
2

co are obtained for large enough n, T', and d,,, which is an assumption that we make.
We now make use of the spectral norm bounds in and in ; and further upper bound
the covering number N (Fr[j], €| - ||2) as

(nd2T+1)
4T + 2)v/nd, v

N ) < (1 S ) (v, ) ) (32)
In , the integral can be further upper bounded using and we have that,

v Vi
/ Viog N (Frljl, e || - ||l2)de < / V (nd2T + 1)termide < \/m(nd2T + 1)terms (33)

where, term; = log(L?d”bA(T +1)2 (\/ﬁwdv)TH); termy = log (8\/mndvb>\(T +1)2 (\/ﬁwdv)TH).
Substituting in and assuming that the term (y/mby)?*? is large enough to approximate
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the term inside the logarithm, we have that,

Ron(f) - Rusn() < -+ /B, 1g [OBTEDTLED o (6 ). (34

Appendix C Lipschitzness in NBP decoders

Lemma 1. For n length codeword, the bit-wise output of the NBP decoder f € Fp is Lipschitz in
its weight matrices W1, Wao, W3, Wy such that,

2

T T
LENE = PN, €30 Lt P
i=1 1 i=2 2

‘W3[j7 :] - Wg[ja :]Hg +pw4 HW4[.77 :] - Wﬁl[.]u :]HQ .

T Py
The coefficients py, , Py, Pu, and p,, are as follows:

-
P = MbaBuy (VnBw,)"
1

nBw,). -1 _ n)T-1 -1

- =nTb\Bw,B
I Ot Yy  S— Jn—1
Buw,) 7t -1 _
pw3 = \/ﬁBwle ((‘;?2)1 + (BWQ)T 1) )
Wy —
Py = i (35)

Proof. For outputs f(X) and f/(X\), respectively we consider the following parameter sets: (a)
wil o owD wl o WD Wa, Wy, and (b)) Wi Wi wi L Wl w W
For the j-th output in the NBP decoder, we have that,

LFVG] = F OGN, = ||s (Wald, AL + Wald, Ipr) — s (Wil IAL] + W3[5, :1p7) ||,
< |[(Walj.:] — Wi[5,2]) Alj] + Wi, Jpr — WA, Jpr + WA, Jpr — WAL, Ipir |,
< [ (Walj, ] = Whl5, ) AL, + [ (Wali, ] = Wh[5.:]) prll, + [[W5l5. 1] (P — P) ||
< | Wald, ] = WilG, ||, bx + Pz lly [[Wali ] = WL ||, + Bus [T — PE[,- (36)

where, |[W5[7,:]||;, < Bu,. We next find an upper bound |pr|, as a function of the number
of iterations T', Lipschitz constants of the activation functions, and spectral norm bounds of the

weight matrices of the NBP decoder. To further upper bound ||pr||,, we know from Lemma [2| that
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lptlly < ||vrlly, and therefore we have

T T
Iprlly < llvel, = [WPA+ Wi proa |
< WA, + [Waera
< VB, by + B, [pr-all (37)

where, (a) follows from Talagrand’s concentration lemma [62]. Applying recursively across T’

decoding iterations we have,

T—-2
Iprly < velly < VaBw,by Y (Bw,)' + (Bw,)' ~H Ivall,- (38)
i=0

(1)

Also, we have vi = W, ’A. Therefore, ||v1]|, can be upper bounded as

Ivally = [|W|| < viBw,ba. (39)

Substituting in , we have

Buw )l 1 -1
Ipzlly < vABw, by (( wa)

T Bw -1 (BWQ)T1> : (40)

To upper bound ||pt — pr|ly, we express ||pt — prp|l, in terms of ||vy — vip||, as follows:

P = Prlly < Vi [ve = vall,, (41)
where, ||[vy — vip||, can be upper bounded as follows:

[ve — v, = HWgT)A + Wy pr1 - (W Oxewyh )H
< (w-wi) +HprT-1—w<T>pr-1H2
< V/nby ngT) ’(T H +HW pPT- 1—W( )pT71+W/2(T)pT71—W’2(T)P£1L1H2
< Vit [ Wi = WO b fiproally [ W = WiT|| +Bu [pr-1 — P

< i [ WP WP sl [ WD - WA, + VB s~ .
(42)
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Applying recursively across 1" decoding iterations we have,

T
Jvx —vil, < Vb (z (B ) [T g >

T-1
+ (Z (ViBuws) " villy WO -wi Y H) + (VaBw,)" v —vill, (43)

=1

To upper bound [|vy — v} ||,, we have that,

[va =il = WA= wiA|

1 1
< Al Wit = Wi (44)

In addition, the term ZiTgll (\/ﬁBWQ)T_l_i ||vi||, can be upper bounded as follows,

T-1
> (ViBw) T il < Z (ViBw,)" ™ (= )ViBw, by + Viba By, (Bu,)' )
=1

(\/ﬁB )T—l 1 T—1
< T\/nBw,b s — | /nbyBw, (Bw, )T 2 n) 71
VnByw, by JnBwn —1 VnbxBw, (Bw,) ;(\f)

(vVaBw,) ' —1
\/ﬁBVV2 -1

Substituting and in , we have

M_ (45)

< T/n By, by T Vit Bu, (Buyy) T2 Vi1

T-1 A ' ‘
[vr = V||, < v/nby (Z (ViBw,) [WT= - wT= 2)
0

1=

_ T

(\/HBWQ)T ! 7o (V) =1 (1) _ /(0

+ (T\/ﬁb)\Bwl \/'EBWQ 1 + \/ﬁb)\Bwl(BWQ) \/'ﬁ 1 ; HWZ W2 9 (46)
Substituting in we have that,
T—1
—1 T—1

|pT — P ||, < nbA (Z (VaBw,)' W —wiT) 2)

(ViBw,)' ' -1 -2 (\F )W
+ <TnleW1 B 1 B (Bw) 1 Z |w (47)

27



Using and in we obtain

T—-1
1] = £, < nbaBu, (Z (VB [T )
1=0

+(Bw,) T

T-1 T-1 T ) )
+ s B B, <T<ﬁBW2> 1 D 1) > wh - w

VnBy, — 1 vn—1 2 k2
+ v/nBw, by <(VBK2)1 + (BWQ)T 1) X HWg[j,:] — W[4, :]H2
Wy —
+b)\HW4[]7 W4 j7' HQ (48)
This completes the proof of Lemma O

Next, we state and prove Lemma[2]in which we show that for any layer ¢, the value of ||pg||2 is less

than ||v¢||2. This inequality was used to obtain the result in Lemma

Lemma 2. Given the output of the parity check layer py defined by the min-sum operation as:

pe[{l,m}] Hszgn v [{l/, m}]) mln ]vt[{l m}|| (49)

l'eP(m)\l
Then, the norm ||p¢||2 s always bounded by the norm ||vil|2, i.e., ||pPtll2 < ||vel2-

Proof. 1t is straightforward to verify that for any decoding iteration the norm of output of parity
check layer is always lower than the variable node layer. For n length code and k length message,
let us consider parity check matrix H € {0, 1}"X("*k) with variable node degree d,, and parity
check node degree d..

We denote the corresponding Tanner graph as G € {V,P,€}, where V = {vy,...,v,}, P =
{p1,-.-,Pn—k}, and € = {e1,...,enq, }. Without loss of generality, let us consider parity check
node p; in G such that P(p1) = {vi,ve,...,v4,}, where {vi,va,...,v4.} C V. Therefore, in the
Tanner graph, d. is the number of incoming messages to p;; which translates to d. hidden nodes in
the variable check layer v for any 1 < ¢ < T in the NBP decoder (whose architecture was described
in Section . Similarly, d. is the number of outgoing messages from p1; this translates to d, hidden
nodes in the parity check layer py in the NBP decoder.

The message passed p¢[{1,1}] from p; to v; in the NBP decoder is given as,

pel{l1}] = [ sign(vel{?,1}]) min, IVt[{l' 1]

VeP(p)\u vePp
—sign(ve[{2,1}]) - sign(ve[{3, 1}]) - - - sign(ve[{de, 1}])
x min (|ve[{2, 1}]], [ve[{3, 1}]], - . [vel{de. 1}]])
Wsign(vel[{2,1}) - sign(vel{3,1}]) - - sign(ve[{de, 1}]) x |ve[{2, 1}]|. (50)

where, step (a) follows from our assumption that |v¢[{1, 1}]| < |v¢[{2,1}]|- - < |ve[{dc, 1}]|, without
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loss of generality. Following similar steps as in (50), for the set {v;|2 <14 < d.}, we have that,

pe[{i, 1}] = [ sign(ve[{',13]) x v [{1, 1}] (51)

eP(p1)\vi

This implies that outputs of d. — 1 nodes in p¢ correspond to the minimum absolute value of the

d. incoming messages to p1. Therefore, for the parity check equation p;, we have,

=
—~
(@33
\)
~—

de 3
(Z Ipel{i, 1}]|2> < ((de = Dve[{1, 111 + Ivel{2. 1HP) 2 .
i=1
Following similar steps for parity checks po, - - - p,_r, we can conclude that,

[pell2 < [[vello, (53)

where, equality in (53) is satisfied when the output of the hidden nodes in v¢ have same absolute

values. This completes the proof of Lemma ]

Appendix D Bound on covering number of sparse matrices

In this section, we derive an upper bound on the covering number of sparse matrices as a function

of its rows, columns, and spectral norm bound.

Lemma 3. Let W = {W € R"™¢: ||[W]|l2 < By and |W[i,:]|[o = ¢q, 1 < i < r} be the space of
matrices with its spectral norm bounded by a constant By, and exactly q non-zero entries in each
row. Then, its covering number N (W e, | - |p) with respect to the Frobenius norm can be upper

bounded as follows:

NW, e |lr) < <1+ 2min(¢i’ ‘/E)BW> . (54)

where, € > 0 s a constant.

Proof. We consider ¥ : R™*¢ — R4"*! g bijective mapping such that ¥(W) € R?*! is a vector of
all non-zero entries in W € W. The vector space induced by the mapping V¥ is defined as v such
that (W) = {¥(W) : W € W}. Therefore, we also have |W||r = ||[¥(W)]||2.

We construct C(¢)(W), €, | - ||2), a e-covering of (V) under the Ly norm, and denote the corre-
sponding covering number by N (¢ (W), €, ||-||2). Similarly, we construct C(W, e, || - ||r), a e-covering

of W under || - || p, and its covering number is denoted as N (W, ¢, | - ||r). In what follows, we have,
(a) (0)
NW, el lr) < NpWV), e || - [l2) < M@WV), e[| - [|2)- (55)

The inequality (a) in follows from the fact that W is a bijective map, and that ¥~1C(y (W), ¢, ||-
||l2) is also a e-cover of the matrices in WW. The inequality (b) in follows from the definition
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of packing P(¢)(W),€, || - ||2) and the packing number M(¢)(W), €, || - ||2). In other words, let
P(p(W),€, | - ||2) be the maximal packing. Suppose for some W; € W there exists U(U) €
WA\P (W), €, ] - |l2) such that,

(W) = T(U)[2 > e (56)

Then, P((W), €, | - ||2) being a maximal packing is a contradiction. Therefore, P(¢p(W), ¢, || - ||2)
is also an e-cover of (W) and it follows that its cardinality (i.e., packing number) denoted by
M(WP(W), €, ||-||2) is greater than N (1) (W), €, ||-||2). In the next step, we upper bound M (¢»(W), €, ||-
|2). To this end, we make use of the definitions [3} [4] to determine this upper bound; and it follows
from these definitions that the balls need not be disjoint for an e-cover C(¥) (W), €, | - ||2), and it
must be disjoint for e-packing P()(W), €, || - ||2). Therefore, Yw; € P(p(W), ¢, || - ||2) we have that,

P(w(w)v€a||H2) € €
i=1
where, the radius R = max |¥(W)]|2. Taking volume on both sides in (57), we have that,
€
PW)6llll2) . .
. < e
vol H B(w;, 2) < vol (B(O, R+ 2))

PW).6llll2) . .

L)) < ).
— Z vol (B(wl, 2)) < vol (B(O,R+ 2)) (58)

To find the value of the radius R, we bound the Ly norm of (W) in terms of the spectral norm

of the sparse matrix W, and we have that,

[T (W)ll2 = [W]|r < min (7, V)| W]z < min (Vr, v¢) B (59)

By considering the Lo ball B(0, R), where radius R = min (1/7,/¢)Bw, and from we obtain
an upper bound on M(yp)(W), ¢, || - ||2) as follows,

R+ 5" 2 mi Bw\ "
MWl fay < EEIE < (14 2mn /B NDBY T (60)
(5) €
Therefore, we have,
2 min (/7, v¢)Bw \ 7
NV, IV =M@V e - ) < (14 2B )T (61)
This completes the proof of Lemma ]
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Appendix E Proof of Theorem

We consider an irregular parity check matrix H € R("F)*" where dy, is the variable node degree of

the i-th bit in the codeword, and d.; is the parity check node degree of the j-th parity check equation.

The NBP decoder corresponding to such this irregular parity check matrix is characterized by the

weight matrices WY, W@ ... w( w®@ w® ... w w, w,.

Here, for ¢ € {1,---,T}, and 0 = 3" d,., we have that W € RO W e R0, W € Rn*9,
i=1

and Wy € R™"_ For any value of ¢, the weight matrix Wgt) has one non-zero entry in every row,

and d,, non-zero entries in the i-th column for integer values i € [n]. In the weight matrix W( )

the i-th bit in the codeword with variable node degree d,, corresponds to d,, rows and d,, columns,
and these rows and columns each have exactly d,, — 1 non-zero entries.

The i-th row in the weight matrix W3 corresponds to the i-th bit in the codeword, and has exactly
d,, non-zero entries. Lastly, the weight matrix W4 € R"*" is a a diagonal matrix. If the weights
in the NBP decoder are bounded in [—w,w], then for any t € {1,2,--- ,T}, the spectral norm of

the weight matrices Wgt), and Wét) can be bounded as follows:

= [IW{"]l2 < w, jmax dy,, By, = [W5'|l2 < w <maxdw - 1) (62)
2

The Ly norm bounds on the row vector in matrices W3 and W, are as follows:

Bws = HW3[Ja :]HQ < w\/ d’Uj < w,/m?deia Bw4 = HW4[Ja :]HQ <w (63)

For irregular parity check matrices, the upper bound becomes,

(4T + 2)\/nBw, p e 2 don
N(Frljl el -|

Eﬂ

€

Il
R

7

=

€

( 4T+ 2 /nd Bsz (l) hZ::l(dvh_l)dvh
+

=2
(AT + 2) B, max o, AT + 2) By, p,,
€ €
We can further upper bound N (Fr[j],¢, || - ||2) in as follows.
(T+1) 30 &2
) AT 42 dy (c1 + = 'h
Nl ) < (14 SRR el ) nE (65)

(\/EBWQ)T_lfl

Whel“e, Cl == nTBWlBWQBwsbAW7 62 = TLBWlegb)\ (\/ﬁBW2)T71

Substituting the
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values of the spectral norm bounds in and in and assuming n >> T, we obtain,

€

n 2
(4T +2), /nmax dy, T+1 (1) 2 o,
N(Frllhel -l < [1+ T (\/ﬁwmaxdm) (66)

For the NBP decoder corresponding to an irregular parity check matrices, the bit-wise Rademacher

complexity is upper bounded as,

4 12 & e
Ry (Frlj]) < - + - m(T+ 1) hZ::ld%h logé /mn m?xdvibA(T + 1)2<\/ﬁw max dvi> ) (67)

Subsequently, we have the upper bound on the true risk Rggr(f) as,

2 d%h (T +1)2 4 log(1/6
Roa(f) < Ruen(f) + 12y = tog (svimmumaxd, by ) + & 500 (o)

Appendix F Proof of Theorem

From law of total expectations, we have that,

Pr(lppr(f(A).x) > 0) = E [zBER<f<A>,x>

Vi € [n] s.t. [A[]]] < b,\} x Pr (Vi € [n] s.t. |A[i]] < by)

prob. that input is bounded

+E [ZBER(f()‘)aX)

Ji € [n] s.t. |A[i]] > bA] x Pr(3i € [n] s.t. |A[i]] > by) (69)

prob. that input is unbounded

We obtain the following inequality using the fact that any probability is upper bounded by 1 for
the term Pr (Vi € [n] s.t. |A[i]| <by), and that the true risk conditioned on the event that the

log-likelihood ratios are unbounded is also upper bounded by 1.

Pr(lppr(f(A).%) > 0) < E [zBER<f<A>,x>

Vi € [n] s.t. |AflL]] < b,\} + Pr (i € [n] s.t. |A[Z]| > b))
(70)

Using the fact that the channel outputs are i.i.d to compute Pr (Vi € [n] s.t. |Al7]| < by) as,

Pr (Vi € [n] s.t. [Ali]] < by) = HPF(IA[Z'H < b)) (71)

We consider that the signal is modulated by binary phase shift keying (BPSK) modulation such that
Pr(+1) = Pr(—1) = 1. The channel is AWGN channel with noise variance 32, then A[i] = 2y[i]/3>.

32



We can upper bound the term Pr (|y[z]] < 52%) using Q-function as follows.

Then, the term Pr (i € [n] s.t. |A[i]| > b)) is computed as,

Pr(3i € [n] s.t. [A[i]| > by) =1 — (1 -Q (W) -Q (szgﬁ_Q))n (73)

Substituting the values of in completes the proof of Theorem
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