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Abstract—The relay channel with unreliable helper is intro-
duced an studied. The model is that of a classical relay channel
where the input from the relay to the channel has an extra
primitive link whose presence is not assured a priori. The extra
link represents a helper who may decide not to cooperate in
transmission. The goal is to devise robust coding schemes that
exploit all the relay links when they are present, but can also
operate, possibly at reduced rates, when the extra primitive link
(helper) is absent. The capacity region of this class of problems
is defined, and fully characterized for degraded relay channels.
The degraded Gaussian relay channel with unreliable relay link
is solved.

Index Terms—Conference links, degraded relay channels,
helper, relay channels, unreliable links, unreliable relay

I. INTRODUCTION

The relay channel (RC), introduced by van der Meulen [1],

is one of the cornerstones of network information theory. In its

basic form, it is the simplest (and first) model that describes

cooperation between receivers in a communication system,

involving a main transmitter, main receiver, and a relay node

(transmitter+receiver). The relay does not have messages of its

own to send or decode. Its only task is to help the main receiver

to decode the messages intended to him, by transmitting a

signal that is based on the output it receives, in a strictly causal

manner. A multi-letter characterization of the RC capacity was

derived in [1]. Cover and El Gamal in [2] derived bounds

on the RC capacity, and characterized it for the degraded

and reversely degraded models. A comprehensive overview

of models and results on the RC can be found in [3].

Cooperation between users as means to enhance perfor-

mance of communication networks has been a subject of

intensive research in the last decades. The literature on these

topics is vast, thus only a brief overview is presented here, to

put things in context. Willems introduced in [4] the multiple

access channel (MAC) with partially cooperating encoders

and derived its capacity region. The cooperation takes place

over limited capacity links, that are independent of the main

channel. Such links are often termed as conference links.

In [5] Willems and van der Meulen suggested the model of

MAC with cribbing encoders, and derived its capacity region

for all forms of cribbing. Dabora and Servetto [6] studied

the broadcast channel (BC) with cooperating decoders, and

characterized its capacity for degraded BC. The decoders
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cooperate via limited capacity links that are independent of

the main BC, as in Willem’s model [4]. Independently, Liang

and Veeravalli [7], [8] introduced the Relay Broadcast Channel

(RBC), where the decoders serve as relays for each other. This

can be viewed also as an extension of the basic RC of [1] to

the BC, with various types of relays: cooperative relaying of

one or two users, and dedicated relays. In particular, the results

in [6] can be obtained as special cases of the RBC with one

sided primitive relay.

The coding schemes developed in these works depend on

the existence of the corresponding cooperation resources -

independent links, relays, sideway channels and more, that

sometimes are used also for network management and are

not secured for cooperation only. In modern ad hoc wireless

communication networks, these resources can be fortuitous

users, possibly from a neighboring network, who may or may

not agree to serve as helpers in the system. Therefore their

availability is not guaranteed a priori, even in cases where the

statistics of the main channel is perfectly known. Moreover, in

certain situations the users in the system cannot be informed

whether or not the helpers are available, and whether they par-

ticipate in transmission. Hence there is a need to devise robust

coding schemes, that can exploit the cooperation resources

when they are available, but can still operate, possibly at

reduced rates, when they are absent. The physically degraded

BC with unreliable cooperation links was introduced in [9],

and its capacity region fully characterized. The MAC with

unreliable cribbing encoders was also suggested in [9], and

bounds were derived on its capacity region. The works [10]–

[12] further develop and sharpen the results of [9].

The purpose of this paper is to extend these ideas to the

relay channel. We introduce a relay channel as in [1] and [2],

but with an additional primitive link - representing the helper

- whose signal is not guaranteed to arrive to the decoder. Its

(operational) capacity region is defined as the set of all rate

pairs that are achievable with one coding scheme, where the

encoder and relay do not know a priori whether the helper is

active. The capacity region of this channel is characterized for

the degraded RC, and the Gaussian example is solved.

The problem studied here is related to the dedicated Relay

Broadcast Channel (dedicated RBC) introduced and studied

in [8], and some of the channels in [13], [14]. Note that the

model solved in [8, Thm. 40] refers to a broadcast channel

where one user is degraded with respect to the relay, and the

other is reversely degraded, hence it differs considerably from

our problem.
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Fig. 1. The relay channel P̃ , composed of the channel P and a helper,
modeled as an additional channel P (y2|x2) of capacity C1. The helper
channel P (y2|x2) and the main RC P (y, y1|x, x1) are decoupled.

II. PROBLEM FORMULATION

A discrete memoryless relay channel is a quintuple

{X ,X1, P (y, y1|x, x1),Y1,Y}, where X , X1, Y1 and Y are

the alphabets of the channel input, relay input, relay output,

and channel output respectively. All alphabets are assumed

finite. In the sequel we refer to the RC as P (y, y1|x, x1) or

just P , when the model is understood from the context. An

RC is said to be degraded if we can write

P (y, y1|x, x1) = P (y|x1, y1)P (y1|x, x1). (1)

The capacity of the degraded RC is given by ( [2], [3]):

C = max
p(x,x1)

min{I(X,X1;Y ), I(X ;Y1|X1)}. (2)

An RC P with a C1 helper is a channel P̃ defined as

P̃ (y, y1, y2|x, x1, x2) = P (y, y1|x, x1)P (y2|x2), (3)

where P (y2|x2) is a memoryless channel with capacity C1,

from the relay to the receiver, decoupled from the RC P .

Its input and output alphabets are denoted by X2 and Y2,

respectively. The RC P̃ , depicted in Fig. 1, has an extended

relay input X̃1 = (X1, X2) and an extended channel output

Ỹ = (Y, Y2). It is easy to verify that if P (y, y1|x, x1) is a

degraded RC, so is P̃ . The terms that appear in (2)

I(X ;Y1|X̃1) = I(X ;Y1|X1, X2) (4a)

I(X, X̃1; Ỹ ) = I(X,X1, X2;Y, Y2), (4b)

are both maximized when X2 is capacity achieving for the

channel P (y2|x2) and independent of (X,X1, Y, Y1). By (2)

and (4), the capacity C̃ of P̃ is given by

C̃ = max
p(x,x1)

min{I(X,X1;Y ) + C1, I(X ;Y1|X1)}. (5)

Hence, C̃ depends on the channel p(y2|x2) only via its

capacity C1. This has been observed before for the primitive

relay channel (see e.g. [3, Sec. 16.7.3]). It is demonstrated here

for the case where there is also a classical relay in P̃ . Therefore

the helper can be viewed as a memoryless channel p(y2|x2) or,

equivalently, an additional primitive link of capacity C1. It is

understood that the relay sends encoded messages via the input

X2. The helper receives these messages and forwards them to

the destination via Y2. Thus the helper acts as a primitive link,

where the burden of coding is put solely on the relay.

Assume now that the helper is not reliable. That is, the

encoder and relay do not know what is the actual channel -
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Fig. 2. The relay channel with unreliable helper. The message m is always
decoded. The message m′ is decoded only if the signal Y2 arrives to the
decoder.

they only know that it is either P or P̃ . We proceed to describe

the workings of a code for this scenario. Fix a transmission

length n, and integers ν, ν′. Define two sets of messages

N = [1 : ν] and N ′ = [1 : ν′]. Messages m ∈ N are

always decoded at the destination, whether or not the helper

is active. To decode the messages m′ ∈ N , the decoder needs

the signal Y2, coming from the helper. The encoder maps the

pair (m,m′) to the codeword x(m,m′) and sends it via the

channel. Based on the signal y1 he receives, the relay sends

x1 and x2, in a strictly causal manner. At the destination, the

message m is always decoded, whereas m′ is decoded if y2 is

present. The model is depicted in Fig. 2. A formal definition

of a code for this setup is given next.

Definition 1: An (n, ν, ν′, ǫ) code for the RC P with

unreliable helper P (y2|x2) is an encoder

f : N ×N ′ → Xn

a causal relay encoder

g = (g1, g2 . . . gn) (6a)

where

gi : Yi−1
1 → X1,i ×X2,i, (6b)

and a pair of channel decoders

φ : Yn → N (7a)

φ′ : Yn × Yn
2 → N ×N ′ (7b)

such that

Pe =
1

νν′

∑

m,m′

P (Sm|f(m,m′), g(y1)) ≤ ǫ (8a)

Pe′ =
1

νν′

∑

m,m′

P (S′
m,m′ |f(m,m′), g(y1)) ≤ ǫ (8b)

where

Sm = {y : φ(y) 6= m} (8c)

S′
m,m′ = {(y,y2) : φ′(y,y2) 6= (m,m′)}. (8d)

The rates of the code are given by

R =
log ν

n
, R′ =

log ν′

n
.

A rate pair (R,R′) is said to be achievable if for any ǫ > 0 and

sufficiently large n there exists an (n, 2nR, 2nR
′

, ǫ) code for

P with unreliable helper P (y2|x2). The capacity region C of



the channel P with unreliable helper P (y2|x2) is the closure

of the set of achievable rates (R,R′).

Remark 1: By Definition 1, if all pairs (R,R′) satisfying

R < a (9a)

R′ < a′ (9b)

are achievable, then so are the pairs

R̃ < a (9c)

R̃+ R̃′ < a+ a′. (9d)

Indeed, note that the decoder φ′ in (7b) has access to Y n,

which consists of all the information that decoder φ has. Thus

we can ignore part of the bits that φ decodes, and attribute

them to φ′.

III. MAIN RESULT

Let R(C1) be the set of all pairs (R,R′) satisfying

R ≤ I(U,X1;Y ) (10a)

R+R′ ≤ min{I(X,X1;Y ) + C1, I(X ;Y1|X1),

I(U,X1;Y ) + I(X ;Y1|U,X1)} (10b)

for some P (u, x, x1) such that

U−◦ (X,X1)−◦ (Y, Y1). (10c)

Our main result is stated next.

Theorem 1: For any degraded relay channel P with unreli-

able helper P (y2|x2)

C = R(C1),

where C1 is the capacity of P (y2|x2), i.e.,

C1 = max
PX2

I(X2;Y2).

Moreover, to exhaust R(C1), it is enough to choose U with

alphabet size |U| ≤ |X ||X1|+ 2.

The proof of Theorem 1 is given in Section V.

Discussion: Let us examine extreme cases of Theorem 1.

1) C1 = 0. Observe that

max
P (u|x,x1)

I(U,X1;Y ) = I(X,X1;Y )

≤ max
P (u|x,x1)

I(U,X1;Y ) + I(X ;Y1|U,X1)

hence we can drop the bound on R in (10a) and the

term I(UX1;Y ) + I(X ;Y1|UX1) in (10b) and obtain

R+R′ ≤ max
P (x,x1)

min{I(X,X1;Y ), I(X ;Y1|X1)},

the capacity of the channel without helper. The form

of this bound reflects the fact that the bits that are

decodable without the helper can be arbitrarily allocated

between R and R′, decoded by φ and φ′, respectively.

2) R = 0, or don’t care. Here we try to maximize the rate

with the helper. We get for R′ the capacity of P̃ , eq. (5).

For details, see the discussion on U = X1 below.
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Fig. 3. The Gaussian degraded relay channel with unreliable helper.

3) R′ = 0. Here we aim at maximizing the rate when the

helper is absent, whether or not C1 > 0. In this case (10)

reduce to (2). The technical details are omitted.

We next examine extreme choices of U . For U = X we obtain

the capacity of P , the channel without helper. With U = X1

we have

R < I(X1;Y ) (11a)

R+R′ < min{I(X,X1;Y ) + C1, I(X ;Y1|X1)}. (11b)

Note that (11b) coincides with (5). Therefore, with a properly

designed coding scheme, we can guarantee that when the

helper is present we get the maximal rate C̃ (eq. (5)), but

can still decode nI(X1;Y ) bits when it is absent. Observe

that substituting a null random variable for U leads to the

same result.

IV. THE GAUSSIAN CASE

In this section we derive the capacity region of the Gaussian

degraded RC with unreliable helper. Adding input constraints

and passing to continuous alphabets can be done with the same

arguments used for the MAC, BC and relay channels in [3],

thus we omit these details here.

The channel model is given by

Y1 = X + Z (12a)

Y = Y1 +X1 + Z1 = X +X1 + Z + Z1 (12b)

where Z , Z1 are independent Gaussian noises

Z ∼ N(0, σ2
z), Z1 ∼ N(0, σ2

1) (12c)

and the transmitter and relay are subject to power constraints

IE(X2) ≤ P, IE(X2
1 ) ≤ P1. (12d)

The channel is depicted in Fig. 3. Let R(P, P1, C1) be the set

of all pairs (R,R′) satisfying

R ≤ C

(

αβP + P1 + 2
√
αPP1

αβP + σ2
z + σ2

1

)

(13a)

R+R′ ≤ min

{

C

(

P + P1 + 2
√
αPP1

σ2
z + σ2

1

)

+ C1, C

(

αP

σ2
z

)

,

C

(

αβP + P1 + 2
√
αPP1

αβP + σ2
z + σ2

1

)

+ C

(

αβP

σ2
z

)}

(13b)



Fig. 4. The capacity region of the Gaussian degraded relay channel with
unreliable helper, for P = P1 = σ2

z
= 1, σ2

1
= 10.

for some α, β ∈ [0, 1], where α = 1−α and C is the capacity

function:

C(x) =
1

2
log(1 + x).

Our main result for the Gaussian channel is given next

Theorem 2: The capacity region of the Gaussian degraded

relay channel with unreliable helper of capacity C1 is given

by

C(P, P1) = R(P, P1, C1).

The proof of Theorem 2 is given in Section VI. Fig. 4 depicts

the capacity region for a few values of the helper capacity C1.

V. PROOF OF THEOREM 1

A. Converse part of Theorem 1

We start with a sequence of (n, 2nR, 2nR
′

, ǫ̃n)n≥1 codes,

with limn→∞ ǫ̃n = 0. By Fano inequality

n(R− ǫn) ≤ I(m;Y n) =
n
∑

i=1

I(m;Yi|Y i−1)

≤
n
∑

i=1

I(m,Y i−1;Yi) ≤
n
∑

i=1

I(m,Y i−1, X1,i;Yi) (14)

where limn→∞ ǫn = 0. Applying Fano inequality on the sum

rate, we get

n(R+R′ − ǫn) ≤ I(m,m′;Y n, Y n
2 )

= I(m,m′;Y n) + I(m,m′;Y n
2 |Y n)

≤ I(m,m′;Y n) + I(m,m′, Xn
2 , Y

n;Y n
2 )

(a)
= I(m,m′;Y n) + I(Xn

2 ;Y
n
2 )

(b)

≤ I(m,m′;Y n) + nC1

=

n
∑

i=1

I(m,m′;Yi|Y i−1) + nC1

≤
n
∑

i=1

I(m,m′, Xi, X1,i;Yi|Y i−1) + nC1

≤
n
∑

i=1

I(m,m′, Xi, X1,i, Y
i−1;Yi) + nC1

=

n
∑

i=1

I(Xi, X1,i;Yi) + nC1, (15)

where (a) holds due to the Markov chain

(m,m′, Xn, Xn
1 , Y

n
1 , Y n)−◦ Xn

2 −◦ Y n
2

and (b) due to the definition of C1 in Theorem 1. Using

I(m′;Y nY n
2 |m) ≤ I(m′;Y nY n

1 |m) we also have

n(R+R′ + ǫn) ≤ I(m;Y n) + I(m′;Y n, Y n
1 |m). (16)

For the first term in (16) we have, following (14),

I(m;Y n) ≤
n
∑

i=1

I(m,Y i−1, X1,i;Yi), (17)

and for the second term in (16)

I(m′;Y n, Y n
1 |m) =

n
∑

i=1

I(m′;Yi, Y1,i|m,Y i−1, Y i−1
1 )

(c)
=

n
∑

i=1

I(m′, Xi;Yi, Y1,i|m,Y i−1, Y i−1
1 , X1,i)

≤
n
∑

i=1

I(m′, Xi, Y
i−1
1 ;Yi, Y1,i|m,Y i−1, X1,i)

=
n
∑

i=1

I(Xi;Yi, Y1,i|m,Y i−1, X1,i) (18)

where (c) holds since Xi is a function of (m,m′) and X1,i a

function of Y i−1
1 . The third bound on the sum rate:

n(R+R′ − ǫn) ≤ (m,m′;Y n, Y n
1 )

=

n
∑

i=1

I(m,m′;Yi, Y1,i|Y i−1, Y i−1
1 )

(d)
=

n
∑

i=1

I(m,m′;Yi, Y1,i|Y i−1, Y i−1
1 , X1,i)

≤
n
∑

i=1

I(m,m′, Y i−1, Y i−1
1 ;Yi, Y1,i|X1,i)

=

n
∑

i=1

I(m,m′, Y i−1, Y i−1
1 , Xi;Yi, Y1,i|X1,i)

=

n
∑

i=1

I(Xi;Yi, Y1,i|X1,i) (19)

where (d) holds since X1,i is a function of Y i−1
1 . Define

Ui = (m,Y i−1). (20)



Collecting (14)-(19), we have

R− ǫn ≤ 1

n

n
∑

i=1

I(Ui, X1,i;Yi) (21a)

R+R′ − ǫn ≤ 1

n

n
∑

i=1

I(Xi, X1,i;Yi) + C1 (21b)

R+R′ − ǫn ≤ 1

n

n
∑

i=1

I(Ui, X1,i;Yi)

+
1

n

n
∑

i=1

I(Xi;Yi, Y1,i|Ui, X1,i) (21c)

R+R′ − ǫn ≤ 1

n

n
∑

i=1

I(Xi;Yi, Y1,i|X1,i). (21d)

Apply now the standard steps - introduce a time sharing

random variable Q, uniformly distributed on [1 : n]. The

bounds (21) become

R− ǫn ≤ I(UQ, XQ;YQ|Q) (22a)

R+R′ − ǫn ≤ I(XQX1,Q;YQ|Q) + C1 (22b)

R+R′ − ǫn ≤ I(UQX1,Q;YQ|Q)

+ I(XQ;YQY1,Q|UQX1,QQ) (22c)

R+R′ − ǫn ≤ I(XQ;YQY1,Q|X1,QQ). (22d)

Define the random variables

Ũ = UQ, U = (Ũ , Q), X = XQ, X1 = X1,Q

Y = YQ, Y1 = Y1,Q, (23)

observe that the conditional distribution of (Y, Y1) given

(X,X1) is our original channel, and that the following in-

equalities hold

I(Ũ ,X1;Y |Q) ≤ I(Ũ , Q,X1;Y )

= I(U,X1;Y ) (24a)

I(X,X1;Y |Q) ≤ I(X,X1;Y ) (24b)

I(X ;Y, Y1|X1, Q) ≤ I(X,Q;Y, Y1|X1)

= I(X ;Y, Y1|X1). (24c)

Using (23) and (24) in (22) we obtain

R− ǫn ≤ I(U,X1;Y ) (25a)

R+R′ − ǫn ≤ min{I(X,X1;Y ) + C1, I(X ;Y, Y1|X1),

I(U,X1;Y ) + I(X ;Y, Y1|U,X1)}. (25b)

The Markov chain (10c) holds by the channel definition. We

proceed next to bound the alphabet size of U . Let

L = |X ||X1|+ 1 (26)

and define the L functions

PXX1|U (x, x1|u) L− 2 functions (27)

H(Y |X1, U = u)

H(Y1|X1, U = u)

By the Support Lemma [3, Appendix C], [15, Lemma 3.3.4],

there exists a random variable U ′ with alphabet

|U ′| ≤ L (28)

such that PXX1
is preserved, and

I(U ′, X1;Y ) = I(U,X1;Y ) (29a)

I(X ;Y, Y1|U ′, X1) = I(X ;Y, Y1|U,X1). (29b)

Due to (28), the r.h.s. of (25) does not depend on n, and we

can take the limit n → ∞, thus obtaining

R ≤ I(U,X1;Y ) (30a)

R+R′ ≤ min{I(X,X1;Y ) + C1, I(X ;Y, Y1|X1),

I(U,X1;Y ) + I(X ;Y, Y1|U,X1)}. (30b)

Note that thus far we have not used the assumption that the

RC P is degraded, so (30) forms an outer bound for any RC

with unreliable helper. By (1) and (10c) we have

I(X ;Y, Y1|X1) = I(X ;Y1|X1) (31)

I(X ;Y, Y1|U,X1) = I(X ;Y1|U,X1), (32)

concluding the proof of the converse.

B. Direct part of Theorem 1

The proof of the direct part in based on random coding and

δ-typicality decoding. We use the definitions, notation and δ-

convention of [15]. To save space, the definitions are omitted.

In the sequel, block-Markov coding and binning are employed,

where bins of m are sent via X1, and bins of the extra message

m′ are sent via the helper input X2. Since the helper is not

guaranteed to deliver the bin number, superposition coding is

used at the encoder, where the cloud center is always decoded

at the destination, and the satellite message is decoded only if

the helper does send the bin number. Note that superposition

coding is employed only at the encoder, whereas the relay has

one layer of codewords.

1) Code construction: Pick a joint distribution P (u, x, x1).
Fix the rates R, R′, two real numbers R2 < R, R′

2 < R′,

and choose a large integer B. We construct B codebooks Cb,

b ∈ [1 : B], each of length n. Each codebook Cb is generated

randomly, independently of the other codebooks, as follows.

• Generate 2nR2 n-length codewords x
(b)
1 (l), l ∈ [1 :

2nR2 ], iid according to P (x1).
• For each l ∈ [1 : 2nR2 ], generate 2nR n-length codewords

u
(b)(m|l), m ∈ [1 : 2nR], independently according to

∏n

i=1 P (ui|x(b)
1,i(l)).

• For each pair x
(b)
1 (l), u(b)(m|l), l ∈ [1 : 2nR2 ], m ∈ [1 :

2nR], generate 2nR
′

n-length codewords x
(b)(m′|m, l),

m′ ∈ [1 : 2nR
′

] independently, according to

n
∏

i=1

P (xi|u(b)
i (m|l), x(b)

1,i(l)).

The code Cb is the collection
{

x
(b)
1 (l),u(b)(m|l),x(b)(m′|m, l),



l ∈ [1 : 2nR2 ], m ∈ [1 : 2nR], m′ ∈ [1, 2nR
′

]
}

. (33)

Partition the set of messages m ∈ [1 : 2nR] into 2nR2 bins,

where bin l contains messages

m ∈
[

(l − 1)2n(R−R2) + 1 : l2n(R−R2)
]

. (34)

Similarly, partition the set of messages m′ ∈ [1 : 2nR
′

] into

2nR
′

2 bins, where bin l′ contains messages

m′ ∈
[

(l′ − 1)2n(R
′−R′

2
) + 1 : l′2n(R

′−R′

2
)
]

. (35)

Reveal the codebooks Cb and the partitions to the encoder,

relay, and decoder.

Before transmission begins, the sender chooses indepen-

dently 2(B−1) messages m1,m2 . . . ,mB−1, mb ∈ [1 : 2nR],
and m′

1,m
′
2 . . . ,m

′
B−1, m′

b ∈ [1 : 2nR
′

]. Set m0 = m′
0 =

mB = m′
B = 1. Denote by lb (resp. l′b) the bin in which mb

(res. m′
b) resides. The coding technique involves detection of

the messages by the relay. Thus for m̂b (resp. m̂′
b) detected by

the relay, we denote by l̂b (resp. l̂′b) the bin number in which

the estimate m̂b (resp. m̂′
b) resides. Finally, y(b) and y

(b)
1 stand

for the n-length vectors received at the destination and relay

during block b, respectively.
2) Coding: We describe the operations of the main encoder

and relay. The notation in the tables below follows [3].

Encoder: In block b, the encoder sends x
(b)(m′

b|mb, lb−1).
Relay: When transmission starts (b = 1), the relay encoder

sends x
(1)
1 (l0). At the beginning of block b (b ≥ 2), the relay

looks for m̂b−1, m̂
′
b−1 such that

(

x
(b−1)(m̂′

b−1|m̂b−1, l̂b−2),y
(b−1)
1

)

∈ TX,Y1|X1
(x

(b−1)
1 (l̂b−2)) (36)

where l̂b−2 is the number of bin in which m̂b−2 resides. Note

that l0 is known since m0 is fixed a priori. Table I lists the

decoding error events and the resulting rate constraints, under

the assumption that decoding of mb−2 was correct (hence the

conditioning on X1 in the joint PMFs).

TABLE I
DECODING ERROR EVENTS AT THE RELAY

(m̂, m̂′) Joint PMF Rate constraint

(1,e) PU|X1
PX|UX1

PY1|UX1
R′ < I(X ;Y1|UX1)

(e,1) PX|X1
PY1|X1

R < I(X ;Y1|X1)
(e,e) PX|X1

PY1|X1
R+R′ < I(X ;Y1|X1)

Therefore for the relay decoding to succeed, we need

R′ < I(X ;Y1|U,X1) (37a)

R+R′ < I(X ;Y1|X1). (37b)

During block b, the relay sends x
(b)
1 (l̂b−1) via the channel,

and the bin number l̂′b−1 via the helper link of capacity C1.

For this we need

R′
2 < C1. (38)

3) Decoding at the destination: We distinguish between the

case where the signal Y2 is present (i.e., the helper is active),

and the case where it is absent.

Helper absent: At the end of block b, the decoder looks for
ˆ̂
lb−1 such that

(

x
(b)
1 (

ˆ̂
lb−1),y

(b)
)

∈ TX1,Y . (39)

For this step to succeed, we need

R2 < I(X1;Y ). (40)

Then he looks in bin
ˆ̂
lb−1 for a message ˆ̂mb−1 such that

(

u
(b−1)( ˆ̂mb−1|ˆ̂lb−2),y

)

∈ TUY |X1

(

x
(b−1)
1 (

ˆ̂
lb−2)

)

(41)

which requires

R−R2 < I(U ;Y |X1). (42)

Collecting (40) and (42) we obtain the rate bound

R < I(U ;Y |X1) + I(X1;Y ) = I(U,X1;Y ). (43)

Helper present: At the end of block b, the decoder performs

joint decoding of (mb−1,m
′
b−1). He first decodes

ˆ̂
lb−1 as

in the case where the helper is absent, resulting in the rate

constraint (40). He then looks in bin
ˆ̂
lb−1 and bin l′b−1 (which

was sent by the relay via the helper) for a pair ( ˆ̂mb−1, ˆ̂m
′

b−1)
such that

(

u
(b−1)( ˆ̂mb−1|ˆ̂lb−2),x

(b−1)( ˆ̂m
′

b−1| ˆ̂mb−1,
ˆ̂
lb−2),y

(b−1)
)

∈ TUXY |X1
(x

(b−1)
1 (

ˆ̂
lb−2)). (44)

Table II lists the decoding error events at the destination,

and the resulting rate constraints, under the assumption that

decoding of mb−2 and lb−1 were correct. Table III summarizes

TABLE II
DECODING ERROR EVENTS AT THE DESTINATION

( ˆ̂m, ˆ̂m
′
) Joint PMF Rate constraint

(1,e) PX|UX1
PY |UX1

R′ − C1

< I(X ;Y |UX1)

(e,1) PUX|X1
PY |X1

R−R2

< I(UX ;Y |X1)

(e,e) PUX|X1
PY |X1

R−R2 +R′ − C1

< I(UX ;Y |X1)

the transmission and decoding steps of our scheme, for the

encoder, relay, and destination.

Using (40) in the rate constraints of Table II, we obtain

R′ < I(X ;Y |U,X1) + C1 (45a)

R < I(U,X ;Y |X1) +R2

< I(U,X ;Y |X1) + I(X ;Y )

= I(X,X1;Y ) (45b)

R +R′ < I(U,X ;Y |X1) +R2 + C1



TABLE III
TRANSMISSION AND DECODING TABLE FOR THE RELAY CHANNEL WITH UNRELIABLE HELPER

b 1 2 3 . . . B

X x
(1)(m′

1|m1, l0) x
(2)(m′

2|m2, l1) x
(3)(m′

3|m3, l2) · · · x
(B)(1|1, lB−1)

Relay dec.

at block end
m̂1, m̂

′
1 m̂2, m̂

′
2 m̂3, m̂

′
3

X1 x
(1)
1 (l0) x

(2)
1 (l̂1) x

(3)
1 (l̂2) · · · x

(B)
1 (l̂B−1)

Helper − l̂′1 l̂′2 · · · l̂′B−1

Y dec.

at block end

if helper absent

− ˆ̂m1
ˆ̂m2 · · · ˆ̂mB−1

Y dec.

at block end

if helper present

− ˆ̂m1, ˆ̂m
′

1
ˆ̂m2, ˆ̂m

′

2 · · · ˆ̂mB−1, ˆ̂m
′

B−1

< I(X,X1;Y ) + C1. (45c)

We collect now the rate constraints imposed by the relay (37)

and the main decoder (eq. (43) when the helper is absent,

and (45) when it is present). Note that (43) dominates (45b),

hence

R < I(U,X1;Y ) (46a)

R′ < min{I(X ;Y |UX1) + C1, I(X ;Y1|UX1)}(46b)

R+R′ < min{I(X,X1;Y ) + C1, I(X ;Y1|X1)}. (46c)

Due to Remark 1, we can replace (46b) by the sum of (46a)

and (46b), resulting in (10a), (10b). This completes the proof

of the direct part.

VI. PROOF OF THEOREM 2

We have to evaluate the region (10), under the input

constraints

IE(X2) ≤ P, IE(X2
1 ) ≤ P1. (47)

A. Direct Part

Let X1, U and V be independent Gaussian RVs with

X1 ∼ N(0, P1) (48a)

U ∼ N(0, αβP ) (48b)

V ∼ N(0, αβP ) (48c)

and define X as

X =

√

α
P

P1
X1 + U + V. (48d)

The pair (X,X1) is independent of (Z,Z1), and

X +X1 ∼ N(0, P + P1 + 2
√

αP/P1). (49)

Therefore

h(Y ) = h(X +X1 + Z + Z1) (50)

=
1

2
log

[

2πe
(

P + P1 + 2
√

αPP1 + σ2
z + σ2

1

)]

.

Similarly, differential entropies comprising the region (10)

satisfy

h(Y |U,X1) (51)

= h(X +X1 + Z + Z1|UX1)

= h
((

1 +
√

αP/P1

)

X1 + U + V + Z + Z1|UX1

)

= h(V + Z + Z1) =
1

2
log

[

2πe
(

αβP + σ2
z + σ2

1

)]

,

h(Y |XX1) = h((X +X1 + Z + Z1|XX1) (52)

= h(Z + Z1) =
1

2
log[2πe(σ2

z + σ2
1)]

h(Y1|X1) = h(X + Z|X1) = h(U + V + Z)

=
1

2
log[2πe(αP + σ2

z)] (53)

h(Y1|XX1) =
1

2
log(2πeσ2

z) (54)

h(Y1|UX1) = h
(

√

αP/P1X1 + U + V + Z|U,X1

)

= h(V + Z) =
1

2
log[2πe(αβP + σ2

z)] (55)

h(Y1|UXX1) = h(Z) =
1

2
log(2πeσ2

z). (56)

Hence

I(UX1;Y ) =
1

2
log

(

P + P1 + 2
√
αPP1 + σ2

z + σ2
1

αβP + σ2
z + σ2

1

)

= C

(

αβP + P1 + 2
√
αPP1

αβP + σ2
z + σ2

1

)

(57)



I(XX1;Y ) = C

(

P + P1 + 2
√
αPP1

σ2
z + σ2

1

)

(58)

I(X ;Y1|X1) = C

(

αP

σ2
z

)

(59)

I(X ;Y1|UX1) = C

(

αβP

σ2
z

)

(60)

where (57) is due to (50) and (51), (58) due to (50) and (52),

(59) holds by (53) and (54), and (60) by (55) and (56).

Substituting (57)-(60) in (10) yields the achievability result.

B. Converse Part

The proof of the converse makes use of basic linear esti-

mation arguments, and the conditional version of the entropy

power inequality (EPI). This mix is attributed to the structure

of the problem: we have a classical relay part, and a superpo-

sition part due to the uncertainty of the helper. Accordingly,

the terms in (10) that do not contain the cloud center U can

be upper bounded using arguments similar to those in [2, Sec.

IV]. The terms in (10) that contain U are bounded using the

conditional EPI, as usually done in the proof of the converse

for the Gaussian broadcast channel [3, Sec. 5.5]. The details

are given here for completeness.

Let U,X,X1 be zero mean RVs, with arbitrary joint distri-

bution, independent of Z,Z1. Define the parameter α as

α = 1− ρ2,

here ρ is the correlation coefficient

ρ =
IE(XX1)√

PP1

.

By Cauchy-Shwartz inequality, 0 ≤ α ≤ 1. In the sequel we

will make use of the following elementary inequalities

Var(X +X1) = IE
[

(X +X1)
2
]

= P + P1 + 2ρ
√

PP1

≤ P + P1 + 2
√

αPP1. (61a)

Define

Var[X |X1]
∆
= IE

[

(X − IE(X |X1))
2|X1

]

,

then

IEVar(X |X1) = IE
[

(X − IE(X |X1))
2
]

≤ (1− ρ2)P = αP. (61b)

The inequality in (61b) is true because the l.h.s is the MMSE

in estimating X given X1, and the r.h.s is the mean square

error of the optimal linear estimator [16]. By properties of the

differential entropy

h(Y ) = h(X +X1 + Z + Z1)

≤ 1

2
log[2πeVar(X +X1 + Z + Z1)]

=
1

2
log

[

2πe
(

Var(X +X1) + σ2
z + σ2

1

)]

(a)

≤ 1

2
log

[

2πe
(

P + P1 + 2
√

αPP1 + σ2
z + σ2

1

)]

,

(62)

h(Y |XX1) = h(X +X1 + Z + Z1|XX1) = h(Z + Z1)

=
1

2
log[2πe(σ2

z + σ2
1)], (63)

h(Y1|X1) = h(X + Z|X1)

≤ 1

2
IE log[2πeVar(X + Z|X1)]

=
1

2
IE log

[

2πe
(

Var(X |X1) + σ2
z

)]

(b)

≤ 1

2
log

[

2πe
(

IEVar(X |X1) + σ2
z

)]

(c)

≤ 1

2
log

[

2πe
(

αP + σ2
z

)]

, (64)

h(Y1|XX1) = h(X + Z|XX1) = h(Z) =
1

2
log(2πeσ2

z),(65)

where in (a) we used (61a), in (b) the concavity of the log
function and in (c) the inequality (61b). By (62) and (63)

I(XX1;Y ) ≤ C

(

P + P1 + 2
√
αPP1

σ2
z + σ2

1

)

(66)

and by (64) and (65)

I(X ;Y1|X1) ≤ C

(

αP

σ2
z

)

. (67)

We proceed to the terms in (10) that contain U

h(Y |UX1) = h(X +X1 + Z + Z1|UX1)

≤ h(X +X1 + Z + Z1|X1)

= h(X + Z + Z1|X1)

≤ 1

2
IE log[2πeVar(X + Z + Z1|X1)]

=
1

2
IE log

[

2πe
(

Var(X |X1) + σ2
z + σ2

1

)]

(d)

≤ 1

2
log

[

2πe
(

αP + σ2
z + σ2

1

)]

(68)

where inequality (d) holds following (b) and (c) in (64). On

the other hand

h(Y |UX1) ≥ h(Y |UXX1)
(e)
= h(Y |XX1)

=
1

2
log[2πe(σ2

z + σ2
1)] (69)

we used the Markov chain U−◦ (X,X1)−◦ (Y, Y1) in (e), and

the last equality follows (63). In view of (68) and (69), we

must have

h(Y |UX1) =
1

2
log

[

2πe
(

βαP + σ2
z + σ2

1

)]

(70)

for some β ∈ [0, 1]. Using (70) and (62) we obtain the bound

I(UX1;Y ) ≤ 1

2
log

(

P + P1 + 2
√
αPP1 + σ2

z + σ2
1

βαP + σ2
z + σ2

1

)

= C

(

βαP + P1 + 2
√
αPP1

βαP + σ2
z + σ2

1

)

. (71)

It remains to bound I(X ;Y1|UX1). Note that

h(Y |UX1) = h(Y1 +X1 + Z1|UX1)



= h(Y1 + Z1|UX1), (72)

where Y1 and Z1 are conditionally independent given (U,X1).
Hence by the conditional EPI [3, Sec. 2.2]

22h(Y |UX1) = 22h(Y1+Z1|UX1)

≥ 22h(Y1|UX1) + 22h(Z1|UX1)

= 22h(Y1|UX1) + 2πeσ2
1 . (73)

Substituting (70) in (73) we get

h(Y1|UX1) ≤
1

2
log

[

2πe(βαP + σ2
z)
]

. (74)

In addition

h(Y1|UXX1) = h(Y1|XX1) = h(Z)

=
1

2
log

(

2πeσ2
z

)

, (75)

which, with (74) imply

I(X ;Y1|UX1) ≤ C

(

βαP

σ2
z

)

. (76)

Substituting (66), (67), (71) and (76) in (10), we conclude the

converse result.
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