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Abstract

We consider the problem of private distributed multi-party multiplication. It is well-established
that Shamir secret-sharing coding strategies can enable perfect information-theoretic privacy in
distributed computation via the celebrated algorithm of Ben Or, Goldwasser and Wigderson
(the “BGW algorithm”). However, perfect privacy and accuracy require an honest majority,
that is, N ≥ 2t+1 compute nodes are required to ensure privacy against any t colluding adver-
sarial nodes. By allowing for some controlled amount of information leakage and approximate
multiplication instead of exact multiplication, we study coding schemes for the setting where
the number of honest nodes can be a minority, that is N < 2t+1. We develop a tight character-
ization privacy-accuracy trade-off for cases where N < 2t+1 by measuring information leakage
using differential privacy instead of perfect privacy, and using the mean squared error metric
for accuracy. A particularly novel technical aspect is an intricately layered noise distribution
that merges ideas from differential privacy and Shamir secret-sharing at different layers.

1 Introduction

Ensuring privacy in distributed data processing is a central engineering challenge in modern machine
learning. Two common privacy definitions in data processing are information-theoretic (perfect)
privacy and differential privacy [1, 2]. Perfect information-theoretic privacy is the most stringent
definition, requiring that no private information is revealed to colluding adversary nodes regardless
of their computational resources. Differential privacy, in turn, allows a tunable level of privacy
and ensures that an adversary cannot distinguish inputs that differ by a small perturbation (i.e.,
“neighboring” inputs).

Coding strategies have a decades-long history of enabling perfect information-theoretic privacy in
distributed computing. The most celebrated is the BGW algorithm [3,4], which ensures information-
theoretically private distributed computations for a wide class of functions. The BGW algorithm
adapts Shamir secret-sharing [5] — a technique that uses Reed-Solomon codes for distributed data
storage with privacy constraints — to multiparty function computation. Consider two random vari-
ables A,B ∈ F, where F is a field, and a set of N computation nodes. Let Ri, Si ∈ F, i = 1, 2, . . . , t
be statistically independent random variables. In Shamir’s secret sharing, node i receives inputs
Ãi = p1(xi), B̃i = p2(xi), where, x1, x2, . . . , xN ∈ F are distinct non-zero scalars and p1(x), p2(x)
are polynomials:

p1(x) = A+

t∑
j=1

Rjx
j , p2(x) = B +

t∑
i=1

Sjx
j .

∗The Pennsylvania State University, □University of California, Santa Barbara, ♢Harvard University

1

ar
X

iv
:2

30
9.

16
10

5v
1 

 [
cs

.I
T

] 
 2

8 
Se

p 
20

23



(a) The Shamir secret-sharing coding scheme used
in the BGW algorithm.

(b) Privacy-Accuracy Trade-off for N < 2t+1. The
privacy requirement is that the input to every subset
of t nodes must satisfy ϵ differential privacy.

Figure 1: Pictorial depiction of our problem formulation and comparison with the coding scheme
used in the BGW algorithm.

If the field F is finite and Ri, Si, i = 1, 2, . . . , t are uniformly distributed over the field elements,
then the input to any subset S of t nodes is independent of the data (A,B). The Shamir secret-
sharing coding scheme allows the BGW algorithm to recover any linear combination of the inputs
from any subset of t+ 1 nodes. To obtain αA+ βB for fixed constants α, β ∈ F, node i computes
αÃi+βBi for α, β ∈ F. The sum αA+βB — which is the constant in the polynomial αp1(x)+βp2(x)
— can be recovered from the computation output of any t + 1 of the N nodes by polynomial
interpolation. Observe, similarly, that ÃiB̃i can be interpreted as an evaluation at x = xi of
the degree 2t polynomial p1(x)p2(x), whose constant term is AB. Thus, the product AB can be
recovered from any 2t+1 nodes via polynomial interpolation (See Fig. 1 (a)). The BGW algorithm
uses Shamir secret-sharing to perform secure MPC for the universal class of computations that can
be expressed as sums and products while maintaining (perfect) data privacy. However, notice that
perfect privacy comes at an infrastructural overhead for non-linear computations. When computing
the product, the BGW algorithm requires an “honest majority”, that is, it requires N ≥ 2t + 1
computing nodes in order to ensure privacy against any t colluding nodes. In contrast, only t + 1
nodes are required for linear computations. This overhead becomes prohibitive for more complex
functions, leading to multiple communication rounds or additional redundant computing nodes (see,
for example, [3, 6]).

In this paper, we study the problem of secure multiplication for real-valued data and explore
coding schemes that enable a set of fewer than 2t+ 1 nodes to compute the product while keeping
the data private from any t nodes. While exact recovery of the product and perfect privacy is
simultaneously impossible, we propose a novel coding formulation that allows for approximations
on both fronts, enabling an accuracy-privacy trade-off analysis. Our formulation utilizes differential
privacy (DP) — the standard privacy metric to quantify information leakage when perfect privacy
cannot be guaranteed [7]. It is worth noting that approximate computation suffices for several ap-
plications, particularly in machine learning, where both training algorithms and inference outcomes
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are often stochastic. Also, notably, DP is a prevalent paradigm for data privacy in machine learning
applications in practice (e.g., [8, 9]).

For single-user computation, where a user queries a database in order to compute a desired
function over sensitive data, differential privacy can be ensured by adding noise to the computation
output [1]. The study of optimal noise distributions for privacy-utility trade-offs in the release of
databases for computation of specific classes of functions is an active area of research in differen-
tial privacy literature [7, 10–12]. Our contribution is the discovery of optimal noise structures for
multiplication in the multi-user setting, where the differential privacy constraints are on a set of t
colluding adversaries.

Summary of Main Results

We consider a computation system with N nodes where each node receives noisy versions of inputs
A,B and computes their product (See Fig. 1b). The goal of the decoder is to recover an estimate
C̃ of the product AB from N computation outputs at a certain accuracy level, measured in terms
of the mean squared error. The noise distribution should ensure that the input to any subset of t
nodes in the system satisfies ϵ-differential privacy (abbreviated henceforth as t-node ϵ-DP). Given
N, t and the DP parameter ϵ, our main result provides a tight expression for the minimum possible
mean squared error at the decoder for any N ≥ t. Of particular importance is our result for
the regime t < N < 2t + 1. While our results provide a characterization in terms of differential
privacy, they yield an intuitive description when presented in terms of signal-to-noise ratio (SNR)
metrics for both privacy and accuracy. Privacy SNR (SNRp) describes how well t colluding nodes
can extract the private inputs A, B, i.e., higher privacy SNR means poor privacy. Accuracy SNR
(SNRa) shows how well N nodes can recover the computation output AB. Through a non-trivial
converse argument, we show that for any N < 2t+ 1:

(1 + SNRa) ≤ (1 + SNRp)
2. (1.1)

We provide an achievable scheme that meets the converse bound arbitrarily closely for N ≥ t + 1.
Surprisingly, (1.1) does not depend on t,N — the trade-off remains1 the same for N ∈ {t + 1, t +
2, . . . 2t}. Thus, our main result implies that for the regime of t < N < 2t+ 1, remarkably, having
more computation nodes does not lead to increased accuracy.

The main technical contribution of our paper is the development of an intricate noise distribution
that achieves the optimal trade-off. On the one hand, the Shamir secret-sharing coding scheme used
in BGW operates over a finite field, and relies on linear combinations of independent noise variables
to achieve perfect secrecy; the connection to coding theory comes from certain rank requirements
for these linear combinations. On the other hand, single-user differential privacy schemes typically
control the magnitude of the noise to prevent data reconstruction up to a distortion (sensitivity)
level whilst revealing sufficient information to enable accurate computations. Our optimal noise
distribution has a layered structure and utilizes these different approaches in different layers.

In our achievable scheme, each node gets a superposition of three random variables, e.g., node
i gets A+ Y

(i)
1 + Y

(i)
2 + Y

(i)
3 . The three random variables Y1, Y2, Y3 can be interpreted as occurring

in three layers. Noise variable Y1 controls the magnitude of the noise and is designed to achieve
ϵ-DP for a single input. Noise variable Y3 is correlated with Y1 and enables a legitimate decoder
with access to all N nodes to improve the accuracy. The noise variables Y

(i)
2 , i = 1, 2, . . . , N are

1It is instructive to note that a coding scheme that achieves a particular privacy-accuracy trade-off for t colluding
adversaries over N nodes, can also be used to achieve the same trade-off for a system with N ′ > N . To see this,
simply use the coding scheme for the first N nodes and ignore the output of the remaining N ′ −N nodes.
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designed to ensure ϵ-DP against a colluding adversary. Specifically, they are designed similarly to
Shamir secret-sharing to guarantee linear independence constraints that block a colluding adversary
from obtaining Y3. The magnitudes of the noise variables Y1, Y2, Y3 are designed to satisfy several
relations that are surprising at first sight. Specifically, our achievable scheme has the characteristic
that SNRa approaches the converse (1.1) if var(Y2)

var(Y1)
→ 0 and var(Y3)

var(Y2)
→ 0, in addition to other limit

relations. For a single user, say node i, the noise variables Y
(i)
2 , Y

(i)
3 have a negligible effect on its

input. In the multi-user scenario that we are considering, a decoder or an adversary can have access
to the outputs of multiple nodes. If the variables Y1(i), i = 1, 2, . . . , N are sufficiently correlated,
the node can peel the first layer of noise, and both Y2, Y3 then can play a non-negligible role in the
residue. Indeed, our noise variables Y2 are designed to ensure that a set of t colluding adversaries
cannot get access to third layer Y3, whereas a legitimate decoder that accesses t+ 1 nodes can peel
the second layer Y2 and utilize the effect of Y3 to reduce the effect of the overall noise and improve
the accuracy. Because our achievable scheme requires the summation of noise random variables
whose variances are infinitesimally negligible compared to the data magnitude, implementing our
scheme in practice requires high precision. In Section 6, we analyze the precision requirements of
our achievable scheme.

1.1 Related Work

Differential Privacy and Secure MPC: Several prior works are motivated like us to reduce
computation and communication overheads of secure MPC by connecting it with the less stringent
privacy guarantee offered by DP. References [13–19] provide methods to reduce communication
overheads and improve robustness while guaranteeing differential privacy for sample aggregation
algorithms, label private training, record linkage and distributed median computation. In com-
parison we aim to develop and study coding schemes with optimal privacy-accuracy trade-offs for
differentially private distributed multiplication that reduce the overhead of t redundant nodes.
Coded Computing: The emerging area of coded computing enables the study of codes for secure
computing that enable data privacy. Our framework resonates with the coded computing approach,
as we abstract the algorithmic/protocol related aspects into a master node, and highlight the role
of the error correcting code in our model. Coded computing has been applied to study code design
for secure multiparty computing in [20–26]. These references effectively extend the standard BGW
setup by imposing memory constraints on the nodes, or other constraints, that effectively disable
each node storing information equivalent to the entire data sets. Under the imposed constraints,
these references develop novel codes for exact computation and perfect privacy. In particular,
codes for secure MPC over real-valued fields have been studied in [21, 27] extending the ideas
of [20] to understand the loss of accuracy due to finite precision. In particular, reference [21] casts
the effect of finite precision in a privacy-accuracy tradeoff framework. In contrast to all previous
works in coded computing geared towards secure MPC, we operate below the threshold of perfect
recovery and characterize privacy-accuracy trade-offs. Our incorporation of differential privacy for
this characterization is a novel aspect of our set up. We do not impose any memory constraints on
the nodes, and imposition of such constraints can lead to interesting areas of future study.
Privacy-Utility Trade-offs. There is a fundamental trade-off between DP and utility (see [10–12]
for examples in machine learning and statistics). The optimal ϵ-DP noise-adding mechanism for
a target moment constraint on the additive noise was characterized in [28]. For approximate DP,
near-optimal additive noise mechanisms under ℓ1-norm and variance constraints were recently given
in [29].
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2 System Model and Statement of Main Results

We present our system model for distributed differentially private multiplication and state our main
results. Our model and results are presented for the case of scalar multiplication here. Natural
extensions of the results for the case of matrix multiplication is presented in Sec. 5.

2.1 System Model

We consider a computation system with N computation nodes. A,B ∈ R are random variables,
and node i ∈ {1, 2, . . . , N} receives:

Ãi = aiA+ R̃i, B̃i = biB + S̃i, (2.2)

where R̃i, S̃i ∈ R are random variables such that (R̃1, R̃2, . . . , R̃N , S̃1, S̃2, . . . , S̃N ) is statistically
independent of (A,B), and ai, bi ∈ R are constants. In this paper, we assume no shared ran-
domness between (R̃1, R̃2, . . . , R̃N ) and (S̃1, S̃2, . . . , S̃N ) i.e., they are statistically independent:
PR̃1,R̃2,...,R̃N ,S̃1,S̃2,...,S̃N

= PR̃1,R̃2,...,R̃N
PS̃1,S̃2,...,S̃N

. For i ∈ {1, 2, . . . , N}, computation node i out-
puts:

C̃i = ÃiB̃i. (2.3)

A decoder receives the computation output from all N nodes and performs a map: d : RN → R
that is affine over R. That is, the decoder produces:

C̃ = d(C̃1, . . . , C̃N ) =
N∑
i=1

wiC̃i + w0, (2.4)

where the coefficients wi ∈ R, specify the linear map d.
A N -node secure multiplication coding scheme consists of the joint distributions of (R̃1, R̃2, . . . , R̃N )

and (S̃1, S̃2, . . . , S̃N ), scalars a1, a2, . . . , aN , b1, b2, . . . , bN
2 and the decoding map d : RN → R. The

performance of a secure multiplication coding scheme is measured in its differential privacy param-
eters and its accuracy, defined next.

Definition 2.1. (t-node ϵ-DP) Let ϵ ≥ 0. A coding scheme with random noise variables

(R̃1, R̃2, . . . , R̃N ), (S̃1, S̃2, . . . , S̃N )

and scalars ai, bi (i ∈ {1, . . . , N}) satisfies t-node ϵ-DP if, for any A0, B0, A1, B1 ∈ R that satisfy∣∣∣∣∣∣∣∣[A0

B0

]
−
[
A1

B1

]∣∣∣∣∣∣∣∣
∞

≤ 1,

max

P
(
Z
(0)
T ∈ A

)
P
(
Z
(1)
T ∈ A

) , P
(
Y

(0)
T ∈ A

)
P
(
Y

(1)
T ∈ A

)
 ≤ eϵ (2.5)

for all subsets T ⊆ {1, 2, . . . , N}, |T | = t, for all subsets A ⊂ R1×t in the Borel σ-field, where, for
ℓ = 0, 1,

Y
(ℓ)
T ≜

[
ai1Aℓ + R̃i1 ai2Aℓ + R̃i2 . . . ai|T |Aℓ + R̃i|T |

]
(2.6)

Z
(ℓ)
T ≜

[
bi1Bℓ + S̃i1 bi2Bℓ + S̃i2 . . . bi|T |Bℓ + S̃i|T |

]
, (2.7)

where T = {i1, i2, . . . , i|T |}.
2It is instructive to note that, for our problem formulation, there is no loss of generality in assuming that ai, bi ∈

{0, 1}.
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While privacy guarantees must make minimal assumptions on the data distribution, it is common
to make assumptions on the data distribution and its parameters when quantifying utility guarantees
(e.g., accuracy) [21, 25, 30, 31]. We next state the conditions under which our accuracy guarantees
hold.

Assumption 2.1. A and B are statistically independent random variables that satisfy

E
[
A2
]
,E
[
B2
]
≤ η

for a parameter η > 0.

It is worth noting that the above assumption implies that E[A2B2] ≤ η2. We measure the
accuracy of a coding scheme via the mean square error of the decoded output with respect to the
product AB. Specifically, we define:

Definition 2.2 (Linear Mean Square Error (LMSE)). For a secure multiplication coding scheme
C consisting of joint distribution PR̃1,R̃2,...,R̃N ,S̃1,S̃2,...,S̃N

, decoding map d : RN → R, the LMSE is
defined as:

LMSE(C) = E[|AB − C̃|2]. (2.8)

where C̃ is defined in (2.4).

The expectation in the above definition is over the joint distributions of the random variables
A,B, R̃i|Ni=1, S̃i|Ni=1. For fixed parameters, N, t, ϵ, η, the goal of this paper is to characterize:

inf
C

sup
PA,B

LMSE(C)

where the infimum3 is over the set of all coding schemes C that satisfy t-node ϵ-DP, and the
supremum is over all distributions PA,B that satisfy Assumption 2.1.

In the remainder of this paper, we make the following zero mean assumptions: we assume that
that E(A) = E(B) = 0 and that E[R̃i] = E[S̃i] = 0,∀i ∈ {1, 2, . . . , N}. With these assumptions,
it suffices to assume that decoder is linear (that is, it is not just affine), since the optimal affine
decoders are in fact linear. The reader may readily verify that our results hold without the zero-mean
assumptions with affine decoders.

2.2 Signal-to-Noise Ratios

We take a two-step technical approach. First, we characterize accuracy-privacy trade-off in terms of
signal-to-noise ratio (SNR) metrics (defined below). Second, we obtain the trade-off between mean
square error and differential privacy parameters as corollaries to the SNR trade-off.

We define two SNR metrics: the privacy SNR and the accuracy SNR.

Definition 2.3. (Privacy signal to noise ratio.) Consider a secure multiplication coding scheme
C. For any set S = {s1, s2, . . . , s|S|} ⊆ {1, 2, . . . , N} of nodes where s1 < s2 < . . . < s|S|, let
KR

S and KS
S represent the covariance matrices of R̃i|i∈S , S̃i|i∈S . In particular, the (i, j)-th entry

of KR
S ,K

S
S are E[R̃siR̃sj ],E[S̃siS̃sj ] respectively. Let KA

S , tK
B
S denote the matrices whose (i, j)-th

entries respectively are asiasjη
2 and bsibsjη

2 where ai, bi are constants defined in (2.2). Then, the

3Since |AB − C̃|2 is a non-negative random variable, if E[|AB − C̃|2] does not exist for some coding scheme C,
then we interpret that E[|AB − C̃|2] = +∞, with the convention that +∞ is strictly greater than all real numbers.
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privacy signal-to-noise ratios corresponding to inputs A,B denoted respectively as SNRAS , SNR
B
S are

defined as:

SNRAS =
det(KA

S +KR
S )

det(KR
S )

− 1,

SNRBS =
det(KB

S +KS
S)

det(KS
S)

− 1,

where ‘det’ denotes the determinant. For t ≤ N , the t-node privacy signal-to-noise ratio of a N -node
secure multiplication coding scheme C, denoted as SNRp(C) is defined to be:

SNRp(C) = max
S⊆{1,2,...,N},|S|=t

max(SNRAS , SNR
B
S ).

Remark 1. Standard linear mean square estimation theory dictates that a colluding adversary with
access to nodes in S can obtain a linear combination of the inputs to these nodes to recover, for
example, A with a mean square error of η

1+SNRAS
(see, for example, equation (13) in [32]). This mean

square error is an alternate metric — as compared to DP — for privacy leakage that will be used as
an intermediate step in deriving our results.We later convert SNR guarantees into ϵ-DP guarantees.

Next we define the accuracy signal-to-noise ratios. From the definition of C̃i in (2.3), we observe
that:

C̃i = aibiAB + aiAS̃i + biBR̃i + R̃iS̃i.

To understand the following definition, it helps to note that in E[C̃iC̃j ], the “signal” component,
E[AB], has the coefficient aibiajbj .

Definition 2.4. (Accuracy signal to noise ratio.) Consider a secure multiplication coding scheme
C over N nodes. Let K1 denote the N × N matrix whose (i, j)-th entry is E[C̃iC̃j ] where C̃i, C̃j

are as defined in (2.3). Let K2 denote the matrix whose (i, j)-th entry is E[C̃iC̃j ] − aibiajbjη
4,

where ai, bi, aj , bj are constants associated with the coding scheme as per (2.2). Then, the accuracy
signal-to-noise of the coding scheme C, denoted as SNRa, is defined as:

SNRa(C) =
det(K1)

det(K2)
− 1. (2.9)

We drop the dependence on the coding scheme C from SNRa, SNRp in this paper when the coding
scheme is clear from the context. The following lemma is a standard result of linear mean square
estimation theory (for example, it is an elementary consequence of Theorem 2 in [32]).

Lemma 2.1. For a coding scheme C with accuracy signal-to-noise ratio SNRa, for inputs A,B that
satisfy Assumption 2.1, we have:

LMSE(C) ≤ η2

1 + SNRa
,

with equality if and only if E[A2] = E[B2] = η.

2.3 Statement of Main Results

The main result of this paper is a tight characterization of the achievable accuracy signal-to-noise,
SNRa, in terms of privacy signal-to-noise, SNRp, for t < N < 2t+ 1. In particular, we show that the
optimal trade-off between these two quantities is:

(1 + SNRa) = (1 + SNRp)2. (2.10)
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Remark 2. Lemma 2.1 and Remark 1 lead to the following interpretation of our trade-off in (2.10).
Suppose the privacy leakage were measured - rather than as the DP parameter - as the mean squared
error of an adversary attempting to infer the data (A or B) by performing linear combinations of
its inputs. Then, (2.10) implies that among all coding schemes C with privacy leakage at least β
- where leakage is measured as mean squared error of an adversary restricted to performing linear
combination - we have infC LMSE(C) = β2.

We state the results more formally below, starting with the achievability result.

Theorem 2.2. Consider positive integers N, t with N > t. For every δ > 0, and for every strictly
positive parameter SNRp > 0 there exists a N -node secure multiplication coding scheme C with t-node
privacy signal-to-noise, SNRp and an accuracy SNRa that satisfies:

SNRa ≥ 2SNRp + SNR2p − δ.

Notably, it suffices to show the achievability for N = t+1. If N > t+1, the (t+1)-node secure
multiparty multiplication scheme can be utilized for the first t+ 1 nodes and the remaining nodes
can simply receive 0. We now translate the achievability result in terms of ϵ-DP. For ϵ > 0, let
Sϵ(P) denote the set of all real-valued random variables that satisfy ϵ-DP, that is, X ∈ Sϵ(P) if and
only if:

sup
P(X +X ′ ∈ A)

P(X +X ′′ ∈ A)
≤ eϵ

where the supremum is over all constants X ′, X ′′ ∈ R that satisfy |X ′ − X ′′| ≤ 1 and all subsets
A ⊂ R that are in the Borel σ-field. Let L2(P) denote the set of all real-valued random variables
with finite variance. Let

σ∗(ϵ) = inf
X∈Sϵ(P)∩L2(P)

E
[
(X − E[X])2

]
.

In plain words, σ∗(ϵ) denotes the smallest noise variance that achieves single user differential
privacy parameter ϵ. It is worth noting that σ∗(ϵ) has been explicitly characterized in [28], Theorem
7, as:

(σ∗(ϵ))2 =
22/3e−2ϵ/3(1 + e−2ϵ/3) + e−ϵ

(1− e−ϵ)2
. (2.11)

Corollary 2.2.1. Consider positive integers N, t with N ≤ 2t. Then, for every ϵ, δ > 0, there exists
a coding scheme C that achieves t-node ϵ-DP,

LMSE(C) ≤ η2(σ∗(ϵ))4

(η + (σ∗(ϵ))2)2
+ δ.

Theorem 2.2 and Corollary 2.2.1 are shown in Section 3.

Remark 3. For the case where N ≥ 2t + 1, perfect privacy and accuracy can be achieved by
embedding the Shamir secret-sharing coding scheme into the reals and therefore, the point (SNRa =
∞, SNRp = 0) is achievable.

Remark 4. For the case of N = t, we readily show SNRa ≤ SNRp and consequently, we have LMSE ≥
η2

1+SNRp . To see this, consider the decoder with co-efficients d1, d2, . . . , dN . By definition of the
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privacy SNR and basic linear estimation theory, we have: E
[
(
∑N

i=1 dÃi −A)2
]
≥ η

1+SNRp . Then, we
can bound the mean square error of the decoder as:

LMSE = E

[(
N∑
i=1

wiÃiB̃i −AB)2

)]

= E

[(
N∑
i=1

wiÃi(B + S̃i)−AB)2

)]

(a)
= E

( N∑
i=1

wiÃiB −AB

)2

+

(
N∑
i=1

wiÃiS̃i

)2


≥ E

( N∑
i=1

wiÃiB −AB

)2


≥ η2

1 + SNRp
,

where in (a), we have used the fact that S̃i is uncorrelated with B and E[B] = 0. Therefore, if we
simply add one node to go from N = t to N = t+1, then our main achievability result implies that
the quantity LMSE

η2
becomes equal to, or smaller than squared. Because4 LMSE

η2
< 1, our achievability

result implies a potentially significant reduction in the mean squared error for the case of N = t+1
as compared to the case of N = t.

We next state our converse results.

Theorem 2.3. Consider positive integers N, t with N ≤ 2t. For any N node secure multiplication
coding scheme C with accuracy signal-to-noise ratio SNRa and t-node privacy signal-to-noise SNRp :

SNRa ≤ 2SNRp + SNR2p.

Corollary 2.3.1. Consider positive integers N, t with N ≤ 2t. For any coding scheme C that
achieves t-node ϵ-DP, there exists a distribution PA,B that satisfies Assumption 2.1 and

LMSE(C) ≥ η2(σ∗(ϵ))4

(η + (σ∗(ϵ))2)2
.

In fact, our converse shows so long as E[A2] = E[B2] = η, the lower bound of the above corollary
is satisfied. Theorem 2.3 and Corollary 2.3.1 are shown in Section 4.

3 Achievability: Proof of Theorem 2.2

To prove the theorem, it suffices to consider the case where N = t + 1. In our achievable scheme,
we assume that node i receives:

Γi = [A R1 R2 . . . Rt]v⃗i,

4Even a decoder that ignores all the computation outputs and predicts C̃ = 0 obtains LMSE = η2.
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Θi = [B S1 S2 . . . St]w⃗i.

where v⃗i, w⃗i are (t + 1) × 1 vectors. We assume that Ri

∣∣t
i=1

, Si

∣∣t
i=1

are zero mean unit variance
statistically independent random variables. Node i performs the computation

C̃i = ΓiΘi.

Our achievable coding scheme prescribes the choice of vectors v⃗i, w⃗i. Then, we analyze the
achieved privacy and accuracy. Our proof for t > 1 is a little bit more involved than the proof for
t = 1. The description below applies for all cases for t, and includes the simplifications that arise
for the case of t = 1.

3.1 Description of Coding Scheme

Let α
(n)
1 , α

(n)
2 be strictly positive sequences such that:

lim
n→∞

α
(n)
1

α
(n)
2

= lim
n→∞

α
(n)
2 = lim

n→∞

(α
(n)
2 )2

α
(n)
1

= 0 (3.12)

Notice that the above automatically imply that limn→∞ α
(n)
1 = 0. As an example, α(n)

1 can be chosen to be

an arbitrary sequence of positive real numbers that converge to 0, and we can set α
(n)
2 = α

(n)
1 log

(
1

α
(n)
1

)
to

satisfy the above properties.
For t > 1, let G =

[
g⃗1 g⃗2 . . . g⃗t

]
be any (t− 1)× t matrix such that:

(C1) every (t− 1)× (t− 1) sub-matrix is full rank,

(C2)
[
1 1 . . . 1
g⃗1 g⃗2 . . . g⃗t

]
has a full rank of t.

For t > 1, our coding scheme sets

v⃗t+1 = w⃗t+1 =


1
x
0
...
0

, (3.13)

v⃗i = w⃗i = v⃗t+1 +

 0

α
(n)
1

α
(n)
2 g⃗i

, 1 ≤ i ≤ t, (3.14)

and for t = 1, we simply have

v⃗2 = w⃗2 =

[
1
x

]
, (3.15)

v⃗1 = w⃗1 = v⃗2 +

[
0

α
(n)
1 R1

]
, (3.16)

where x > 0 is a parameter whose role becomes clear next. A pictorial description of our coding scheme is in
Fig. 2. Notice that the input to node i corresponding to A for i < t+ 1 can be interpreted a superposition
of three “layers” as follows:

A+R1x︸ ︷︷ ︸
First Layer

+α
(n)
2

[
R2 R3 . . . Rt

]
g⃗i︸ ︷︷ ︸

Second layer

+ α
(n)
1 R1︸ ︷︷ ︸

Third Layer

.
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For fixed parameters x, η, the first layer has magnitude O(1), the second layer has magnitude O(α
(n)
2 ), and

the third layer has magnitude O(α
(n)
1 ). Similarly, the input corresponding to B can also be interpreted as

a superposition of three layers. The layer-based interpretation of the coding scheme will be utilized in our
explanations below.

Figure 2: Pictorial depiction of the coding scheme for t = 2, N = 3 with matrix G =
[
1 −1

]
.

3.2 Privacy Analysis
Informal privacy analysis: For expository purposes, we first provide a coarse privacy analysis with informal

reasoning. With the above scheme, we claim that SNRp ≈ η/x2, and so, it suffices to choose x ≈
√

η
SNRp

.

Consider A’s privacy constraint, we require SNRAS ≤ SNRp for every S ⊂ {1, 2, . . . , N}, |S| = t. First
we consider the scenario where S = {1, 2, . . . , t}. Each node’s input is of the form A + R1(x + α

(n)
1 ) +

α
(n)
2

[
R2 R3 . . . Rt

]
g⃗i. Even if an adversary with access to the inputs to nodes in S happens to know

R2, R3, . . . , Rt, but not R1, the noise (x + α
(n)
1 )R1 provides enough privacy, that is the privacy signal to

noise ratio for this set is ≈ η/x2 for sufficiently large n.
Now, consider the cases where the set S of t colluding adversaries includes node t+ 1. In this case, the

adversary has A + R1x from node t + 1. The other t − 1 colluding nodes have inputs: A + R1(x + α
(n)
1 ) +

α
(n)
2

[
R2 R3 . . . R3 . . . Rt

]
g⃗i for i ∈ S −{t+1}. Informally, this can be written as A+R1x+R1α

(n)
1 +

Ω(α
(n)
2 )Zi, for some random variable Zi with variance Θ(1).
On the one hand, observe that these t − 1 nodes contain a linear combination of A,R1 that is linearly

independent of the input to the (t+1)-th node (which is A+xR1). It might seem possible for the adversary
to increase its signal-to-noise ratio beyond η

x2 by combining the input of these t− 1 nodes with node t+ 1’s
input. However, observe crucially that the first layer of the inputs to these t− 1 nodes is linearly dependent
with t + 1’s input. The privacy signal-to-noise ratio can be increased by a non-negligible extent at the
adversary only if it is able to access information in the third layer. Since |α(n)

2 | ≫ |α(n)
1 |, in order to access

the information in the third layer and reduce/cancel the effect of R1, the adversary must first be able to
cancel the second layer terms whose magnitude is Ω(α(n)

2 ). But these second layer terms are a combination of

11



t− 1 independent noise variables R2, R3, . . . , Rt that are modulated by linearly independent vectors. Hence,
any non-trivial linear combination of these t−1 inputs necessarily contains a non-zero Ω(α

(n)
2 ) additive noise

term. So, their effect cannot be canceled and the α
(n)
1 R1 term in the third layer is hidden from the decoder

(See Fig. 2). Consequently, as n → ∞, the input to these t − 1 nodes is, approximately, a statistically
degraded version of A+ xR1. Therefore, the parameter SNRp cannot be increased beyond η

x2 .
Formal privacy analysis: We now present a formal privacy analysis. We show that for any δ > 0, by

taking n sufficiently large, we can ensure that:

SNR(A)
S , SNR(B)

S ≤ η

x2
+ δ

for every subset S of t nodes. Because of the symmetry of the coding scheme, it suffices to show that SNR(A)
S

satisfies the above relation. In our analysis, we will repeatedly use the fact that any linear combination∑
i∈S βiÃi of the inputs to the adversary satisfies:

E

((∑
i∈S

βiÃi

)
−A

)2
 ≥ η

1 + SNR(A)
S

First consider the case where t+1 /∈ S. For each i ∈ S, the input Ãi is of the form A+(x+α
(n)
1 )R1+Zi,

where Zi is zero mean random variable that is statistically independent of R1. Therefore, we have:

inf
βi∈R,i∈S

E


∑

j∈S
βjÃj

−A

2


≥ inf
β∈R

E
[(

β(A+ (x+ α
(n)
i )R1)−A

)2]
=

η

1 + η

(x+α
(n)
i )2

≥ η

1 + η
x2

.

Consequently: SNR(A)
S ≤ η

x2 .
Now consider the case: t+ 1 ∈ S. Consider a linear estimator:

Â = βt+1(A+ xR1) +
∑

i∈S\{t+1}

βi

(
A+R1(x+ α

(n)
1 ) + α

(n)
2

[
R2 R3 . . . Rt

]
g⃗i

)

= A

(∑
i∈S

βi

)
+R1

x
∑
i∈S

βi + α
(n)
1

∑
i∈S\{t+1}

βi

+ α
(n)
2

[
R2 R3 . . . Rt

] ∑
i∈S\{t+1}

βig⃗i


Because of property (C1), there are only two possibilities: (i) βi = 0, for all i ∈ S \ {t + 1}, or (ii)(∑
i∈S\{t+1} βig⃗i

)
̸= 0. In the former case, the linear combination is Â = βt+1(At+1 + xR1) from which,

the best linear estimator has signal to noise ratio η/x2 as desired. Consider the latter case, let ρ > 0 be
the smallest singular value among the singular values of all the (t − 1) × (t − 1) sub-matrices of G. We
bound the noise power of Â below; in these calculations, we use the fact that Ri are zero-mean unit variance
uncorrelated random variables for i = 1, 2, . . . , t.x

∑
i∈S

βi + α
(n)
1

∑
i∈S\{t+1}

βi

2

+ (α
(n)
2 )2E


[R2 R3 . . . Rt

] ∑
i∈S\{t+1}

βig⃗i

2


=

x
∑
i∈S

βi + α
(n)
1

∑
i∈S\{t+1}

βi

2

+ (α
(n)
2 )2

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

i∈S\{t+1}

βig⃗i

∣∣∣∣∣∣
∣∣∣∣∣∣
2
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≥

x
∑
i∈S

βi + α
(n)
1

∑
i∈S\{t+1}

βi

2

+ (α
(n)
2 )2ρ2

∑
i∈S\{t+1}

β2
i

The signal-to-noise ratio for signal A in Â can be bounded as:

η
(∑

i∈S βi

)2(
x
∑

i∈S βi + α
(n)
1

∑
i∈S\{t+1} βi

)2
+ (α

(n)
2 )2ρ2

∑
i∈S\{t+1} β

2
i

(a)

≤
η
(∑

i∈S βi

)2
x2
(∑

i∈S βi

)2
+ 2xα

(n)
1

(∑
i∈S\{t+1} βi

)(∑
i∈S βi

)
+ (α

(n)
2 )2ρ2

∑
i∈S\{t+1} β

2
i

=
η

x2 + 2xα
(n)
1 ν1 + (α

(n)
2 )2ρ2ν22

(b)

≤ η

x2 − 2xα
(n)
1

√
tν2 + (α

(n)
2 )2ρ2ν22

(c)

≤ η

x2 − (α
(n)
1 )2

(α
(n)
2 )2

x2t
ρ2

The upper bound of (a) holds because we have replaced the denominator by a smaller quantity. In (b),
we have used the fact that ν21 ≤ tν22 and consequently −

√
tν2 ≤ ν1 ≤

√
tν2. (c) holds because

inf
ν2

(α
(n)
2 )2ρ2ν22 − 2xα

(n)
1

√
tν2 = −x2(α

(n)
1 )2t

(α
(n)
2 )2ρ2

.

As n → ∞, (3.12) implies that (α
(n)
1 )2

(α
(n)
2 )2

→ 0, and consequently, for any δ > 0, we can choose a sufficiently

large n to ensure that the right hand side of (c) can be made smaller than η
x2 + δ. Thus, for sufficiently large

n, SNRp ≤ η
x2 + δ for any δ > 0.

3.3 Accuracy Analysis

To show the theorem, it suffices to show that for any δ > 0, we can obtain SNRa ≥ (x2+η)2

x4 − 1− δ
Informal Accuracy Analysis We provide a high-level description of the accuracy analysis for the case of

t = 2, N = 3. We assume that G = [1 − 1] like in Fig. 2. The computation outputs of the three nodes are:

C̃1 = (A+R1(x+ α
(n)
1 ) + α

(n)
2 R2)(B + S1(x+ α

(n)
1 ) + α

(n)
2 R2)

= C̃3︸︷︷︸
First layer

+α
(n)
2 (S2(A+R1x) +R2(B + S1x))︸ ︷︷ ︸

Second Layer

+α
(n)
1 (S1(A+R1x) +R1(B + S1x))︸ ︷︷ ︸

Third Layer

+O(α
(n)
1 α

(n)
2 )︸ ︷︷ ︸

Fourth Layer

C̃2 = (A+R1(x+ α
(n)
1 )− α

(n)
2 R2)(B + S1(x+ α

(n)
1 )− α

(n)
2 S2)

= C̃3︸︷︷︸
First layer

−α
(n)
2 (S2(A+R1x) +R2(B + S1x))︸ ︷︷ ︸

Second Layer

+α
(n)
1 (S1(A+R1x) +R1(B + S1x))︸ ︷︷ ︸

Third Layer

+O(α
(n)
1 α

(n)
2 )︸ ︷︷ ︸

Fourth Layer

C̃3 = (A+R1x)(B + S1x)

In effect, at nodes 1 and 2, the computation output can be interpreted as a superposition of at least 4 layers.
The first layer has magnitude Θ(1), the second Θ(α

(n)
2 ), the third Θ(α

(n)
1 ), and the remaining layers have

magnitude O(α
(n)
1 α

(n)
2 ). The decoder can eliminate the effect of the second layer by computing:

C =
C̃1 + C̃2

2
= (A+R1(x+ α

(n)
1 ))(B + S1(x+ α

(n)
1 )) + o(α

(n)
1 )

Notice that the decoder also has access to C̃3 = (A + R1x)(B + S1x). From C and C̃3, the decoder can
approximately compute:

C ≈ d

dx
((A+R1x)(B + S1x)) = (AS1 +BR1) + 2R1S1x
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A simple calculation of the noise covariance matrix reveals that from C and C3, the decoder can compute
AB with SNRa ≈ η2

x4 + 2η
x2 as desired.

Formal Accuracy Analysis
To show the theorem statement, it suffices to show that for any δ > 0, we can achieve SNRa > 2 η

x2 +
η2

x4 −δ
for a sufficiently large n. We show this next by constructing a specific linear combination of the observations
that achieves the desired signal-to-noise ratio. Observe that with our coding scheme, the nodes compute:

Γt+1Θt+1 = (A+R1x)(B + S1x)

and, for i = 1, . . . , t:

ΓiΘi = (A+R1(x+ α
(n)
1 ))(B + S1(x+ α

(n)
1 )) + α

(n)
2

(
(A+R1(x+ α

(n)
1 ))

[
S2 . . . St

]
+ (B + S1(x+ α

(n)
1 ))

[
R2 . . . Rt

])
g⃗i +O((α

(n)
2 )2)

Let γ1, γ2, . . . , γt be scalars, not all equal to zero, such that
∑t

i=1 γig⃗i = 0. Because g⃗i are t−1 dimensional
vectors, they are linearly dependent, and such scalars indeed do exist. Condition (C2) implies that

∑t
i=1 γi ̸=

0. Without appropriate rescaling if necessary, we assume
∑t

i=1 γi = 1. The decoder computes: Γ̃Θ̃
∆
=∑t

i=1 γiΓiΘi, which is equal to:

Γ̃Θ̃ = (A+R1(x+ α
(n)
1 ))(B + S1(x+ α

(n)
1 )) +O((α

(n)
2 )2).

Then, the signal-to-noise ratio achieved is at least that obtained by using the signal and noise covariance
matrices of

Γt+1Θt+1 = AB + x(AS1 +BR1) +R1S1x
2 (3.17)

Γ̃Θ̃ = AB + (x+ α
(n)
1 )(AS1 +BR1) + (x+ α

(n)
1 )2R1S1 +O((α

(n)
2 )2). (3.18)

The analysis is done in equations (3.19)-(3.20) next:

SNRa ≥

∣∣∣∣∣ η2 + 2ηx2 + x4 η2 + 2ηx(x+ α
(n)
1 ) + x2(x+ α

(n)
1 )2

η2 + 2ηx(x+ α
(n)
1 ) + x2(x+ α

(n)
1 )2 η2 + 2η(x+ α

(n)
1 )2 + (x+ α

(n)
1 )4 +O((α

(n)
2 )4)

∣∣∣∣∣∣∣∣∣∣ 2ηx2 + x4 2ηx(x+ α
(n)
1 ) + x2(x+ α

(n)
1 )2

2ηx(x+ α
(n)
1 ) + x2(x+ α

(n)
1 )2 2η(x+ α

(n)
1 )2 + (x+ α

(n)
1 )4 +O((α

(n)
2 )4)

∣∣∣∣∣
− 1 (3.19)

=
4α

(n)
1 x(η + 2x2) + 2(η + x2)2 + (α

(n)
1 )2(η + 2x2) +O((α

(n)
2 )4)

2x2(α
(n)
1 + x2) +O((α

(n)
2 )4)

− 1 (3.20)

As n → ∞, observe that α(n)
1 ,

(α
(n)
2 )2

α
(n)
1

→ 0. Using this in (3.20), for any δ > 0, there exists a sufficiently large

n to ensure that SNRa ≥ 2(x2+η)2

2x4 − 1− δ = η2

x4 + 2η
x2 − δ. This completes the proof.

3.4 Proof of Corollary 2.2.1
Our proof involves a specific realization of random variables R1, R2, . . . , Rt, S1, S2, . . . , St that satisfies the
conditions of the achievable scheme in Section 3.1. We couple this with a refined differential privacy analysis.
The accuracy analysis remains the same as in the proof of Section 3.3. Here, in our description, we focus on
describing R1, R2, . . . , Rt and showing that the t-node DP privacy constraints are satisfied for input A. A
symmetric argument applies for input B also.

For a fixed DP parameter ϵ, let x = σ∗(ϵ) + δ′, for δ′ > 0. Section 3.2 shows that the scheme achieves
accuracy SNRa ≈ (1 + η

x2 )
2, or more precisely:

LMSE(C) ≤ η2(σ∗(ϵ))4

(η + (σ∗(ϵ))2)2
+ δ
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by choosing δ′ sufficiently small. Now, it remains to show that a specific realization of R1, R2, . . . , Rt achieves
ϵ-DP. For a fixed value of parameter x, let ϵ∗ be:

ϵ∗ = inf
Z,E[Z2]≥1

sup
A,A0,A1∈R,|A0−A1|≤1

ln

(
P(A0 + xZ) ∈ A
P(A1 + xZ) ∈ A

)
where the infimum is over all real-valued random variables Z satisfying the variance5 constraint, and ln
denotes the natural logarithm. Notice here that the noise variance E[(x2Z2)] = x2 is strictly larger than
(σ∗(ϵ))2. Because σ∗ is a strictly monotonically decreasing function (see (2.11)), we have: ϵ∗ < ϵ. Let Z∗

be the random variable that is the argument of the above minimization. We now consider the achievable
scheme of Section 3.1 with R1 taking the same distribution as Z∗. We let R2, R3, . . . , Rt to be independent
unit variance Laplace random variables that are independent of R1. Note that by construction,

sup
A∈R,−1≤λ≤1

P(A+ xR1 ∈ A)

P(A+ xR1 + λ ∈ A)
≤ eϵ

∗
(3.21)

Here, we are considering an adversary that is aiming to learn A from Ãi, i ∈ S which for every t-sized
subset S. Let ϵn be the parameter such that the coding scheme specified achieves t-node ϵn-DP. We show
that as n → ∞, ϵn → ϵ∗, thus showing that for sufficiently large n, our scheme achieves t-node ϵ-DP .

First, consider the case where t+1 /∈ S. For each i ∈ S, the input Ãi is of the form A+R1(x+α
(n)
1 )R1+Zi,

where Zi is zero mean random variable that is statistically independent of R1. Therefore,

A → A+ (x+ α
(n)
1 )R1 → {Ãi : i ∈ S}

forms a Markov chain. Using post-processing property and the notation of (2.6),(2.7), we note that

sup
A∈Rt

P
(
Y

(0)
S ∈ A

)
P
(
Y

(1)
S ∈ A

)
≤ sup

A∈R,−1≤λ≤1

P
(
A+ (x+ α

(n)
1 )R1 ∈ A

)
P
(
A+ (x+ α

(n)
1 )R1 + λ ∈ A

)
= sup

A∈R,− x

x+α
(n)
1

≤λ≤ x

x+α
(n)
1

P(A+ xR1 ∈ A)

P(A+ xR1 + λ ∈ A)

≤ eϵ
∗

where, in the final inequality, we have used (3.21) combined with the fact that: 0 < x

x+α
(n)
1

≤ 1 Thus, the
input to the adversary follows t node ϵ∗-DP.

Now, consider the case where t + 1 ∈ S. To keep the notation simple, without loss of generality, we
assume that S = {2, 3, . . . , t+ 1}. We denote

G2:t =
[
g⃗2 g⃗3 . . . g⃗t

]
In this case, an adversary obtains

Z⃗ =
(
A+R1x,A+ (x+ α

(n)
1 )R1 + α

(n)
2

[
R2 R3 . . . Rt

]
G2:t

)
.

Using the fact that G2:t is invertible based on the property (C1) in Section 3.1, a one-to-one function on the
adversary’s input yields:

Z⃗ ′ =

(
A+R1x,−

α
(n)
1

α
(n)
2 x

A1⃗(G2:t)
−1 +

[
R2 R3 . . . Rt

])
,

5Note that choosing E[Z] = 0 does not change the value of ϵ∗, so we simply assume E[Z] = 0 here as well.
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where 1⃗ is a t − 1 × 1 row vector. Denoting Z⃗ ′ = (Z ′
1, Z

′
2, . . . , Z

′
t), observe that Z ′

i = λiA + ζiRi for some
λi, ζi ∈ R. By construction Z ′

1 achieves ϵ∗-DP. For i ≥ 2, because Ri is a unit variance Laplacian RV, Z ′
i is a

privacy mechanism that achieves αi

βi

√
2-DP with respect to input A. Because R1, R2, . . . , Rt are independent,

Z⃗ ′ is an RV that achieves ϵ∗ +
√
2
∑t

i=2
αi

βi
-DP. Note that for i ≥ 2, λ′

i = 1 and ζi =
α

(n)
1 g′

i

α
(n)
2 x

, where, g′i is the

i-th element of 1⃗(G2:t)
−1). So, the adversary’s input satisfies t-node ϵ∗ +

√
2
∑t

i=2
α

(n)
1 g′

i

α
(n)
2 x

-DP. The proof is
complete on noting that the DP parameter approaches ϵ∗ as n → ∞.

4 Proofs of Theorem 2.3 and Corollary 2.3.1
Recall that we consider a set up with N computation nodes such that the input is private to any t nodes, where
N ≤ 2t. Consider an achievable scheme that achieves t-node privacy signal-to-noise ratio 0 < SNRp < ∞
and accuracy signal-to-noise ratio SNRa. There exist uncorrelated, zero-mean, unit-variance random vari-
ables R1, R2, . . . , RN , S1, S2, . . . , SN such that A,B,Ri

∣∣t
i=1

, Si

∣∣t
i=1

are zero mean unit variance uncorrelated
random variables, and the inputs to node i are:

Γi =

[
A
√
η
R1 R2 . . . RN

]
v⃗i

Θi =

[
B
√
η
S1 S2 . . . SN

]
w⃗i

where v⃗i, w⃗i are N × 1 vectors6. Node i performs the computation

C̃i = ΓiΘi,

and a decoder connects to the N nodes and obtains:

C̃ =

N∑
i=1

diΛi

The error C̃ −AB of the decoder can be written as:

C̃ −AB =

[
A
√
η
R1 R2 . . . RN

]
∆


B√
η

S1

S2

...
SN


where

∆ =

N∑
i=1

div⃗iw⃗
T
i −


η 0 . . . 0
0 0 . . . 0

. . .
0 0 . . . 0


Observe that, for the optimal choice of d1, d2, . . . , dN ,

E
[
||C̃ −AB||2

]
= ||∆||2F =

η2

1 + SNRa
.

We aim to lower bound ||∆||2F . Our converse is a natural consequence of the following theorem.

6To see this, simply set
[
R1 R2 . . . RN

]
=

[
R̃1 R̃2 . . . R̃N

]
K−1/2 where K is the N × N covariance

matrix of
[
R̃1 R̃2 . . . R̃N

]
. Si|Ni=1 can be found similarly.
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Theorem 4.1. For any N node secure coding scheme with N ≤ 2t, for any set S ⊂ {1, 2, . . . , N} where
|S| = t, we have:

(1 + SNRa) ≤ (1 + SNR(A)
S )(1 + SNR(B)

Sc )

By symmetry, we also have:
(1 + SNRa) ≤ (1 + SNR(B)

S )(1 + SNR(A)
Sc )

For any coding scheme that that satisfies SNR(A)
S , SNR(B)

S ≤ SNRp for every subset S of t nodes, the above
theorem automatically implies the statement of Theorem 2.3, that is:

(1 + SNRa) ≤ (1 + SNRp)2

The proof of Theorem 4.1 depends on the following key lemma.

Lemma 4.2. For any set S of nodes with |S| ≤ t, there exists a vector

λ⃗ = [λ1 λ2 . . . λN ]
T

such that

(i)
λ⃗T w⃗i = 0,∀i ∈ S,

(ii)
λ2
1

||λ⃗||2
≥ 1

1 + SNR(B)
S

.

Symmetrically, there exists a vector

θ⃗ = [θ1 θ2 . . . θt+1]
T

for every subset S of nodes with |S| ≤ t such that

(iii)
θ⃗T v⃗i = 0,∀i ∈ S,

(iv)
θ21

||θ⃗||2
≥ 1

1 + SNR(A)
S

.

Proof. For any vector w⃗ = [w1 w2 . . . wN ]T that in the span of {w⃗i : i ∈ S}, we have:

w2
1

w2
2 + w2

3 + . . .+ w2
N

≤ SNR(B)
S (4.22)

Because |S| ≤ t, the nullspace of {w⃗i : i ∈ S} is non-trivial. If


1
0
0
...
0

 lies in the span of {w⃗i : i ∈ S}, then

SNR(B)
S = ∞, and any non-zero vector λ⃗ in the null space of {w⃗i : i ∈ S} satisfies (i) and (ii). So, it suffices

to show the existence of the λ⃗ that satisfies the theorem for the case where


1
0
0
...
0

 does not lie in the span of

{w⃗i : i ∈ S}.
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By the rank-nullity theorem, there exists a vector w⃗ = [w1 w2 . . . wN ]T in the span of {w⃗i : i ∈ S},
and a non-zero vector λ⃗ = [λ1 λ2 . . . λN ]

T that is in the nullspace of {w⃗i : i ∈ S}, such that

w⃗ + λ⃗ =


1
0
0
...
0

 (4.23)

Specifically, note that λi = −wi, for i = 2, 3, . . . , t+ 1. Because λ⃗ nulls w⃗, we have:

λ1w1 = −
N∑
i=2

λiwi

Consequently, we have:

λ1w1 =

N∑
i=2

w2
i =

N∑
i=2

λ2
i (4.24)

Therefore:

||λ⃗||2

λ2
1

= 1 +

∑N
i=2 λ

2
i

λ2
1

(4.25)

= 1 +

∑N
i=2 w

2
i

λ2
1

(4.26)

= 1 +
w2

1∑N
i=2 w

2
i

(4.27)

≤ 1 + SNR(B)
S (4.28)

(4.29)

where in (4.26) and (4.27), we have used (4.24).
Therefore:

λ2
1

||λ⃗||2
≥ 1

1 + SNR(B)
S

as required. The existence of a vector

θ⃗
(A)
S = [θ1 θ2 . . . θt+1]

that satisfies (iii),(iv) in the lemma statement follows from symmetry.

Proof of Theorem 4.1. Consider a set S of t nodes. Let

λ⃗ = [λ1 λ2 . . . λN ]
T

be a N × 1 vector that is orthogonal to w⃗Sc such that:

λ2
1

||λ⃗||2
≥ 1

1 + SNR(B)
Sc

(4.30)

Because |S| = t and N ≤ 2t, it transpires that |Sc| ≤ t, and from Lemma 4.2, we know that a vector λ⃗
satisfying the above conditions exist. We then have:

∆λ⃗ =
∑
i∈S

civ⃗i −


λ1η
0
...
0

 (4.31)
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where ci = diw⃗
T
i λ⃗. Now, we know that:

inf
ci

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
∑
i∈S

civ⃗i −


√
η
0
0
...
0



∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

2

=
η

1 + SNR(A)
S

Consequently, we have: ∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∑
i∈S

civ⃗i −


λ1η
0

0
...
0


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

≥ λ2
1η

2

1 + SNR(A)
S

Taking norms in (4.31) and applying the above, we get:

||∆λ⃗||2 ≥ λ2
1η

2

1 + SNR(A)
S

(4.32)

By definition of the ℓ2 norm, we have
||∆λ⃗||2 ≤ ||∆||22||λ⃗||2

Because, for any matrix, its Frobenius norm is lower bounded by its ℓ2 norm, we have:

||∆||2F ≥ λ2
1

||λ⃗||2
η2

1 + SNR(A)
S

(4.33)

From (4.30), we have:

||∆||2F ≥ η2
1

1 + SNR(B)
Sc

1

1 + SNR(A)
S

(4.34)

4.1 Proof of Corollary 2.3.1
Consider an achievable coding scheme C that achieves t-node ϵ-DP. From Lemma 2.1, we know that:

LMSE(C) = η2

1 + SNRa
(4.35)

From Theorem 2.3, we know that there exists a set S ⊂ {1, 2, . . . , N} such that (i) SNR(A)
S ≥

√
1 + SNRa − 1,

or(ii) SNR(B.)
S ≥

√
1 + SNRa − 1. Without loss of generality, assume that (i) holds for the coding scheme C.

Consequently, there exist scalars wi, i ∈ S such that:∑
i∈S

wiÃi = A+ Z

where Z is uncorrelated with A and E[Z]2 ≤ η√
1+SNRa−1

. By definition of the function σ∗(ϵ), we have:

(σ∗(ϵ))2 ≤ E[Z]2 ≤ η√
1 + SNRa − 1

. (4.36)

Combining (4.35) and (4.36), we get the desired result.
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5 Extension to Matrix Multiplication
We consider the problem of computing the matrix product AB, where A ∈ RM×L and show how our scalar
case results extend to matrix multiplication application. Our main result is an equivalence between codes
for scalar multiplication and matrix multiplication under certain assumptions on the matrix multiplication
code. Notation: In the sequel, for a matrix M, we denote the entry in its i-th row and j-th column by
M[i, j].

Let C be an arbitrary N -node secure multiplication coding scheme that achieves t-node ϵ-DP and the
accuracy SNRa for computing a scalar product AB. We define Cmatrix as a matrix extension of C that applies
the coding scheme C independently to each entry of the matrices A ∈ RM×L and B ∈ RL×K . Specifically,
node i in Cmatrix receives:

Ãi = a1A+Ri

B̃i = a1B+ Si

where the entries of Ri and the entries of Si are chosen in an i.i.d. manner from the same distribution
specified by C, and the constants ai, bi are also specified in C. We evaluate the performance of Cmatrix using
worst-case metrics for both privacy and accuracy as follows:

Definition 5.1. (Matrix t-node ϵ-DP) Let ϵ ≥ 0. A coding scheme with random noise variables

(R̃1, R̃2, . . . , R̃N ), (S̃1, S̃2, . . . , S̃N )

where R̃i ∈ RM×L, S̃i ∈ RL×K and scalars ai, bi (i ∈ {1, . . . , N}) satisfies matrix t-node ϵ-DP if, for any

A0,A1 ∈ RM×L,B0,B1 ∈ RL×K that satisfy
∣∣∣∣∣∣∣∣[A0

BT
0

]
−
[
A1

BT
1

]∣∣∣∣∣∣∣∣
max

≤ 1,

max

 max
m=1,...,M
l=1,...,L

P
(
Y

(0)
T [m, l] ∈ A

)
P
(
Y

(1)
T [m, l] ∈ A

)
, max

l=1,...,L
k=1,...,K

P
(
Z

(0)
T [l, k] ∈ A

)
P
(
Z

(1)
T [l, k] ∈ A

)
 ≤ eϵ (5.37)

for all subsets T ⊆ {1, 2, . . . , N}, |T | = t, for all subsets A ⊂ R1×t in the Borel σ-field, where, for ℓ = 0, 1,

Y
(ℓ)
T [m, l] ≜

[
ai1Aℓ[m, l] + R̃i1 [m, l], . . . , ai|T |Aℓ[m, l] + R̃i|T | [m, l]

]
(5.38)

Z
(ℓ)
T [l, k] ≜

[
bi1Bℓ[l, k] + S̃i1 [l, k], . . . , bi|T |Bℓ[l, k] + S̃i|T | [l, k]

]
, (5.39)

where T = {i1, i2, . . . , i|T |}.

Definition 5.2 (Matrix LMSE.). For a matrix coding scheme Cmatrix, we define the LMSE as follows:

LMSE(Cmatrix) = max
m=1,...,M
k=1,...,K

E[|(AB)[m, k]− C̃[m, k]|2], (5.40)

where C̃ is a decoded matrix using an affine decoding scheme d.

Analogous to Assumption 2.1 in the scalar case, our accuracy analysis is contingent on the data A,B
satisfying the following assumption.

Assumption 5.1. A and B are statistically independent matrices of dimensions M × L and L × K, and
they satisfy:

(a)
E
[
||A||2max

]
≤ η, E

[
||B||2max

]
≤ η, (5.41)

for a parameter η > 0, and

(b)
E[A[m, i]A[m, j]]E[B[i, k]B[j, k]] = 0, (5.42)

for all 1 ≤ i ̸= j ≤ L and m = 1, · · ·M,k = 1, · · ·K.
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Assumption 5.1-(b) for instance holds if the entries of A are uncorrelated, or if the entries of B are
uncorrelated. Our main result states that Cmatrix attains an identical privacy and accuracy as C

Theorem 5.1. Consider any (scalar) multiplication coding scheme C. Let Cmatrix denote its matrix exten-
sion. Then,

(i) C satisfies t-node ϵ-DP if and only if Cmatrix satisfies t-node matrix ϵ-DP.

(ii) If A,B satisfy Assumption 5.1, then:

LMSE(Cmatrix) ≤ supLMSE(C),

where the supremum on the right hand side is over all data distributions PA,B that satisfy Assumption
2.1 with parameter η. Further, the bound above is met with equality if every entry of A,B has standard
deviation η.

The above theorem establishes an equivalence between the trade-off for matrix multiplication and the
trade-off for scalar multiplication. Specifically, using Corollaries 2.2.1 and 2.3.1, we infer that for a fixed
matrix DP parameter ϵ, the optimal LMSE for the matrix multiplication case is the same as for scalar
multiplication, that is:

LMSE ≈ η2(σ∗(ϵ))4

η + (σ∗(ϵ))2

2

.

The above equivalence must however be interpreted with some caveats. First, the equivalence assumes
that the coding scheme for the matrix case extends the scalar strategy to each input matrix element in an
independent manner. The question of whether correlation in the noise distribution can reduce the LMSE
for a fixed DP parameter is left open. Second, the above trade-off requires Assumption (5.1)-(b). In some
cases, this assumption may be justified - for example, if B has data samples drawn from some distribution
in an i.i.d. manner. However, in some cases, this assumption of uncorrelated data may be too strong. The
question of the optimal trade-off when this assumption is dropped remains open.

Proof of Theorem 5.1. Proof of (i)
An elementary proof readily from the definition of matrix t-node ϵ-DP and the matrix extension of the

coding scheme C. Specifically, let (R1, R2, . . . , RN ) and (S1, S2, . . . , SN ) denote the noise random variables
of coding scheme C. Let (R̃1, . . . , R̃N ) and (S̃1, . . . , S̃N ) denote the noise random variables of the coding
scheme Cmatrix.

To show the “if” statement, assume that C satisfies t-node ϵ-DP. We show that Cmatrix also satisfies t-node

ϵ-DP. Let A0,A1,B0,B1 denote matrices that satisfy
∣∣∣∣∣∣∣∣[A0

BT
0

]
−
[
A1

BT
1

]∣∣∣∣∣∣∣∣
max

≤ 1. For an arbitrary subset A

of the Borel sigma field, let

m∗, l∗ = argmaxm=1,...,M
l=1,...,L

P
(
Y

(0)
T [m, l] ∈ A

)
P
(
Y

(1)
T [m, l] ∈ A

)
,

l∗∗, k∗∗ = argmax l=1,...,L
k=1,...,K

P
(
Z

(0)
T [l, k] ∈ A

)
P
(
Z

(1)
T [l, k] ∈ A

)
.

For any set T = {i1, i2, . . . , it} ⊂ {1, 2, . . . , N}:

max
m=1,2,...,M,l=1,2,...,L

P
(
Y

(0)
T [m∗, l∗] ∈ A

)
P
(
Y

(1)
T [m∗, l∗] ∈ A

)
(a)
=

P(
[
ai1A0[m

∗, l∗] +Ri1 . . . aitA0[m
∗, l∗] +Rit

]
P(
[
ai1A1[m

∗, l∗] +Ri1 . . . aitA1[m
∗, l∗] +Rit

]
)

(b)

≤ eϵ.
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In (a) above, we have used the fact that (Ri1 , Ri2 , . . . , Rit) has the same distribution as
(Ri1 [m

∗, l∗],Ri2 [m
∗, l∗], . . . ,Rit [m

∗, l∗]). In (b) we have used the fact that

|A0[m
∗, l∗]−A1[m

∗, l∗]| ≤
∣∣∣∣∣∣∣∣[A0

BT
0

]
−
[
A1

BT
1

]∣∣∣∣∣∣∣∣
max

1,

coupled with the fact that C satisfies t-node ϵ-DP.
A similar argument leads us to conclude that

P
(
Z

(0)
T [l∗∗, k∗∗] ∈ A

)
P
(
Z

(1)
T [l∗∗, k∗∗] ∈ A

) ) ≤ eϵ,

from which we infer Cmatrix it satisfies matrix t-node ϵ-DP.
The “only if” statement also follows through a similar elementary argument, and the details are omitted

here.
Proof of (ii) Our proof revolves around showing that the signal-to-noise ratio achieved in obtaining C[m, l]

using coding scheme Cmatrix is the same (for the worst case distribution PA,B) as the SNR achieved by C,
where C = AB. Consider scalar random variables A,B that satisfy Assumption 2.1 with E[A2] = E[B2] = η.
let (R1, R2, . . . , RN ) and (S1, S2, . . . , SN ) denote the noise random variables of coding scheme C. Denote by
K1 and K2 as the covariance matrices of the coding scheme C as given in (2.9). As per definition 2.4,

SNRa =
det(K1)

det(K2)
− 1.

For 1 ≤ n1, n2 ≤ N , the (n1, n2)-th entry in the matrix K1 is in the form of

E
[(
(A+Rn1

)(B + S)
)2]

if n1 = n2 or E
[(
(A+Rn1

)(B + Sn1
)
)(
(A+Rn2

)(B + Sn2
)
)]

if n1 ̸= n2,

(5.43)
and the entries in the K2 have the form of

E
[(
(A+Rn1)(B + Sn1)−AB

)2]
if n1 = n2 or E

[(
(A+Rn1)(B + Sn1)−AB

)(
(A+Rn2)(B + Sn2)−AB

)]
if n1 ̸= n2.

To evaluate LMSE(Cmatrix), we analyze the accuracy SNR of each entry in C, i.e., C[m, k] = A[m, :]B[:
, k]T . Let K1,K2 denote the covariance matrices in the corresponding accuracy SNR calculation. For nodes
n1, n2 ∈ {1, 2, . . . , N}, we define vector notations a = A[m, :], b = B[:, k]T , r = R̃n1

[m, :], s = S̃n1
[:, k]T ,

r′ = R̃n2
[m, :], and s′ = S̃n2

[:, k]T . Then, the (n1, n2)th entry of signal covariance matrix K1 for C[m, k] is
composed of:

E
[
((a+ r) · (b+ s))

2
]

if n1 = n2 or E
[
((a+ r) · (b+ s))((a+ r′) · (b+ s′))

]
if n1 ̸= n2. (5.44)

Assuming E[a2i ] = η,E[b2i ] = η7, we show that K1(n1, n2) = LK1(n1, n2) in the steps below.

E[(a · b)2] = E[(a1b1 + · · ·+ aLbL)
2] =

∑
i=1,...L

E[a2i b2i ] +
∑
i ̸=j

E[aibiajbj ] =
∑

i=1,...L

E[a2i ]E[b2i ] = Lη2 (5.45)

= L · E[A2B2]. (5.46)

7Elementary linear estimation theory shows that the LMSE obtained, for a fixed noise distribution and decoding
co-efficients, is monotonically decreasing in parameters E[a2

i ],E[b2i ] < η; so the standard deviations being equal to η
is the worst case.
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E[(a · s+ r · b)2] = E[(a1s1 + · · ·+ aLsL + r1b1 + · · ·+ rLbL)
2] (5.47)

=
∑

i=1,...L

(E[a2i s2i ] + E[r2i b2i ]) +
∑

i,j=1,...L

E[aisirjbj ] +
∑
i̸=j

(E[aisiajsj ] + E[ribirjbj ]) (5.48)

=
∑

i=1,...L

(E[a2i ]E[s2i ] + E[r2i ]E[b2i ]) = L
(
ηE[S2

n1
] + ηE[R2

n1
]
)

(5.49)

= L · E[(AS +Rn1
B)2]. (5.50)

Similarly,

E[(r · s)2] = E[(r1s1 + · · ·+ rLsL)
2] =

∑
i=1,...L

E[r2i s2i ] +
∑
i ̸=j

E[risirjsj ] =
∑

i=1,...L

E[r2i ]E[s2i ] = L · E[R2

n1
S
2

n1
].

(5.51)

By plugging these in, we obtain:

E
[
((a+ r) · (b+ s))

2
]
= L · E

[(
(A+Rn1

)(B + Sn1
)
)2]

. (5.52)

With similar calculations, we can show that:

E
[
((a+ r) · (b+ s))((a+ r′) · (b+ s′))

]
= L · E

[(
(A+Rn1

)(B + Sn1
)
)(
(A+Rn2

)(B + Sn2
)
)]
. (5.53)

Thus, we have shown that K1 = L ·K1. It is mechanical to also show K2 = L ·K2. Hence, the

SNRa(Cmatrix) =
det(K1)

det(K2)
− 1 =

det(L ·K1)

det(L ·K2)
− 1 =

det(K1)

det(K2)
− 1 = SNRa(C), (5.54)

which implies the theorem statement.

6 Precision
The coding scheme of Section 3 requires sequences α

(n)
1 , α

(n)
2 → 0. Notably this translates to requirements

of increased compute precision. In this section, we quantify the price of our coding schemes in terms of
the required precision. We compare two schemes (i) the scheme of Theorem 2.2 that requires N = t + 1
nodes (ii) a scheme that achieves perfect privacy and perfect accuracy with N = 2t+ 1 nodes. We consider
a lattice quantization scheme with random dither and show that with this quantizer, the former scheme
requires much more computing as the latter scheme. A comparison between the two schemes is depicted

Number of nodes N Infinite-Precision
accuracy (MSE)

Target accuracy
(MSE) with finite
precision

Number of bits M(δ)
per node required to
meet target error

2t+ 1 (BGW coding scheme) 0 δ limδ→0
M(δ)

log 1
δ

= 0.5

t+ 1 (Our coding scheme) (σ∗(ϵ))4

(1+(σ∗(ϵ))2
(σ∗(ϵ))4

(1+(σ∗(ϵ))2 + δ limδ→0
M(δ)

log 1
δ

= 1.5

Table 1: A depiction of the privacy-accuracy trade-off taking into account the number of bits of precision
required. The accuracy is reported as mean square error (MSE) assuming that ϵ-DP is required to be
achieved; we assume η = 1 for simplicity.

in Table 1; we assume for simplicity that η = 1 in the table and in the remainder of this section. The
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table indicates that for a mean square error increase of δ compared to the infinite precision counter-part,
our scheme requires nearly 1.5 log

(
1
δ

)
bits of precision per computation node for arbitrarily small δ, whereas

the standard BGW scheme (embedded into real values) requires nearly 0.5 log
(
1
δ

)
bits. Since we require

N = (t+1) computation nodes, the total number of bits required for our scheme is 3t+3
2 log

(
1
δ

)
bits, whereas

the standard BGW scheme requires 2t+1
2 log

(
1
δ

)
bits. Our result indicates that our approaches of this paper

are not to be viewed as a panacea for computation overheads of secure multiparty computation. Rather, the
schemes provide a pathway for increased trust as there is explicit control on the information leakage even if
N − 1 nodes collude. This increased trust comes at the cost of reduced privacy, accuracy, and a moderate
increase in the overall computation overhead. Specifically, for a fixed value of N , our methods allow for
secure multiplication in systems where the parameter t is allowed to exceed ⌈N−1

2 ⌉.
We also emphasize that our results here pertain to a specific choice of the coding scheme of Section 3

and a specific quantization scheme. Our analysis, therefore, shows that general-purpose quantizers coupled
with the achievable scheme of Section 3 incurs a computational penalty tantamount. The question of the
existence and design of quantizers that reduce this computation penalty is open. We describe our setup and
results in greater detail next. An brief analysis of the BGW scheme providing justification to Table 1 is
placed in Appendix A.

6.1 Achievable scheme of Section 3 under finite compute precision
Consider the coding scheme of Section 3, where

Γi = [A R1 R2 . . . Rt]v⃗i

Θi = [B S1 S2 . . . St]w⃗i

where v⃗i, w⃗i are specified in (3.13)-(3.16), that is, for t ≥ 2,

v⃗t+1 = w⃗t+1 =


1
x
0
...
0



v⃗i = w⃗i = v⃗t+1 +

 0
α1

α2g⃗i

, 1 ≤ i ≤ t

For t = 1.
v⃗2 = w⃗2 =

[
1
x

]
, v⃗1 = w⃗1 = v⃗2 +

[
0
α1

]
In the above equations, G is a constant matrix that satisfies properties (C1) and (C2) specified in Section 3.1.
Here, we have suppressed the dependence on the sequence index n in parameters α1, α2. For our discussion
here, it suffices to remind ourselves that, when there is no quantization error, the coding scheme achieves
the mean square error:

E[(AB − Ĉ)2] =
x4

(1 + x2)2
+ δ =

1

(1 + SNRp)2
+ δ,

where δ → 0 so long as as α1,
α2

α1
,
α2

1

α2
→ 0. In the sequel, we analyze the effect of quantization error on the

mean square error.
Let Λ ⊂ R be a lattice with Vornoi region V ⊂ R. Let D

(A)
1 , D

(A)
2 , . . . , D

(A)
N , D

(B)
1 , D

(B)
2 , . . . , D

(B)
N be

random variables uniformly distributed over V, that are independent of each other and all the random
variables in the coding scheme. Consider the coding scheme of Section 3, but with the inputs to the
computation nodes are quantized to M bits.

Γ̂i = Q
(A)
i (Γi),
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Θ̂i = Q
(B)
i (Θi),

where Q
(A)
i , Q

(B)
i : R → R are independent dithered lattice quantizers. Specifically, we let Q

(A)
i (x) =

QΛ(x) +D
(A)
i where QΛ(x) : R → Λ denotes the nearest point in Λ to x. We define:

Yi
∆
= Γi − Γ̂i

Zi
∆
= Θi − Θ̂i.

Standard lattice quantization theory [33] dictates that Yi, Zi are independent of Γi,Θi. We assume that
the lattice Λ is designed - possibly based on the knowledge of distributions of Γi,Θi, i = 1, 2, . . . , N - so
that we have M bit quantizers, that is: H(Γ̂i), H(Θ̂i) ≤ M. Assuming A,B are random variables with finite
differential entropy, it follows that E[Y 2

i ],E[Z2
i ] = Ω(2−2M ).

We also assume that Q(A)
i , Q

(B)
i are statistically independent of each other, implying that Yi is indepen-

dent of (B,S1, . . . , St) and similarly, Zi is independent of (A,R1, . . . , Rt).
The output of the ith node is Ĉi = Γ̂iΘ̂i - that is, we assume that the computation node performs

perfectly precise computation so long as the inputs are quantized to M bits. We consider a linear decoding
strategy that estimates C = AB as

Ĉ =

N∑
i=1

diĈi =

N∑
i=1

diΓ̂iΘ̂i.

Consider a fixed δ > 0. We assume that parameters α1(δ), α2(δ),M(δ), d1(δ), d2(δ), . . . , dt+1(δ) are
chosen to satisfy the accuracy limit

E[(AB − Ĉ)2] ≤ 1

(1 + SNRp)2
+ δ

for all PAPB that satisfy E[A2],E[B2] ≤ 1. We develop two results next. First, we show that for any choice
of α1(δ), α2(δ),M(δ), d1(δ), d2(δ), . . . , dt+1(δ), the following lower bound holds:

lim
δ→0

M(δ)

log
(
1
δ

) ≥ 3/2.

Then, we show that there exists a positive number δ > 0 and a realization of parameters

α1(δ), α2(δ),M(δ), d1(δ), d2(δ), . . . , dt+1(δ)

such that, if

lim
δ→0

M(δ)

log
(
1
δ

) > 3/2,

then
E[(AB − Ĉ)2] ≤ 1

(1 + SNRp)2
+ δ

for all δ < δ. In the sequel, we often suppress the dependence on δ for all parameters except the number of
quantization bits M(δ) for simpler notation. We first show the lower bound.

Lower Bound
In the sequel, we assume that E[A] = E[B] = 0, and consider E[A2] = E[B2] = 1.
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E[(AB − Ĉ)2] =
1

1 + SNRa
+ δ (6.55)

= min
d1,d2,...,dN

E[(
N∑
i=1

diĈi − ΓiΘi)
2]

= min
d1,d2,...,dN

(
E
[( t∑

i=1

di
(
A+R1(x+ α1) + α2

[
R2 . . . Rt

]
g⃗i + Yi

)(
B+ (6.56)

S1(x+ α1) + α2

[
S2 . . . St

]
g⃗i + Zi

)
+ dt+1

(
A+R1x+ Yt+1

)(
B + S1x+ Zt+1)−AB

)2])
(6.57)

= min
d1,d2,...,dN

(
E
[( t∑

i=1

di
(
A+R1(x+ α1) + α2

[
R2 . . . Rt

]
g⃗i
)(
B+ (6.58)

S1(x+ α1) + α2

[
S2 . . . St

]
g⃗i
)
+ dt+1

(
A+R1x

)(
B + S1x)−AB

)2])
(6.59)

+

t+1∑
i=1

d2i (β
2
i E[Y 2

i ] + γ2
i E[Z2

i ]) (6.60)

where
γ2
i = E

[(
A+R1(x+ α1) + α2

[
R2 . . . Rt

]
g⃗i
)2]

, i = 1, 2, . . . , t

γ2
t+1 = E

[(
A+R1(x+ α1)

)2]
β2
i = E

[(
B + S1(x+ α1) + α2

[
S2 . . . St

]
g⃗i
)2]

, i = 1, 2, . . . , t

β2
t+1 = E

[(
B + S1(x+ α1)

)2]
We now lower bound δ in two ways. The first imposes an upper bound on α1 in terms of δ, for sufficiently
small δ. The second uses the first bound to impose a lower bound on M . The first bound begins with
omitting the effect of Yi, Zi, i = 1, 2, . . . , t+ 1 from (6.60) as follows:

E[(AB − Ĉ)2] (6.61)

≥ min
d1,d2,...,dN

(
E
[( t∑

i=1

di
(
A+R1(x+ α1) + α2

[
R2 . . . Rt

]
g⃗i
)(
B+

S1(x+ α1) + α2

[
S2 . . . St

]
g⃗i
)
+ dt+1

(
A+R1x

)(
B + S1x)−AB

)2])
(6.62)

≥ min
d1,d2,...,dN

E
[(( t∑

i=1

di

)(
A+R1(x+ α1)

)(
B + S1(x+ α1)

)
+ dt+1

(
A+R1x

)(
B + S1x)−AB

)2]
(6.63)

=
2x2
(
(α1)

2 + 2(α1)x+ x2
)

(α1)2(2x2 + 1) + 4(α1)(x+ x3) + 2(x2 + 1)2
(6.64)

=
2x4

2(x2 + 1)2
+Θ(α1) (6.65)

=
1

1 + SNR2p
+Θ(α1) (6.66)
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From the final equation, we infer that there exists a constant δ > 0 and a constant c′ such that, for all
δ < δ, α1 ≤ c′δ. We now derive the second bound on δ. We begin the bounding process by omitting the
effect of Zi, i = 1, 2, . . . , t + 1. In the following bounds, we use the fact that β2

i ≥ E[B2] = 1,∀i. Also, we
assume that there is a constant λ > 0 such that E[Y 2

i ],E[Z2
i ] ≥ λ2−2M(δ).

E[(AB − Ĉ)2] (6.67)

≥ min
d1,d2,...,dN

E
[( t∑

i=1

di
(
A+R1(x+ α1)

)(
B + S1(x+ α1)

)
+ dt+1

(
A+R1x

)(
B + S1x)−AB

)2]

+

(
t+1∑
i=1

d2iβ
2
i E[Yi]

2

)
(6.68)

= min
d1,d2,...,dN

(
t+1∑
i=1

di − 1

)2

E[A2B2] +
(
E[A2S2

1 ] + E[B2R2
1]
)(( t∑

i=1

di

)
(x+ α1) + xdt+1

)2

+

((
t∑

i=1

di

)
(x+ α1)

2 + x2dt+1

)2

E[R2
1S

2
1 ] +

(
t+1∑
i=1

d2iβ
2
i

)
λ2−2M(δ) (6.69)

≥ min
d1,d2,...,dN

(
t+1∑
i=1

di − 1

)2

+ 2

((
t∑

i=1

di

)
(x+ α1) + xdt+1

)2

+

((
t∑

i=1

di

)
(x+ α1)

2 + x2dt+1

)2

+

(
t+1∑
i=1

d2i

)
λ2−2M(δ) (6.70)

= min
d,dt+1

(
d+ dt+1 − 1

)2
+ 2
(
d(x+ α1) + xdt+1

)2
+
(
d(x+ α1)

2 + x2dt+1

)2
+ (d+ dt+1)

2λ2
−2M(δ)

t
(6.71)

where, in (6.68), we have used the fact that R2, R3, . . . , Rt+1 are independent of each other and all other
variables, that is, independent of (A,B,R1, Y1, Y2, . . . , Yt+1, Z1, Z2, . . . , Zt+1). In (6.71), we have used the
notation d =

∑t
i=1 di.The final minimization problem is strictly convex. Its optimal arguments d

∗
, d∗t+1, can

be found via differentiation to be:

d
∗

=

∣∣∣∣1 (x(x+ α1) + c)2

1 ((x+ α1)
2 + c)2

∣∣∣∣∣∣∣∣ (x2 + c)2 (x(x+ α1) + c)2

(x(x+ α1) + c)2 ((x+ α1)
2 + c)2

∣∣∣∣ (6.72)

=
(α1 + x)(2 + (α1 + x)(α1 + 2x))

α1(2x2(α1 + x)2 + c2(2 + (α1 + 2x)2))
(6.73)

d∗t+1 =

∣∣∣∣ (x2 + c)2 1
(x(x+ α1) + c)2 1

∣∣∣∣∣∣∣∣ (x2 + c)2 (x(x+ α1) + c)2

(x(x+ α1) + c)2 ((x+ α1)
2 + c)2

∣∣∣∣ (6.74)

= − (α1 + 2x)(2 + (α1)
2 + 2α1x+ 2x2)

α1(2x2(α1 + x)2 + c2(2 + (α1 + 2x)2))
(6.75)

where c =
√
1 + λ2−2M(δ)

t . Substituting (6.73),(6.75) into the last term in (6.71), we get

E[(AB − Ĉ)2]

≥ min
d,dt+1

((
d+ dt+1 − 1

)2
+ 2
(
d(x+ α1) + xdt+1

)2
+
(
d(x+ α1)

2 + x2dt+1

)2)
+ (d

∗
+ d∗t+1)

2λ2
−2M(δ)

t

(6.76)

≥ 1

1 + SNR2p
+ (d

∗
+ d∗t+1)

2λ2
−2M(δ)

t
(6.77)
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Using the fact that

E[(AB − C)2] ≤ 1

1 + SNR2p
+ δ,

we get δ ≥ (d
∗
+ d∗t+1)

2 λ2−2M(δ)

t . Recall that for δ < δ, we have shown that α1 ≤ c′δ. Further (6.73),(6.75)
imply that for there are constants α1 > 0 and c′′ > 0 such that, for 0 ≤ α1 < α1, |d

∗
+d∗t+1| ≥ c′′

α1
. Therefore,

for δ < min(δ, α1/c
′), we have:

δ ≥ c′′2λ

α2
1

2−2M(δ)

t

≥ c′′2

c′2δ2
2−2M

t

⇒ M(δ) ≥ 3

2
log

1

δ
+

1

2
log

(
c′′2λ

c′2t

)
Thus, we have the following asymptotic bound: limδ→0

M(δ)

log 1
δ

≥ 3/2.

Achievable scheme
We set d1, d2, . . . , dt+1 to be the same as Section 3.3. That is, d1, d2, . . . , dt+1 are set ignoring the effect of
the quantization error. For ease of notation, we simply set α2 = α

2/3
1 . So long as α1 → 0, notice that α1, α2

satisfy the limit requirements of (3.12). We set

M(δ) = K log
1

δ

for some constant K > 3/2. For a sufficiently small δ, we show that the scheme achieves an error smaller
than δ so long as α1 is chosen sufficiently small.

Taking into effect the quantization error, the computation nodes output:

Γ̂t+1Θ̂t+1 = (A+R1x+ Yt+1)(B + S1x+ Zt+1)

and, for i = 1, . . . , t:

Γ̂iΘ̂i = (A+R1(x+ α1) + α
2/3
1

[
R2 . . . Rt

]
g⃗i + Yi)((B + S1(x+ α1)) + α

2/3
1

[
S2 . . . St

]
g⃗i + Zi)

Following the steps of Section 3.3, the decoder obtains the following analogous to (3.17), (3.18):

Γ̂t+1Θ̂t+1 = AB + x(AS1 +BR1) +R1S1x
2 + Yt+1(B + Sx) + Zt+1(A+Rx) + Yt+1Zt+1 (6.78)

ˆ̃Γ ˆ̃Θ = AB + (x+ α1)(AS1 +BR1) + (x+ α1)
2R1S1 +O(α

4/3
1 )

+

t∑
i=1

(Li,1Yi + Li,2Zi + Li,3YiZi). (6.79)

where Li,1, Li,2, Li,3, i = 1, 2, . . . , t are random variables that are independent of Yi, Zi with the prop-
erty that their variances are Θ(1). That is, as α1 → 0, their variances depend only on the variances of
A,B,R1, . . . , Rt+1, S1 . . . , St+1 and constants x,G. To make the notation of (6.78) consistent with (6.79),
we denote:

Lt+1,1 = B + S1x, Lt+1,2 = A+R1x, Lt+1,3 = 1.

Let d
∗
, d∗t+1 denote the constants that obtain the LMSEof Section 3.3, specifically, these constants are the

arguments that minimize the following:

min
d,dt+1

E
[(
d
(
AB + (x+ α1)(AS1 +BR1) +R1S1(x+ α1)

2
)
+

+dt+1

(
AB + x(AS1 +BR1) +R1S1x

2
)
−AB

)2]
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expressions in (3.19)-(3.20). The mean square error can be written as:

min
d,dt+1

E
[(
d
(
AB + (x+ α1)(AS1 +BR1) +R1S1(x+ α1)

2
)
+

+dt+1

(
AB + x(AS1 +BR1) +R1S1x

2
)
−AB

)2]
+

t∑
i=1

(d
∗
)2
(
L2
i,1E[Y 2

i ] + L2
i,2E[Z2

i ] + L2
i,3E[Y 2

i Z
2
i ]
)

+ (d∗t+1)
2
((
L2
t+1,1E[Y 2

t+1] + L2
t+1,2E[Z2

t+1] + L2
t+1,3E[Y 2

t+1Z
2
t+1]

))
=

2x2
(
(α1)

2 + 2(α1)x+ x2 +
O(α6

1)
(α1)2

)
(α1)2(2x2 + 1) + 4(α1)(x+ x3) + 2(x2 + 1)2 +

O(α6
1)

(α1)2

+
t∑

i=1

(d
∗
)2
(
L2
i,1E[Y 2

i ] + L2
i,2E[Z2

i ] + L2
i,3E[Y 2

i Z
2
i ]
)

+ d2t+1

((
L2
t+1,1E[Y 2

t+1] + L2
t+1,2E[Z2

t+1] + L2
t+1,3E[Y 2

t+1Z
2
t+1]

))
=

x4

(x2 + 1)2
+Θ(α1) +

t∑
i=1

(d
∗
)2
(
L2
i,1λ2

−2M(δ) + L2
i,2λ2

−2M(δ) + L2
i,3λ

22−4M(δ)
)

+ (d∗t+1)
2
(
L2
t+1,1λ2

−2M(δ) + L2
t+1,2λ2

−2M(δ) + L2
t+1,3λ

22−4M(δ)
)

An analysis similar to (6.73),(6.75) implies that |d∗|, |d∗t+1| = Θ
(

1
α1

)
. Because of our choice of M(δ), we

have 2−2M < δ3. Consequently, the mean square error can be expressed as:

1

1 + SNR2p
+Θ(α1) + Θ(

δ3

α2
1

).

Noting that the mean square error is 1
1+SNR2p

+ δ, we conclude that δ = Θ(α1). Thus, if M = K log(1/δ) for

any K > 3/2, we can obtain an error of at most 1
1+SNR2p

+ δ by choosing α1 sufficiently small.

7 Conclusion
In this paper, we propose a new coding formulation that makes connections between secret coding schemes
used widely in multiparty computation literature and differential privacy. An exploration of the proposed
formulation leads to counter-intuitive correlation structures and noise distributions. This work opens up
several open problems and research directions.

The schemes we developed come at the cost of increased precision. A similar phenomenon is also
noted recently in coded computing [34, 35]. An open area of research is to understand the fundamental
role of quantization and precision on multi-user privacy mechanisms starting with the application of secure
multiplication. Specifically, an open question is whether there are coding and quantization schemes that
achieve our privacy-accuracy trade-off limits, but provide improvements in terms of precision as compared
to those presented in Section 6.

In this paper, the coding schemes we constructed as well as our precision analyses are asymptotic. An
important question of practical interest is the study of regimes with finite (non-asymptotic) precision. We
generated the coding scheme described in 3.1 for t = 2, 3, 4 with SNRp = 1. To satisfy (3.12), we set α1 = 1

n
and α2 = α1 log(

1
α1

). The results of the simulation are given in Fig. 3. As we expect from the theory, as n

grows, the gap between 1 + SNRa and (1 + SNRp)
2 becomes smaller. However, for t = 3 and t = 4, there

remains a gap of ∼ 4.5 when n = 10, 000. Notice that this behavior is not explained by the results of this
paper; all the trade-offs presented seem blind to the choice of t. A theoretical explanation of this behavior
and the determination of optimal choices of α1 and α2 for fixed precision is an open question.
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Figure 3: Plotting the gap between 1+ SNRa and (1+ SNRp)
2 for the achievable scheme for t = 2, 3, 4 and

N = t+ 1. We vary n from 10 to 10,000 and we observe that as n grows the gap reduces.

Our approach to embedding information at different amplitude levels bears resemblance to interference
alignment coding schemes for wireless interference networks, see [36–39] and references therein. We wonder
if there are deeper connections between the two problems, and whether there are ideas that can be borrowed
from the rich literature in wireless network signaling into differentially private multiparty computation.

Finally, while we focused on the canonical computation of matrix multiplication, the long-term promise
of this direction explored in this paper is the reduction of communication and infrastructural overheads for
private computation more complex functions. Incorporating our techniques into multiparty computation
schemes as well as the development of coding schemes for more complex functions - particularly functions
that are relevant to machine learning applications - is an exciting direction of future research.
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A Finite precision analysis of the BGW coding scheme
Consider the BGW coding scheme where node i gets - in a system with perfect precision - Γi = pA(xi),Θi =
pB(xi) for i = 1, 2, . . . , 2t+ 1, where:

pA(x) = A+R1x+R2x
2 + . . .+Rtx

t

pB(x) = B + S1x+ S2x
2 + . . .+ Stx

t

and x1, x2, . . . , x2t+1 are distinct scalars. The DP parameter ϵ can be driven as close to 0 as we wish by
making x1, x2, . . . , x2t+1 arbitrarily large. In a system with perfect precision, node i outputs ΓiΘi, and the
decoder obtains Ĉ = AB with perfect accuracy as a linear combination:

AB =

2t+1∑
i=1

diΓiΘi (1.80)

Similar to Section 6, we assume a system with finite precision where node i receives:

Γ̂i = pA(xi) + Yi

Θ̂i = pB(xi) + Zi

where Yi is a random variable that is independent of Γi|2t+1
i=1 ,Θi|2t+1

i=1 , Zi|2t+1
i=1 , {Yj : j ∈ {1, 2, . . . , 2t+1}−{i}}.

Similarly Zi is a random variable that is independent of Γi|2t+1
i=1 ,Θi|2t+1

i=1 , Yi|2t+1
i=1 , {Zj : j ∈ {1, 2, . . . , 2t+1}−

{i}}. Note that this independence property is achieved via dithered lattice quantizers as in Section 6. Node i
is assumed to output Γ̂iΘ̂i perfectly. Similarly to the reasoning in Section 6, we get E[Y 2

i ],E[Z2
i ] = Ω(2−2M ),

where M is the number of bits of precision at each node. We assume that the decoder obtains:

Ĉ =

2t+1∑
i=1

diΓ̂iΘ̂i

where co-efficients di are as in (1.80). We show next that choosing M(δ) = K log
(
1
δ

)
for any K > 0.5 suffices

to ensure that E[(AB − Ĉ)2] ≤ δ for sufficiently small delta.

E[(AB − Ĉ)2]

= E[(AB −
2t+1∑
i=1

diΓ̂iΘ̂i)
2]

= E[(AB −
2t+1∑
i=1

di(Γi + Yi)(Θi + Zi))
2]

= E[(AB −
2t+1∑
i=1

diΓiΘi)
2] + Θ(2−2M(δ))

= 0 + Θ(2−2M(δ))

Clearly, if M(δ) = K log
(
1
δ

)
for any K > 0.5, we have, for sufficiently small δ, E[(AB− Ĉ)2] ≤ δ as required.
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