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Abstract—Polynomial based approaches, such as the Mat-Dot
and entangled polynomial codes (EPC) have been used extensively
within coded matrix computations to obtain schemes with good
recovery thresholds. However, these schemes are well-recognized
to suffer from poor numerical stability in decoding. Moreover,
the encoding process in these schemes involves linearly combining
a large number of input submatrices, i.e., the encoding weight is
high. For the practically relevant case of sparse input matrices,
this can have the undesirable effect of significantly increasing
the worker node computation time. In this work, we propose
a generalization of the EPC scheme by combining the idea of
gradient coding along with the basic EPC encoding. Our tech-
nique allows us to reduce the weight of the encoding and arrive
at schemes that exhibit much better numerical stability; this is
achieved at the expense of a worse threshold. By appropriately
setting parameters in our scheme, we recover several well-known
schemes in the literature. Simulation results show that our scheme
provides excellent numerical stability and fast computation speed
(for sparse input matrices) as compared to EPC and Mat-Dot
codes.

I. INTRODUCTION

Large scale matrix computations are at the heart of various

machine learning and optimization problems. In many of these

problems, the size of the underlying matrices requires the us-

age of distributed computing, where the overall job is divided

into smaller tasks that can be executed in parallel over multiple

workers. However, straightforward task assignments can result

in situations where the job execution time is limited by the

speed of the slowest worker. This is especially problematic in

cloud computing scenarios where workers are well-recognized

to exhibit appreciable variance in computing speeds [1].

Background: The field of coded matrix computation [2]–

[6] aims at leveraging ideas from coding theory to improve the

overall job execution time within distributed clusters. Given

matrices A ∈ Rβ×α and B ∈ Rβ×γ , suppose that we

are interested in computing ATB. In coded computation, a

designated central node performs a block decomposition of

A and B and assigns encoded submatrices of them to the

worker nodes. The task of the worker nodes is now to compute

the product of these encoded matrices. For carefully designed

schemes, it can be shown that the desired result can be decoded
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as long as any τ worker nodes return their results. Thus, the

job execution time is not dominated by slow workers. τ is

known as the threshold of the scheme.

More recently, it has been recognized [7]–[14] that there

are other metrics that are also of interest within coded ma-

trix computation. The work of [7], [9], [10], [15], [16] has

demonstrated that several of the original polynomial-based

schemes suffer from the problem of numerical instability (i.e.,

computation error caused by distributing the computation).

In particular, the decoded result in these schemes can be

essentially useless even for clusters with thirty nodes or more.

Furthermore, in several settings, the input matrices A and B

are sparse. Note that the encoding process typically combines

a number of different submatrices of A (and B); we refer

to this as the encoding weight of the scheme. This encoding

can significantly increase the number of non-zero entries in

the encoded matrices. This in turn will have the undesired

effect of increasing the worker node computation time [9],

[17], [18]. Thus, coded computation schemes that have small

encoding weights are of interest. Other metrics include how

well a given scheme leverages partial computations performed

by the worker nodes [9], [12], [15], [17].

Within coded computation, the central node first performs

a block-decomposition of AT and B as follows.

AT =






AT
0,0 · · · AT

p−1,0
...

. . .
...

AT
0,m−1 · · · AT

p−1,m−1




, and

B =






B0,0 · · · B0,n−1

...
. . .

...

Bp−1,0 · · · Bp−1,n−1




. (1)

Each worker node is allowed to store the equivalent of 1/pm-

fraction of A and 1/pn-fraction of B. The overall idea is to

encode the submatrices of A and B and assign the worker

nodes the task of computing the product of these encoded

submatrices, such that the central node can decode if enough

tasks are completed.

Related Work: In polynomial-based schemes [4], [19],

[20], the encoding functions are polynomial evaluation maps.

Upon multiplication of the encoded matrices, the desired terms

appear as coefficients of certain monomials and the other

coefficients are treated as interference. If enough worker nodes
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return their results, there are enough evaluation points so that

the polynomial can be interpolated and the desired terms and

hence ATB can be recovered.

In particular, the Mat-Dot code [19] applies in the setting

when m = n = 1 and arbitrary p and has recovery threshold

of 2p−1. The entangled polynomial code (EPC) [4] applies for

any m,n and p and has threshold of pmn+p−1. The decoding

process in both cases requires interpolating polynomials of

degree 2p− 2 and pmn+ p− 2 respectively. There have been

several works that have examined the case of p = 1.

The issue of numerical stability has been examined in

several works. For instance, [16] works within a different

basis set of polynomials. In [10], the authors presented a

technique that exploits the properties of rotation and circulant

permutation matrices for improved numerical stability and in

[9], [11], the authors used random linear combinations for

the encoding. Low weight encodings were considered in [9],

[17] that also demonstrated a scheme that continues to have

the optimal threshold. Finally, techniques that leverage partial

stragglers have also been investigated in several works [9],

[12], [15], [17]. We note here that for large values of p,m
and n, the numerical instability issue with the Mat-Dot and

EP code approaches is especially acute. In addition, as we

will see their encoding weights are also high, rendering them

unsuitable for sparse input matrices.

Main Contributions:

• In this work, we present a coded computation scheme

that allows us to trade-off the interpolation degree of

the reconstructed polynomial & encoding weight with

the recovery threshold for EP and Mat-Dot codes. By

operating on this tradeoff we can arrive at schemes that

are significantly more stable numerically and suitable for

sparse input matrices. Our schemes proceed by combining

the idea of gradient coding (GC) [21] and the structure

of the EP codes. We calculate the recovery threshold of

our scheme.

• We show that [4] and [22] can be viewed as two extremes

of the proposed scheme depending on the choice of pa-

rameters. Thus, our proposed scheme is a generalization

of these schemes.

• Extensive simulation results corroborate our theoretical

findings.

We point out that there is a related work that utilizes GC for

coded matrix computations in [22]. However, we note that this

paper is different from our paper since [22] focuses more on

designing numerically stable GC using binary coefficients and

does not analyze the recovery threshold. We discuss this in

more detail in Sections II-C and III.

Notation: For integers a, b, the notation a|b denotes that a
divides b. For a set of vectors V , span(V) denotes the span of

the vectors (i.e., set of all linear combinations of the vectors)

in V . If A is a set of integers then A mod ℓ denotes A with

all elements reduced modulo ℓ.

II. SPARSITY CONTROLLED DISTRIBUTED MATRIX

MULTIPLICATION WITH GENERAL MATRIX PARTITIONS

Definition 1: Gradient Coding matrix. Let H be a η × η
matrix, with its rows denoted hi, i = 0, . . . , η − 1. We say

that H is a gradient coding matrix with parameters η and κ if

it has the following properties.

(i) It has cyclically shifted rows and each row has κ + 1
non-zero entries. Let Ii = {i, i + 1, . . . , i + κ} mod η.

Row hi = [hi,0 hi,1 . . . hi,η−1] is such that hi,j 6= 0, if

and only if j ∈ Ii.
(ii) The all-ones row vector is contained in the span of any

η−κ rows of H, i.e., for J ⊂ {0, . . . , η− 1} with |J | =
η − κ we have,

11×η ∈ span({hi|i ∈ J}). (2)

A. Motivating example

Example 1: Suppose there are N = 4c (c ≥ 5) workers.

Henceforth, let γA and γB denote the storage fraction of

matrices A and B. We assume that each worker can store the

equivalent of γA = γB = 1/4 fractions of matrices A ∈ Cβ×α

and B ∈ Cβ×γ , respectively. The MatDot code [19] where AT

and B are decomposed into four block-columns is applicable

here (m = n = 1, p = 4) and is resilient to N−7 stragglers. In

this approach the encoded A and B submatrices involve linear

combinations of all the respective submatrices, and decoding

requires interpolating a polynomial of degree 6.

Now suppose that we are interested in a scheme where

weight of the encoding matrices (both A and B) is two. In this

case, a simple technique is to work with two independent Mat-

Dot schemes each with (m = n = 1, p′ = 2). We first partition

AT and B as AT = [AT
0 · · ·AT

3 ] and B = [B0 · · ·B3]
T .

Then, we divide the workers into 2c groups where each group

consists of two workers such that the w = 0, 1-th worker of

the group stores

ĀT (w, xi) =

1∑

l=0

xl
iA

T
2w+l and B̄(w, xi) =

1∑

l=0

x1−l
i B2w+l.

as illustrated in Fig. 1(a). The value of xi is fixed for a group. It

is not hard to see that the recovery threshold of above scheme

is 2c+3. Since the product of ĀT (w, xi) and B̄(w, xi) yields

a degree-2 polynomial, we can decode as long as we obtain

three evaluations of each of the two relevant polynomials

corresponding to w = 0, 1. Thus, we cannot decode when

we have all the results, e.g., of the polynomial for w = 0
from all of 2c groups and the result of the polynomial for

w = 1 from at most two groups. Thus, the recovery threshold

becomes 2c+ 3.

The situation differs when we are interested in schemes

where the encoding weight, e.g., is three. In this case, the en-

coding weight does not divide p = 4. Thus, a simple scheme as

the one discussed above cannot be found in a straightforward

manner. Instead, consider the following scheme. We partition

AT and B into 12 submatrices denoted
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(a) A simple scheme with two independent MatDot codes.

� � � �

� � � �

(b) A group Gi of the proposed scheme.

Fig. 1. Task assignment in Example 1. There are N = 4c workers for distributed matrix computation with storage size γA = γB = 1/4. In Fig. 1(b), each
worker has three encoded A and B assignments. Owing to space limitations, we use vertical dots to denote the missing encoded assignments.

AT =
[
AT

0 · · · AT
11

]
, and B =






B0

...

B11




.

Since the partitioned submatrices have 1/12-th the size of

matrices A and B, we can store three of them in each

worker while still respecting the storage constraint. Now,

consider a group of four workers Gi = {4i, · · · , 4i + 3} for

i = 0, . . . , c− 1, where the worker 4i+ w stores

ĀT (xi, p̃) =

2∑

l=0

xl
iA

T
3p̃+l (3)

for all p̃ ∈ Pp = {w, . . . , w + 2} mod 4 (note that the index

p̃ depends upon w) and

B̄(xi, p̃) =

2∑

l=0

x2−l
i B3p̃+l (4)

for all p̃ ∈ Pp. Here, xi is the same for all workers in the

group. Next, we choose a matrix H that satisfies (2) with the

parameters η = 4 and κ = 2 and assign each worker the task

of computing

Cw(xi)=

w+2∑

p̃=w

hw,p̃Ā
T (xi, p̃)B̄(xi, p̃) (5)

(a)
=

3∑

p̃′=0

hw,p̃′ĀT (xi, p̃
′)B̄(xi, p̃

′),

where hi,j is the i-th row and j-th column of the matrix H.

The summation indices in (5) are reduced modulo-4.

Here, (a) holds because of the zeros in the matrix H. When

we have at least five groups of workers (i.e., c ≥ 5), we can

prove that this scheme has recovery threshold = c+ 13.

Lemma 1: The recovery threshold of this scheme is c+13.

Proof: Our overall idea is to show that if the central

node can receive at least five evaluations from at least five

distinct groups, it can decode the desired result. Towards

this end, suppose that the central node receives results from

two workers in the group Gi. From Definition 1, there exists

gT = [g0, · · · , g3] such that it has non-zero entries only

corresponding to the two workers that return their results with

the property that gT h̃p̃ = 1 for columns h̃p̃ of H. Then, we

note that

3∑

w=0

gwCw(xi)

=

3∑

w=0

3∑

p̃=0

gwhw,p̃Ā
T (xi, p̃)B̄(xi, p̃)

=

3∑

p̃=0

gT h̃p̃Ā
T (xi, p̃)B̄(xi, p̃)

=

3∑

p̃=0

ĀT (xi, p̃)B̄(xi, p̃) (6)

=
3∑

p̃=0

2∑

l1=0

2∑

l2=0

xl1−l2+2
i AT

3p̃+l1
B3p̃+l2

= x2
i

11∑

l=0

AT
l Bl + interference terms (7)

Thus, we are able to obtain the useful term
∑11

l=0 A
T
l Bl as the

coefficient of x2
i in the above polynomial. Furthermore, note

that the interference term does not depend on which workers

returned their results since we are able to obtain (6) in the

decoding process. Since the equation (7) is a polynomial of

degree four, we need at least five different interpolation points

xi to obtain the useful term from the equation (7). Thus,

obtaining five evaluations from five groups suffices to decode.

To see that the recovery threshold is c + 13, we proceed

by contradiction. Note that, there are c groups, each of which

contains four nodes. It follows that we cannot decode when

there are at most four groups where all the nodes return their

results and all other groups are such that at most one node

returns its result. Thus, we can have at most 4× 4+(c− 4) =
c+ 12 nodes return their results in this case, i.e., decoding is

guaranteed when c+ 13 workers return their results.

B. General kA, kB and kp

We now consider the general case where each worker can

store the equivalent of γA = 1/kAkp and γB = 1/kBkp
fractions of matrices A and B, respectively. In this case,



the work of [4] considers kp × kA and kp × kB block-

decompositions of A and B respectively and proposes the

EPC scheme with recovery threshold kpkAkB + kp − 1. The

encoding weight of the A and B matrices is kAkp and kBkp
respectively.

Once again, in this case we are interested in schemes where

the encoding weights of the A and B is lower and the

degree of the polynomial that needs to be interpolated during

decoding is lower.

For our scheme, we consider the following scenario. Let

m and n be positive integers such that kA|m and kB|n. Our

scheme has another parameter ∆p ≤ kp that allows us to tune

the weight of the encoding. We set p = LCM(∆p, kp). As

we saw in the motivating example, if ∆p|kp, we will see that

a simple scheme that essentially divides the overall scheme

into
kp

∆p
EP codes applies. Thus, for the discussion below it is

instructive to consider the scenario where ∆p does not divide

kp.

The central node first partitions the matrices AT and B

into submatrices as shown in (1). We assume that there are

N = p
∆p

· c workers, i.e., there are c groups consisting of p
∆p

nodes each.

The storage constraints imply that we can store the equiva-

lent of pm
kpkA

encoded submatrices for AT and pn
kpkB

encoded

submatrices for B in each worker. Thus, we consider a worker

group of p
∆p

workers Gi = { p
∆p

i, · · · , p
∆p

(i + 1) − 1} for

i = 0, . . . , c− 1, where the p
∆p

i+ w-th worker stores

ĀT (xi, p̃, m̃) =

∆p−1
∑

l=0

kA−1∑

s=0

x
l+s∆p

i AT
∆pp̃+l,kAm̃+s,

for all p̃ ∈ {w, · · · , w + p
kp

− 1} mod p
∆p

and m̃ ∈ Pm =

{0, · · · , m
kA

− 1}, and

B̄(xi, p̃, ñ) =

∆p−1
∑

l=0

kB−1∑

u=0

x
∆p−1−l+u∆pkA

i B∆pp̃+l,kBñ+u,

for all p̃ ∈ {w, · · · , w + p
kp

− 1} mod p
∆p

and ñ ∈ Pn =

{0, · · · , n
kB

− 1}. Also, xi is the same for all workers in the

group.

Now, we choose a gradient coding matrix (cf. Definition 1)

H with parameters η = p
∆p

and κ = p
kp

− 1. Then, the w-th

worker in the i-th group computes

Cw(xi, m̃, ñ)=

w+ p
kp

−1
∑

p̃=w

hw,p̃Ā
T (xi, p̃, m̃)B̄(xi, p̃, ñ)

=

p
∆p

−1
∑

p̃=0

hw,p̃Ā
T (xi, p̃, m̃)B̄(xi, p̃, ñ)

for all m̃ ∈ Pm and ñ ∈ Pn. The summation indices are

reduced modulo p
∆p

in the expression above. The last step

above holds because of the properties of the gradient coding

matrix.

Define τGC−EPC as the recovery threshold of the proposed

scheme. The subscript GC-EPC refers to the fact that we

combine gradient coding and entangled polynomial coding in

this approach. The proof of the following theorem appears in

the Appendix.

Theorem 1: For a given parameter ∆p ≤ kp, we need at

least c ≥ kAkB∆p +∆p − 1 worker groups and the recovery

threshold of the scheme is

τGC−EPC=

(
p

∆p

−
p

kp

)

· c+
p

kp
· (kAkB∆p +∆p − 2)+1.

(8)

Remark 1: From the encoding scheme, we can clearly see

that overall polynomial to be interpolated is now of degree

kAkB∆p + ∆p − 2 as opposed to kAkBkp + kp − 2 for

the EP code. Thus numerical stability improves. Next, the

weight of the encoding of A and B matrices is kA∆p and

kB∆p as against kAkp and kAkp for the EP code, respectively.

Of course, these benefits trade-off with a worse recovery

threshold.

Example 2: Consider a scenario where kA = kB = 1 and

kp = 15. In this case, the EPC code has a threshold of 29 and

the encoding weight of both the A and B matrices is 15. We

note that interpolating a polynomial of degree 28 will already

result in significant numerical issues whereby the decoded

result will essentially be useless (see Section III).

For our scheme, suppose that we have N ≥ 5c workers and

that we set ∆p = 6. Then, we will choose p = LCM(6, 15) =
30. The corresponding threshold will be 3c + 21, and the

encoding weights for both the A and B matrices will be 6. We

note here that the decoder will only interpolate a polynomial

of degree 10 which is much smaller than the Mat-Dot code.

C. Discussions

A comparison of the various performance measures of the

proposed scheme and the EPC scheme is summarized in

Table I. The recovery threshold and the number of weights

of the proposed scheme and the EPC scheme with vari-

ous system parameters are discussed in Table II. In Table

II, wtepc,wtGC−EPC, and τepc, τGC−EPC denotes the encoding

weights for EPC scheme and the proposed scheme, and the

recovery threshold of the EPC scheme and the proposed

scheme respectively. From Table II, we can observe that the

threshold of the GC-EPC scheme is higher than the EPC

scheme when ∆p < kp. However, the encoding weights

are lower. Moreover, as discussed shortly in Section III, our

scheme is much more numerically stable.

We observe that our scheme reduces to other well-known

schemes for specific parameter regimes.

• If ∆p = p = kp, the proposed scheme is the same as

the EPC scheme [4] and the recovery threshold becomes

kpkAkB + kp − 1.

• If ∆p = 1, m = n = 1 and p = kp, the proposed

scheme equals to the scheme which just applies GC

to uncoded matrices (CMM-1 scheme in [22]) and the

recovery threshold becomes (p− 1)c+ 1.

• If ∆p = 1 and kp = p = 1, the proposed scheme equals

to the EPC scheme [4] for p = 1 (or CMM-3 scheme in

[22]). The recovery threshold becomes kAkB .



Entangled Polynomial code Proposed

Recovery threshold kAkBkp + kp − 1

(

p

∆p

−

p

kp

)

· c+
p

kp
· (kAkB∆p +∆p − 2)+1

Number of assignments per worker 1 pmn

kpkAkB

Computational cost per worker O
(

αγ

kAkB
· 2 β

kp

)

= O
(

2αβγ

kpkAkB

)

O
(

αγ

mn
· 2β

p
·

pmn

kpkAkB

)

= O
(

2αβγ

kpkAkB

)

Encoding weight of Ā (or B̄) kpkA (or kpkB) ∆pkA (or ∆pkB)

TABLE I
PERFORMANCE COMPARISON OF THE VARIOUS SCHEMES

N kA,kB
m,n

kp ∆p p τepc τGC−EPC wtepc wtGC−EPC

24 1 6 4 12 11 21 6 4
24 1 6 3 6 11 17 6 3
24 1 6 2 6 11 19 6 2
10 1 6 3 6 N/A 10 6 3
64 1 4 3 12 7 29 4 3
64 1 8 3 24 15 53 8 3
64 2 4 3 12 19 56 8 6

TABLE II
SIMPLE COMPARISON OF THE RECOVERY THRESHOLD AND NUMBER OF

WEIGHTS WITH THE VARIOUS SYSTEM PARAMETERS

Note that all the three schemes [4], [22], and our proposed

GC-EPC scheme have the same computational cost per worker.

III. SIMULATION RESULT

In this section, we evaluate and compare our proposed

schemes with benchmark schemes in terms of two different

performance measures.

• First, we measure numerical stability caused by dis-

tributing the computations. i.e., the computation error of

the reconstructed solution Ĉ normalized by the original

solution given by

‖Ĉ−ATB‖F
‖ATB‖F

.

• Second, we compare the average computation time (in

seconds), the computation time consumed until receiving

the computation results from τ⋆, ⋆ = epc or GC− EPC

number of worker nodes, of each scheme.

For a fair comparison, we consider two different schemes

for distributed matrix multiplication under the same storage

capacity γA = 1/kAkp for the matrix AT and γB = 1/kBkp
for the matrix B as follows.

• EPC scheme: The EPC scheme in [4], where the interpo-

lation points are spaced equidistant on the interval [−1, 1].
The matrices AT and B is partitioned into kA × kp
submatrices and kp × kB submatrices, respectively.

• Proposed scheme: The proposed scheme for general

kA, kB , and kp is illustrated in subsection II-B. Similar

to the EPC scheme, the interpolation points are randomly

generated with real values having equal distance between

[−1, 1].

For the simulation environment, we consider the input

matrices A and B having the size 5040× 5040. We consider

the storage parameter as kA = 1, kB = 1, where each

matrix has the 0.01 fraction of nonzero elements (i.e., sparsity

parameter ρ = 0.01), and kp = 14. The total number of

workers is given as N = 420.
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Fig. 2. A plot of the trade-off between computation error and recovery
threshold of the various schemes with respect to ∆p.

In Fig. 2, we compare the normalized computation errors

and recovery thresholds of various schemes with respect to

the sparsity controlling parameter ∆p. The blue bold lines

and the green dashed line represent the computation errors

and recovery thresholds, respectively. As we expected, we can

first observe that the EPC scheme is numerically unstable. On

the other hand, the proposed scheme can provide numerical

stability while still having straggler resilience. Also, we can

observe the tradeoff between the computation error and the

recovery threshold. i.e., the computation error of the proposed

scheme increases and the recovery threshold decreases as the

sparsity controlling parameter ∆p increases. Finally, we can

observe that the recovery threshold of the proposed scheme

meets the EPC scheme and GC scheme in extreme cases as

we discussed in subsection II-C.

In Fig. 3, we compare the average computation time of the

EPC scheme and the proposed scheme with respect to sparsity

controlling parameter ∆p. We can observe that the proposed

scheme is faster than the EPC scheme. This is because the

number of summation terms of Ā and B̄ is reduced in the

proposed scheme, so the sparsity of the encoded matrices for

the proposed scheme is preserved compared to that for the

EPC scheme. Since sparse matrix multiplication is faster than

dense matrix multiplication, we can observe that the proposed

scheme is faster than the EPC scheme.
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APPENDIX A

PROOF OF THEOREM 1

Proof: We show that if the central node can receive at

least p
∆p

− p
kp

+1 evaluations from at least kAkB∆p+∆p−1
groups, it can decode the desired result. Towards this end,

suppose that the central node receives results from p
∆p

− p
kp

+1
workers in the group Gi.

From Definition 1, there exists gT = [g0, · · · , g p
∆p

−1] such

that it has non-zero entries corresponding to the index of p
∆p

−
p
kp

+ 1 workers that return their results with the property that

gT h̃p̃ = 1 for columns h̃p̃ of H. Then, we note that we can

obtain the useful term from the following linear combination

of received computation results.

C̃i(m̃, ñ) =

p
∆p

−1
∑

w=0

gwCw(xi, m̃, ñ)

=

p
∆p

−1
∑

w=0

p
∆p

−1
∑

p̃=0

gwhw,p̃Ā
T (xi, p̃, m̃)B̄(xi, p̃, ñ)

=

p
∆p

−1
∑

p̃=0

gT h̃p̃Ā
T (xi, p̃, m̃)B̄(xi, p̃, ñ)

=

p
∆p

−1
∑

p̃=0

ĀT (xi, p̃, m̃)B̄(xi, p̃, ñ), (9)

which is equivalent to (10) shown at the top of the page, for

each m̃ ∈ Pm and ñ ∈ Pn. We note that for fixed m̃ and ñ the

right hand side (RHS) of (10) contains kAkB useful terms.

Furthermore, Int(xi) is a remaining interference term which

is a polynomial of degree kAkB∆p +∆p − 2 for the variable

xi. We provide the exact expression of Int(xi) at Appendix

B. Now, in order to guarantee that we can decode the de-

sired terms from C̃i(m̃, ñ), we need to verify the following

conditions

• The form of C̃i(m̃, ñ) is the same regardless of which

(at least) p
∆p

− p
kp

+ 1 workers in a group return their

results. This is equivalent to asserting that the terms have

no dependence on the index w.



p
∆p

−1
∑

p̃=0

ĀT (xi, p̃, m̃)B̄(xi, p̃, ñ) =

p
∆p

−1
∑

p̃=0





∆p−1
∑

l1=0

∆p−1
∑

l2=0

kA−1∑

s=0

kB−1∑

u=0

[

x
∆p−1+s∆p+u∆pkA+l1−l2
i ·AT

∆pp̃+l1,kAm̃+sB∆pp̃+l2,kBñ+u

]





=

p
∆p

−1
∑

p̃=0





kA−1∑

s=0

kB−1∑

u=0



x
∆p−1+s∆p+u∆pkA

i ·

∆p−1
∑

l=0

AT
∆pp̃+l,kAm̃+sB∆pp̃+l,kBñ+u







+ Int(xi)

=

kA−1∑

s=0

kB−1∑

u=0









x
∆p−1+s∆p+u∆pkA

i ·

p−1
∑

l′=0

AT
l′,kAm̃+sBl′,kBñ+u

︸ ︷︷ ︸

useful term









+ Int(xi)

(10)

• The desired terms and the interference terms appear as

coefficients of different degree terms in C̃i(m̃, ñ).
• All desired terms appear as coefficients of different

degrees in C̃i(m̃, ñ).

We provide detailed proof of these claims in Appendix C.

Since the equation (10) is a polynomial of degree

kAkB∆p+∆p−2, we need at least kAkB∆p+∆p−1 different

interpolation points xi to extract the useful terms from the

equation (10). Thus, in order to have kAkB∆p + ∆p − 1
different xi, we need at least kAkB∆p+∆p−1 worker groups.

Thus, to see that the recovery threshold is (8), we proceed

by contradiction. Note that, there are c groups, each of which

contains p
∆p

nodes. Also, we need p
∆p

− p
kp

+1 for each worker

group to obtain the equation (10). It follows that we cannot

decode when there are at most kAkB∆p+∆p−2 groups where

all the nodes return their results and all other groups are such

that at most p
∆p

− p
kp

nodes return their results. Therefore,

we need at least the number of workers specified in (8) to

guarantee the decoding.

APPENDIX B

INTERFERENCE TERM OF THE EQUATION (10)
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APPENDIX C

PROOF OF THE CLAIMS IN THEOREM 1

First, note that, from (10), we can make the following

observations.

• Useful terms
∑p−1

l=0 AT
l,kAm̃+sBl,kB ñ+u lie in the coeffi-

cients of x
∆p−1+s∆p+u∆pkA

i for (s, u) ∈ {0, 1 · · · , kA −
1} × {0, 1 · · · , kB − 1} and (m̃, ñ) ∈ Pm × Pn.

• All the other interference terms lie in the coefficients of

x
∆p−1+s∆p+u∆pkA+l̃

i for (s, u) ∈ {0, 1 · · · , kA − 1} ×
{0, 1 · · · , kB − 1} and l̃ ∈ {±1, · · · ,±(∆p − 1)}

Now, we can easily show the first claim. Since the equation

(9) has no dependence on w, not only the useful terms, but the

interference terms also remain the same regardless of which

workers return their results in a group. This is important in

terms of the recovery threshold, otherwise, if the interference

terms vary in w, we may still be able to decode the desired

terms using C̃i(m̃, ñ), but we need more workers than the

degree of the polynomial to distinguish the interference terms.

Claim 1: The useful terms and the interference terms lie in

the coefficients of different degrees in C̃i(m̃, ñ).
Proof: We prove this by contradiction. Suppose there exist

(s1, u1), (s2, u2) ∈ {0, · · · , kA − 1} × {0, · · · , kB − 1} and

l̃ ∈ {±1, · · · ,±(∆p − 1)} such that

s1∆p +∆p − 1 + u1∆pkA = s2∆p +∆p − 1 + u2∆pkA + l̃.

This further implies that

(s1 − s2)∆p + (u1 − u2)∆pkA = l̃.

Since the left hand side (LHS) is the multiple of ∆p and the

RHS is nonzero with an absolute value smaller than ∆p we

arrive at a contradiction. Thus, the claim holds.



Claim 2: All the useful terms lie in the coefficients of

different degrees in C̃i(m̃, ñ).
Proof: We use contradiction again. Suppose there exist

(s1, u1), (s2, u2) ∈ {0, · · · , kA − 1} × {0, · · · , kB − 1} such

that

s1∆p +∆p − 1 + u1∆pkA = s2∆p +∆p − 1 + u2∆pkA,

s1 6= s2 and u1 6= u2. By some manipulations, this equation

is equivalent to

(s1 − s2) = (u2 − u1)kA.

Since the RHS is the multiple of kA and the RHS is nonzero

with an absolute value smaller than kA. This is a contradiction.

Thus, the claim holds.
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