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Abstract—Strong secrecy communication over a discrete mem-
oryless state-dependent multiple access channel (SD-MAC) with
an external eavesdropper is investigated. The channel is governed
by discrete memoryless and i.i.d. channel states and the channel
state information (CSI) is revealed to the encoders in a causal
manner. An inner bound of the capacity is provided. To establish
the inner bound, we investigate coding schemes incorporating
wiretap coding and secret key agreement between the sender
and the legitimate receiver. Two kinds of block Markov coding
schemes are studied. The first one uses backward decoding and
Wyner-Ziv coding and the secret key is constructed from a lossy
reproduction of the CSI. The other one is an extended version
of the existing coding scheme for point-to-point wiretap channels
with causal CSI. We further investigate some capacity-achieving
cases for state-dependent multiple access wiretap channels (SD-
MAWCs) with degraded message sets. It turns out that the two
coding schemes are both optimal in these cases.

I. INTRODUCTION

Secure communication over a discrete memoryless channel
(DMC) was first studied in [1] where the sender communicates
to the legitimate receiver over the main channel in the presence
of an external eavesdropper through a degraded version of
the main channel. The model was further extended to a
more general case called broadcast channels with confidential
messages in [2]. Following these landmark papers, secrecy
capacity results of different generalized MAC models have
been reported in recent years [3–5].

The point-to-point channel with causal channel state infor-
mation (CSI) at the encoder was studied in [6]. The optimal
coding scheme in [6], called Shannon strategy, was proved
to be suboptimal for state-dependent multiple access channels
(SD-MACs) in [7], where block Markov coding with Wyner-
Ziv coding and backward decoding achieved a strictly larger
achievable region in some cases. SD-MAC with independent
states at each sender was investigated in [8].

Wiretap channels with noncausal CSI at the encoder was
studied in [9] and lower and upper bounds of the secrecy
capacity were presented by combining Gel’fand-Pinsker (GP)
coding [10] and wiretap coding. The model was further
studied in [11] with a more stringent secrecy constraint. For
a state-dependent channel, knowing CSI can help the secure
transmission over the channel, since the system participants
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Fig. 1: SD-MAWC with Causal CSI at Encoders.

have some additional resources to construct a secret key and
encrypt part of messages by using Shannon’s one-time pad
cypher [12]. This combination of wiretap codes and secret
key agreement has been used in recent works about state-
dependent wiretap channels (SD-WTCs). In [13], Chia and
El Gamal addressed the secure communication over wiretap
channels with causal CSI at both the encoder and the decoder
using block Markov coding. Wiretap channels with causal CSI
at encoder was studied in [14] and [15]. The results were
further strengthened in [16] to semantic secrecy constraint by
using the soft-covering method [11].

In this paper, we consider SD-MACs with causal CSI at
encoders with an external eavesdropper and a strong secrecy
constraint. We design a new coding scheme which incorpo-
rates block Markov coding with Wyner-Ziv coding, backward
decoding, and secret key agreement [17]. Our inner bound
includes previous results and recovers existing works for other
models as special cases.

The rest of the paper is organized as follows: In Section II,
we give the needed notations and definitions of the channel
model considered in this paper. In Section III, we give the
inner bound result, which consists of three different regions,
each corresponding to a different coding scheme. The first
two coding schemes (we refer them as Coding scheme 1
and Coding scheme 2, respectively) combine wiretap coding
and secret key agreement while the third coding scheme only
uses wiretap coding. The first coding scheme is presented in
Section IV. Section V provides some numerical examples and
a capacity achieved case that both Coding schemes 1 and 2
are optimal. Section VI concludes this paper.

II. NOTATIONS AND DEFINITIONS

Throughout this paper, random variables and sample values
are denoted by capital letters and lowercase letters, e.g. 𝑋
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and 𝑥. Sets are denoted by calligraphic letters. Capital and
lowercase letters in boldface represents n-length random and
sample sequences, respectively, e.g. 𝑿 = (𝑋1, 𝑋2, . . . , 𝑋𝑛) and
𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑛). Let X𝑛 be the n-fold Cartesian product
of X, which is the set of all possible 𝒙. To denote substrings,
let 𝑋𝑏 = (𝑋1, 𝑋2, . . . , 𝑋𝑏) and 𝑋 [𝑏+1] = (𝑋𝑏+1, 𝑋𝑏+2, . . . , 𝑋𝑛).
We use 𝑃𝑋 to denote the probability mass functions (PMFs)
of random variable 𝑋 and 𝑃𝑋𝑌 , 𝑃𝑋 |𝑌 to denote the joint PMFs
and conditional PMFs, respectively. The set of all PMFs over
a given set X is written by P(X). For a sequence 𝒙 generated
i.i.d. according to some distribution 𝑃𝑋 , we denote 𝑃𝑛

𝑋
(𝒙) =∏𝑛

𝑖=1 𝑃𝑋 (𝑥).

Definition 1. A discrete memoryless multiple access wiretap
channel with state is defined by a stochastic transition matrix
W : X1 × X2 × S→Y × Z, where X1,X2 are finite input
alphabets, Y,Z are finite output alphabets, S is a finite
state alphabet. The transition probability from input sequences
(𝒙1, 𝒙2) to the output sequences (𝒚, 𝒛) given state sequence 𝒔
is

𝑃𝑌 𝑍 |𝑋1𝑋2𝑆 (𝒚, 𝒛 |𝒙1, 𝒙2, 𝒔) =
𝑛∏
𝑖=1

𝑃𝑌 𝑍 |𝑋1𝑋2𝑆 (𝑦𝑖 , 𝑧𝑖 |𝑥1𝑖 , 𝑥2𝑖 , 𝑠𝑖),

where 𝒚 is the output of the main channel and 𝒛 is the
output of the wiretap channel. The channel state sequences
are generated by a discrete memoryless source such that
𝑃𝑛
𝑆
(𝒔) = ∏𝑛

𝑖=1 𝑃𝑆 (𝑠𝑖).

Definition 2. A code (2𝑛𝑅1 , 2𝑛𝑅2 , 𝑓 𝑛1 , 𝑓
𝑛
2 , 𝜙) consists of mes-

sage sets M1 = [1 : 2𝑛𝑅1 ],M2 = [1 : 2𝑛𝑅2 ], sets of encoders
𝑓𝑖, 𝑗 : M𝑖 × S 𝑗 → X𝑖 , 𝑖 = 1, 2, 𝑗 = 1, . . . , 𝑛 and a decoder
𝜙 : Y𝑛 → M1×M2. To transmit message 𝑀𝑖 , the sender sends
codeword 𝑿𝑖 with each component 𝑋𝑖 𝑗 generated according
to 𝑓𝑖, 𝑗 (𝑀𝑖 , 𝑺 𝑗 ). The receiver receives 𝒀 and estimates the
message by the decoder (�̂�1, �̂�2) = 𝜙(𝒀). The average
decoding error of a code is

𝑃𝑒 =
1

|M1 | |M2 |
∑︁

𝑚1∈M1

∑︁
𝑚2∈M2

𝑃𝑟{(𝑀1, 𝑀2) ≠ (�̂�1, �̂�2) |𝑀1 = 𝑚1, 𝑀2 = 𝑚2}.

The information leakage of the code is defined as

𝐼 (𝑀1, 𝑀2; 𝒁),

where 𝒁 is the output of the wiretap channel.

Definition 3. A rate pair (𝑅1, 𝑅2) is said to be achievable
for the multiple access wiretap channel with causal chan-
nel state information at encoders if for any 𝜖 > 0, there
exists an 𝑛0 such that for all 𝑛 > 𝑛0 there exists a code
(2𝑛𝑅1 , 2𝑛𝑅2 , 𝑓 𝑛1 , 𝑓

𝑛
2 , 𝜙) with

𝑃𝑒 ≤ 𝜖, 𝐼 (𝑀1, 𝑀2; 𝒁) ≤ 𝜖 .

The secrecy capacity of the multiple access wiretap channel
is the closure of all sets of achievable rate pairs.

III. MAIN RESULTS
Given 𝑃𝑆 and 𝑃𝑌 𝑍 |𝑋1𝑋2𝑆 , define region

R1𝑖 (𝑃𝑉𝑈𝑈1𝑈2𝑋1𝑋2 |𝑆), 𝑖 = 1, 2, 3 as sets of real number
pairs (𝑅1, 𝑅2) such that

R11 (𝑃𝑉𝑈𝑈1𝑈2𝑋1𝑋2 |𝑆) =

𝑅1 ≤ min{𝐼 (𝑈1;𝑌 |𝑉,𝑈,𝑈2) − 𝐼 (𝑈1; 𝑍 |𝑆,𝑈) + 𝑅11,

𝐼 (𝑈1;𝑌 |𝑉,𝑈,𝑈2)};
𝑅2 ≤ min{𝐼 (𝑈2;𝑌 |𝑉,𝑈,𝑈1) − 𝐼 (𝑈2; 𝑍 |𝑆,𝑈) + 𝑅21,

𝐼 (𝑈2;𝑌 |𝑉,𝑈,𝑈1)};
𝑅1 + 𝑅2 ≤ min{𝑅𝑆𝑈𝑀 , 𝑅𝑆𝑈𝑀 − 𝐼 (𝑈1,𝑈2; 𝑍 |𝑆,𝑈)

+ 𝑅11 + 𝑅21};
𝑅11 + 𝑅21 ≤ 𝐼 (𝑉 ;𝑌 ) − 𝐼 (𝑉 ;𝑈, 𝑍).

R12 (𝑃𝑉𝑈𝑈1𝑈2𝑋1𝑋2 |𝑆) =

𝑅1 ≤ min{𝐼 (𝑈1;𝑌 |𝑉,𝑈,𝑈2), 𝑅11};
𝑅2 ≤ min{𝐼 (𝑈2;𝑌 |𝑉,𝑈,𝑈1) − 𝐼 (𝑈2; 𝑍 |𝑆,𝑈,𝑈1) + 𝑅21,

𝐼 (𝑈2;𝑌 |𝑉,𝑈,𝑈1)};
𝑅1 + 𝑅2 ≤ min{𝑅𝑆𝑈𝑀 , 𝑅𝑆𝑈𝑀 − 𝐼 (𝑈2; 𝑍 |𝑆,𝑈,𝑈1) + 𝑅21,

𝐼 (𝑈2;𝑌 |𝑉,𝑈,𝑈1) − 𝐼 (𝑈2; 𝑍 |𝑆,𝑈,𝑈1) + 𝑅11 + 𝑅21};
𝑅11 + 𝑅21 ≤ 𝐼 (𝑉 ;𝑌 ) − 𝐼 (𝑉 ; 𝑍,𝑈,𝑈1),

R13 (𝑃𝑉𝑈𝑈1𝑈2𝑋1𝑋2 |𝑆) =

𝑅1 ≤ min{𝐼 (𝑈1;𝑌 |𝑉,𝑈,𝑈2) − 𝐼 (𝑈1; 𝑍 |𝑆,𝑈,𝑈2) + 𝑅11,

𝐼 (𝑈1;𝑌 |𝑉,𝑈,𝑈2)};
𝑅2 ≤ min{𝐼 (𝑈2;𝑌 |𝑉,𝑈,𝑈1), 𝑅21};
𝑅1 + 𝑅2 ≤ min{𝑅𝑆𝑈𝑀 , 𝑅𝑆𝑈𝑀 − 𝐼 (𝑈1; 𝑍 |𝑆,𝑈,𝑈2) + 𝑅11,

𝐼 (𝑈1;𝑌 |𝑉,𝑈,𝑈2) − 𝐼 (𝑈1; 𝑍 |𝑆,𝑈,𝑈2) + 𝑅11 + 𝑅21};
𝑅11 + 𝑅21 ≤ 𝐼 (𝑉 ;𝑌 ) − 𝐼 (𝑉 ; 𝑍,𝑈,𝑈2),

where 𝑅𝑆𝑈𝑀 = min{𝐼 (𝑈1,𝑈2;𝑌 |𝑉,𝑈), 𝐼 (𝑉,𝑈,𝑈1,𝑈2;𝑌 ) −
𝐼 (𝑉 ; 𝑆)} and joint distribution such that
𝑃𝑆𝑃𝑉𝑈𝑈1𝑈2𝑋1𝑋2𝑌 𝑍 |𝑆 = 𝑃𝑆𝑃𝑉 |𝑆𝑃𝑈𝑃𝑈1 |𝑈𝑃𝑈2 |𝑈
𝑃𝑋1 |𝑈𝑈1𝑆𝑃𝑋2 |𝑈𝑈2𝑆𝑃𝑌 𝑍 |𝑋1𝑋2𝑆 .

Let R1 be the convex hull of⋃
𝑃𝑉 |𝑆𝑃𝑈𝑃𝑈1 |𝑈𝑃𝑈2 |𝑈
𝑃𝑋1 |𝑈𝑈1𝑆𝑃𝑋2 |𝑈𝑈2𝑆

3⋃
𝑖=1

R1𝑖 (𝑃𝑉𝑈𝑈1𝑈2𝑋1𝑋2 |𝑆).

Removing the secrecy constraint, region R1 reduces to [7,
Theorem 3]. Further define R2𝑖 (𝑃𝑈1𝑈2𝑋1𝑋2 |𝑆), 𝑖 = 1, 2, 3, as
sets of real number pairs (𝑅1, 𝑅2) such that

R21 (𝑃𝑈1𝑈2𝑋1𝑋2 |𝑆) =

𝑅1 ≤ min{𝐼 (𝑈1;𝑌 |𝑈2) − 𝐼 (𝑈1; 𝑍 |𝑆) + 𝑅11, 𝐼 (𝑈1;𝑌 |𝑈2) − 𝑅12};
𝑅2 ≤ min{𝐼 (𝑈2;𝑌 |𝑈1) − 𝐼 (𝑈2; 𝑍 |𝑆) + 𝑅21, 𝐼 (𝑈2;𝑌 |𝑈1) − 𝑅22};
𝑅1 + 𝑅2 ≤ min{𝐼 (𝑈1,𝑈2;𝑌 ) − 𝐼 (𝑈1,𝑈2; 𝑍 |𝑆) + 𝐻 (𝑆 |𝑍)

− 𝐻 (𝑆 |𝑈1𝑈2𝑌 ), 𝐼 (𝑈1,𝑈2;𝑌 ) − 𝐻 (𝑆 |𝑈1𝑈2𝑌 )};
𝑅11 + 𝑅12 + 𝑅21 + 𝑅22 < 𝐻 (𝑆 |𝑍);
𝑅12 + 𝑅22 > 𝐻 (𝑆 |𝑌,𝑈1,𝑈2).



R22 (𝑃𝑈1𝑈2𝑋1𝑋2 |𝑆) =

𝑅1 ≤ min{𝑅11, 𝐼 (𝑈1;𝑌 |𝑈2) − 𝑅12};
𝑅2 ≤ min{𝐼 (𝑈2;𝑌 |𝑈1) − 𝐼 (𝑈2; 𝑍 |𝑆,𝑈1) + 𝑅21,

𝐼 (𝑈2;𝑌 |𝑈1) − 𝑅22};
𝑅1 + 𝑅2 ≤ min{𝐼 (𝑈2;𝑌 |𝑈1) − 𝐼 (𝑈2; 𝑍 |𝑆,𝑈1) + 𝐻 (𝑆 |𝑍,𝑈1)

− 𝐻 (𝑆 |𝑈1𝑈2𝑌 ), 𝐼 (𝑈1,𝑈2;𝑌 ) − 𝐻 (𝑆 |𝑈1𝑈2𝑌 )};
𝑅11 + 𝑅12 + 𝑅21 + 𝑅22 < 𝐻 (𝑆 |𝑍);
𝑅12 + 𝑅22 > 𝐻 (𝑆 |𝑌,𝑈1,𝑈2).

R23 (𝑃𝑈1𝑈2𝑋1𝑋2 |𝑆) =

𝑅1 ≤ min{𝐼 (𝑈1;𝑌 |𝑈2) − 𝐼 (𝑈1; 𝑍 |𝑆,𝑈2) + 𝑅11,

𝐼 (𝑈1;𝑌 |𝑈2) − 𝑅12};
𝑅2 ≤ min{𝑅21, 𝐼 (𝑈2;𝑌 |𝑈1) − 𝑅22};
𝑅1 + 𝑅2 ≤ min{𝐼 (𝑈1;𝑌 |𝑈2) − 𝐼 (𝑈1; 𝑍 |𝑆,𝑈2) + 𝐻 (𝑆 |𝑍,𝑈2)

− 𝐻 (𝑆 |𝑈1𝑈2𝑌 ), 𝐼 (𝑈1,𝑈2;𝑌 ) − 𝐻 (𝑆 |𝑈1𝑈2𝑌 )};
𝑅11 + 𝑅12 + 𝑅21 + 𝑅22 < 𝐻 (𝑆 |𝑍);
𝑅12 + 𝑅22 > 𝐻 (𝑆 |𝑌,𝑈1,𝑈2),

where the joint distribution 𝑃𝑆𝑃𝑈1𝑈2𝑋1𝑋2𝑌 𝑍 |𝑆 =

𝑃𝑆𝑃𝑈1𝑃𝑈2𝑃𝑋1 |𝑈1𝑆𝑃𝑋2 |𝑈2𝑆𝑃𝑌 𝑍 |𝑋1𝑋2𝑆 . Similarly, let R2
be the convex hull of⋃

𝑃𝑈1𝑃𝑈2
𝑃𝑋1 |𝑈1𝑆𝑃𝑋2 |𝑈2𝑆

3⋃
𝑖=1

R2𝑖 (𝑃𝑈1𝑈2𝑋1𝑋2 |𝑆).

Further define region R3 by setting 𝑅11 = 𝑅21 = 0 in
R1 and removing 𝑆 in all the subtraction terms related to
𝑍 (𝐼 (𝑈1; 𝑍 |𝑆,𝑈), 𝐼 (𝑈1,𝑈2; 𝑍 |𝑆,𝑈), 𝑒𝑡𝑐.) from R1 with joint
distribution 𝑃𝑆𝑃𝑉𝑈𝑈1𝑈2𝑋1𝑋2𝑌 𝑍 |𝑆 = 𝑃𝑆𝑃𝑉 |𝑆𝑃𝑈𝑃𝑈1 |𝑈𝑃𝑈2 |𝑈
𝑃𝑋1 |𝑈𝑈1𝑆𝑃𝑋2 |𝑈𝑈2𝑆𝑃𝑌 𝑍 |𝑋1𝑋2𝑆 .

Throughout the paper, we refer coding scheme of region
R1 as Coding scheme 1 and coding scheme of region R2 as
Coding scheme 2.

Theorem 1. Let R𝐶𝑆𝐼 be the convex hull of R1 ∪ R2 ∪ R3.
The secrecy capacity of multiple access wiretap channels with
causal channel state information 𝐶𝐶𝑆𝐼 satisfies

R𝐶𝑆𝐼 ⊆ 𝐶𝐶𝑆𝐼 .

In Region R1, auxiliary random variable 𝑈 is the common
message transmitted by the senders to help the decoder find
the lossy description 𝑉 of the state from last block since both
of them observe the state sequence. Auxiliary random variable
𝑉 also contains information about the secret key used in the
coding scheme. The coding scheme for region R1 is given in
Section IV. We omit coding schemes for regions R2 and R3
since the coding scheme for region R2 is an extension of that
in [15, Section III] by splitting both the Slepian-Wolf coding
index and secret key into two independent parts and coding
scheme for R3 follows by skipping the Key Message Codebook
Generation and setting 𝑅11 = 𝑅21 = 0 in Message Codebook
Generation in Coding scheme 1 provided in Section IV.

IV. CODING SCHEME FOR REGION R1

In this section we give the coding scheme for region R1.
For the secrecy part, the main difference between the coding
scheme below and that in [15] is that instead of constructing
the secret key from state sequences directly, we construct the
secret key from a lossy description of the state sequence.

The coding scheme with backward decoding is divided into
𝐵 + 1 blocks. In block 2 ≤ 𝑏 ≤ 𝐵 + 1, upon observing
the channel state sequence 𝒔𝑏−1 in the last block 𝑏 − 1, the
encoder finds a lossy description of the state sequence 𝒗𝑏−1
and constructs a secret key from 𝒗𝑏−1. In Blocks 1 and 𝐵 + 1,
no meaningful message is transmitted. We further assume that
𝐼 (𝑈1,𝑈2;𝑌 ) > ` > 0 for some positive number `, otherwise,
as shown by [7, (73b)], the rates of both senders are zero. The
codeword length of blocks 1 to 𝐵 is 𝑛 and the length of the
last block is

�̃� = 𝑛
𝑅0
`
, (1)

where 𝑅0 > 0 is a positive real number such that 2𝑛𝑅0

is the size of the auxiliary message codebook defined in
following paragraphs. The last block is only used to transmit
the information of state sequence 𝒔𝐵 and the setting of
�̃� enables the decoder to decode the information correctly.
Assume 𝐼 (𝑉 ;𝑌 ) − 𝐼 (𝑉 ; 𝑍) > 𝜏1 > 0 with Markov chain
relation 𝑉 − 𝑆− (𝑌, 𝑍). Otherwise, the secret key rate is 0 and
the resulting achievable region is R3. The senders cooperate
with each other since both of them observe the same channel
states, and send a common message to convey the lossy
description of the state sequence they observe. Based on this
lossy description of the channel state, the decoder is able to
decode more messages and this leads to a larger achievable
rate region.

The backward decoding follows the principles in [7, Ap-
pendix G] with an additional secret key decryption due to
the secret key agreement. The decoder first decodes Block
𝐵 + 1 to get the index of the state lossy description of Block
𝐵. In the subsequent decoding blocks, the decoder first finds
the lossy description of the current state sequence and then
performs joint typical decoding to decode the common and
private messages with the help of this lossy description.

Here, we present an intuitive explanation of the secret key
agreement in the coding scheme. For simplicity, we only
consider the encryption and decryption operations of Sender
1. In each block 𝑏, 𝑏 ∈ [2 : 𝐵], upon observing the channel
state sequence 𝒔𝑏−1 and its lossy description 𝒗𝑏−1, the sender
generates a secret key 𝑘1,𝑏 by a mapping ^ : T → K1,
where T is the index set of 𝑽 in Wyner-Ziv subcodebooks.
This key is used to encrypt the message 𝑚1,𝑏 by computing
𝑐1,𝑏 = 𝑚1,𝑏 ⊕ 𝑘1,𝑏 . In the backward decoding step block
𝑏, 𝑏 ∈ [1 : 𝐵], the decoder has the knowledge about the
Wyner-Ziv index 𝑘0,𝑏+1 from the last block 𝑏 + 1. Now it is
possible to find 𝒗𝑏 , which is the lossy description of the state
sequence 𝒔𝑏 in current block. The decoder then reproduces
the secret key 𝑘1,𝑏+1 used for block 𝑏 + 1 and decrypts the
message 𝑚1,𝑏+1 by computing 𝑚1,𝑏+1 = 𝑐1,𝑏+1 	 𝑘1,𝑏+1.



Given 𝑃𝑆 and channel 𝑃𝑌 𝑍 |𝑋1𝑋2𝑆 , let 𝑅0, 𝑅1, 𝑅2, 𝑅10,
𝑅11, 𝑅20, 𝑅21, 𝑅𝐾1 be positive real numbers with constraints

𝑅0 ≥ 𝐼 (𝑉 ; 𝑆) − 𝐼 (𝑉 ;𝑌 ),
𝑅1 ≤ 𝐼 (𝑈1;𝑌 |𝑉,𝑈,𝑈2), 𝑅2 ≤ 𝐼 (𝑈2;𝑌 |𝑉,𝑈,𝑈1),

𝑅1 − 𝑅10 > 𝐼 (𝑈1; 𝑍 |𝑆,𝑈), 𝑅2 − 𝑅20 > 𝐼 (𝑈2; 𝑍 |𝑆,𝑈),
𝑅1 + 𝑅2 − 𝑅10 − 𝑅20 > 𝐼 (𝑈1,𝑈2; 𝑍 |𝑆,𝑈),

𝑅𝐾1 = 𝑅11 + 𝑅21 ≤ 𝐼 (𝑉 ;𝑌 ) − 𝐼 (𝑉 ; 𝑍),
𝑅1 = 𝑅10 + 𝑅11, 𝑅2 = 𝑅20 + 𝑅21

under fixed joint distribution

𝑃𝑆𝑃𝑉 |𝑆𝑃𝑈𝑃𝑈1 |𝑈𝑃𝑈2 |𝑈𝑃𝑋1 |𝑈𝑈1𝑆𝑃𝑋2 |𝑈𝑈2𝑆𝑃𝑌 𝑍 |𝑋1𝑋2𝑆 .

Key Message Codebook Generation: Given 𝜏 > 0 and
𝛿 > 0, let 𝑅𝐾 = 𝐼 (𝑉 ; 𝑆) + 𝜏. In each block 2 ≤ 𝑏 ≤ 𝐵 + 1,
the sender generates a codebook C𝐾𝑏 = {𝒗(𝑙)}2𝑛𝑅𝐾

𝑙=1 consists
of 2𝑛𝑅𝐾 codewords, each i.i.d. generated according to dis-
tribution 𝑃𝑉 such that 𝑃𝑉 (𝑣) =

∑
𝑠∈S 𝑃𝑆 (𝑠)𝑃𝑉 |𝑆 (𝑣 |𝑠) for

any 𝑣 ∈ V. Partition the codebook C𝐾𝑏 into 2𝑛𝑅𝐾0 sub-
codebooks C𝐾𝑏 (𝑘0,𝑏), where 𝑘0,𝑏 ∈ [1 : 2𝑛𝑅𝐾0 ] and 𝑅𝐾0 =

𝐼 (𝑉 ; 𝑆) − 𝐼 (𝑉 ;𝑌 ) +2𝜏. Let T be the index set of codewords in
each subcodebook C𝐾𝑏 (𝑘0,𝑏) such that |T | = |C𝐾𝑏 (𝑘0,𝑏) | for
any 𝑘0,𝑏 ∈ [1 : 2𝑛𝑅𝐾0 ]. For each codebook C𝐾𝑏 , construct a
secret key mapping ^ : T → [1 : 2𝑛𝑅𝐾1 ] . Denote the resulted
secret key by 𝐾1,𝑏 .

Auxiliary Message Codebook Generation: For each block 𝑏,
generate auxiliary message codebook C𝑏 = {𝒖(𝑚0)}2𝑛𝑅0

𝑚0=1 i.i.d.
according to distribution 𝑃𝑈 , where 𝑅0 = 𝐼 (𝑉 ; 𝑆)−𝐼 (𝑉 ;𝑌 )+3𝜏.

Message Codebook Generation: Block 𝑏, 𝑏 ∈ [1 : 𝐵]:
For each 𝑚0, generate codebook C1,𝑏 (𝑚0) = {𝒖1 (𝑚0, 𝑙)}2𝑛𝑅1

𝑙=1
containing 2𝑛𝑅1 codewords, each i.i.d. generated according to
distribution 𝑃𝑈1 |𝑈 . Partition each C1,𝑏 (𝑚0) into 2𝑛𝑅10 sub-
codebooks C1,𝑏 (𝑚0, 𝑚10), where 𝑚10 ∈ [1 : 2𝑛𝑅10 ] . For each
subcodebook C1,𝑏 (𝑚0, 𝑚10), partition it into two-layer sub-
codebooks C1,𝑏 (𝑚0, 𝑚10, 𝑚11) = {𝒖1 (𝑚0, 𝑚10, 𝑚11, 𝑙1)}2𝑛𝑅

′
1

𝑙1=1 ,

where 𝑚11 ∈ [1 : 2𝑛𝑅11 ], 𝑅′
1 := 𝑅1 − 𝑅10 − 𝑅11. Like-

wise, generate codebook C2,𝑏 = {𝒖2 (𝑚0, 𝑙)}2𝑛𝑅2
𝑙=1 with code-

words i.i.d. generated according to 𝑃𝑈2 |𝑈 , and then parti-
tion it into two-layer sub-codebooks C2,𝑏 (𝑚0, 𝑚20, 𝑚21) =

{𝒖2 (𝑚0, 𝑚20, 𝑚21, 𝑙2)}2𝑛𝑅
′
2

𝑙2=1 , where 𝑚20 ∈ [1 : 2𝑛𝑅20 ], 𝑚21 ∈
[1 : 2𝑛𝑅21 ], 𝑅′

2 := 𝑅2 − 𝑅20 − 𝑅21.
Block 𝐵 + 1: For 𝑘 = 1, 2, generate codebooks C𝑘,𝐵+1 as

above with codeword length �̃� defined as in (1).
The above codebooks are all generated randomly and inde-

pendently. Denote the set of random codebooks in each block
𝑏 by C̄𝑏 .

Encoding: Block 1: Setting 𝑚0,1 = 𝑚10,1 = 𝑚20,1 = 𝑚11,1 =

𝑚21,1 = 1, the encoder 𝑗 picks an index 𝑙 𝑗 ∈ [1 : 2𝑛𝑅
′
𝑗 ] uni-

formly at random, 𝑗 = 1, 2. The codeword 𝒙 𝑗 is generated by
(𝒖(1), 𝒖 𝑗 (1, 1, 1, 𝑙 𝑗 ), 𝒔) according to 𝑃𝑛

𝑋 𝑗 |𝑈𝑈 𝑗𝑆 (𝒙 𝑗 |𝒖, 𝒖 𝑗 , 𝒔) =∏𝑛
𝑖=1 𝑃𝑋 𝑗 |𝑈𝑈 𝑗𝑆 (𝑥 𝑗𝑖 |𝑢𝑖 , 𝑢 𝑗𝑖 , 𝑠𝑖), 𝑗 = 1, 2. Here we omit the

indices of the codewords.
Block 𝑏, 𝑏 ∈ [2 : 𝐵]: Upon observing the state sequence

𝒔𝑏−1 in last block, the encoders find a sequence 𝒗𝑏−1 such

that (𝒔𝑏−1, 𝒗𝑏−1) ∈ 𝑇𝑛
𝑃𝑆𝑉 , 𝛿

and set 𝑚0,𝑏 = 𝑘0,𝑏 , where 𝑘0,𝑏
is the index of subcodebook C𝑘𝑏−1 (𝑘0,𝑏) containing 𝒗𝑏−1. We
also write sequence 𝒗𝑏−1 as 𝒗(𝑘0,𝑏 , 𝑡𝑏) if 𝒗𝑏−1 is the 𝑡𝑏-th
sequence in sub-codebook C𝐾𝑏−1 (𝑘0,𝑏). Generate the secret
key 𝑘1,𝑏 = ^(𝑡𝑏) and then split it into two independent
parts (𝑘11,𝑏 , 𝑘21,𝑏) ∈ [1 : 2𝑛𝑅11 ] × [1 : 2𝑛𝑅21 ]. To trans-
mit message 𝑚1,𝑏 , Encoder 1 splits it into two independent
parts (𝑚10,𝑏 , 𝑚11,𝑏) and computes 𝑐11,𝑏 = 𝑚11,𝑏 ⊕ 𝑘11,𝑏
(mod 2𝑛𝑅11 ). The encoder selects an index 𝑙1,𝑏 ∈ [1 :
2𝑛𝑅′

1 ] uniformly at random and generates the codeword 𝒙1
by 𝑃𝑛

𝑋1 |𝑈𝑈1𝑆
(𝒙1 |𝒖(𝑘0,𝑏), 𝒖1 (𝑘0,𝑏 , 𝑚10,𝑏 , 𝑐11,𝑏 , 𝑙1,𝑏), 𝒔). Like-

wise, the codeword 𝒙2 for Sender 2 is generated by
𝑃𝑛
𝑋2 |𝑈𝑈2𝑆

(𝒙2 |𝒖(𝑘0,𝑏), 𝒖2 (𝑘0,𝑏 , 𝑚20,𝑏 , 𝑐21,𝑏 , 𝑙2,𝑏), 𝒔).
Block 𝐵 + 1: Upon observing the state sequence 𝒔𝐵 in

the last block, the encoder finds a sequence 𝒗(𝑘0,𝐵+1, 𝑡𝐵+1)
such that (𝒔𝐵, 𝒗(𝑘0,𝐵+1, 𝑡𝐵+1)) ∈ 𝑇𝑛

𝑃𝑆𝑉 , 𝛿
. The encoders

then set 𝑚0,𝐵+1 = 𝑚10,𝐵+1 = 𝑚11,𝐵+1 = 𝑚20,𝐵+1 =

𝑚21,𝐵+1 = 1 and generate codewords 𝒙1 and 𝒙2 according to
distributions 𝑃𝑛

𝑋1 |𝑈𝑈1𝑆
(𝒙1 |𝒖(𝑘0,𝐵+1), 𝒖1 (𝑘0,𝐵+1, 1, 1, 1), 𝒔) and

𝑃𝑛
𝑋2 |𝑈𝑈2𝑆

(𝒙2 |𝒖(𝑘0,𝐵+1), 𝒖2 (𝑘0,𝐵+1, 1, 1, 1), 𝒔).
Backward Decoding: Block 𝐵 + 1: The

decoder looks for a unique �̂�0,𝐵+1 such that
(𝒖1 ( �̂�0,𝐵+1, 1, 1, 1), 𝒖2 ( �̂�0,𝐵+1, 1, 1, 1), 𝒚𝐵+1) ∈ 𝑇𝑛𝑃𝑈1𝑈2𝑌 , 𝛿

.
Block 𝑏, 𝑏 ∈ [1 : 𝐵]: The decoder has the knowledge

about �̂�0,𝑏+1 from the last block. It tries to find a unique
𝒗𝑏 = 𝒗( �̂�0,𝑏+1, 𝑡𝑏+1) such that (𝒗( �̂�0,𝑏+1, 𝑡𝑏+1), 𝒚𝑏) ∈ 𝑇𝑛

𝑃𝑉𝑌 , 𝛿
.

Using ( �̂�11,𝑏+1, �̂�21,𝑏+1) = ^(𝑡𝑏+1), the decoder now com-
putes �̂�11,𝑏+1 = 𝑐11,𝑏+1 	 �̂�11,𝑏+1 (mod 2𝑛𝑅11 ) and �̂�21,𝑏+1 =

𝑐21,𝑏+1 	 �̂�21,𝑏+1 (mod 2𝑛𝑅21 ). For block 𝑏, 𝑏 ∈ [2 : 𝐵], with
the help of 𝒗( �̂�0,𝑏+1, 𝑡𝑏+1), the decoder looks for a unique tuple
( �̂�0,𝑏 , �̂�10,𝑏 , �̂�20,𝑏 , 𝑐11,𝑏 , 𝑐21,𝑏 , 𝑙1,𝑏 , 𝑙2,𝑏) such that

(𝒗𝑏 , 𝒖( �̂�0,𝑏), 𝒖1 ( �̂�0,𝑏 , �̂�10,𝑏 , 𝑐11,𝑏 , 𝑙1,𝑏),
𝒖2 ( �̂�0,𝑏 , �̂�20,𝑏 , 𝑐21,𝑏 , 𝑙2,𝑏), 𝒚𝑏) ∈ 𝑇𝑛𝑃𝑉𝑈𝑈1𝑈2𝑌 , 𝛿

.

Block 1: No decoding needed since the messages transmit-
ted in Block 1 are dummy messages.

The error analysis is similar to [7, Theorem 1] and is omitted
here. The security analysis is given in Appendix A. Region R12
follows by setting 𝑅10 = 0 and replacing 𝑍 with (𝑍,𝑈1) and
region R13 follows similarly.

V. EXAMPLES AND APPLICATIONS

In this section we present numerical examples and capacity-
achieving case for our result. The following example shows
that Regions R1 and R2 do not include each other in general.
In some cases achievable points in region R1 are not included
in region R2 and vice versa.

Example 1. Consider a multiple access wiretap channel where
X1 = X2 = {0, 1},Y = S = {0, 1}, the channel model is
described by

𝑌 =

{
𝑋1, if 𝑆 = 0,
𝑋2, if 𝑆 = 1,

𝑍 = 𝑋2,

where 𝑃𝑟{𝑆 = 1} = 𝑝. In this channel model, rate pair
(min{1 − 𝑝, 1 − ℎ(𝑝)}, 0) is achieved by Coding scheme 1



but cannot be achieved by Coding scheme 2 for sufficiently
large 𝑝. If the main channel is described by

𝑌 = 𝑋1 ⊕ 𝑋2 ⊕ 𝑆,

then rate pair (0, ℎ(𝑝)) is achieved by Coding scheme 2 but
cannot be achieved by Coding scheme 1 for some 𝑝 such that
1 − ℎ(𝑝) ≥ ℎ(𝑝).

The proof is given in Appendix C.

SD-MACs with Degraded Message Sets

Here we consider the SD-MACs with degraded message
sets, where Sender 2 sends only the common messages and
Sender 1 sends both common and private messages. The pri-
vate message is required to keep secret from the eavesdropper.

R𝐶𝑆𝐼−𝐸𝐷,11 =

⋃
𝑃𝑉𝑈𝑈1𝑈2𝑋1𝑋2 |𝑆



𝑅1 ≤ min{𝐼 (𝑈1;𝑌 |𝑈,𝑈2, 𝑉) − 𝐼 (𝑈1; 𝑍 |𝑈2,𝑈, 𝑆)
+ 𝑅𝑆𝐾 , 𝐼 (𝑈1;𝑌 |𝑈,𝑈2, 𝑉)};

𝑅0 + 𝑅1 ≤ min{𝐼 (𝑉,𝑈,𝑈1,𝑈2;𝑌 ) − 𝐼 (𝑉 ; 𝑆)
− 𝐼 (𝑈1; 𝑍 |𝑈2,𝑈, 𝑆) + 𝑅𝑆𝐾 ,
𝐼 (𝑉,𝑈,𝑈1,𝑈2;𝑌 ) − 𝐼 (𝑉 ; 𝑆)},

and joint distribution such that 𝑃𝑆𝑃𝑉𝑈𝑈1𝑈2𝑋1𝑋2 |𝑆 =

𝑃𝑉 𝑆𝑃𝑈𝑈1𝑈2𝑃𝑋1 |𝑈𝑈1𝑆𝑃𝑋2 |𝑈𝑈2𝑆 , where 𝑅𝑆𝐾 = 𝐼 (𝑉 ;𝑌 ) −
𝐼 (𝑉 ; 𝑍,𝑈,𝑈2), and

R𝐶𝑆𝐼−𝐸𝐷,12 =
⋃

𝑃𝑉𝑈𝑈1𝑈2𝑋1𝑋2 |𝑆

{
𝑅1 ≤ min{𝑅𝑆𝐾 , 𝐼 (𝑈1;𝑌 |𝑈,𝑈2, 𝑉)};
𝑅0 + 𝑅1 ≤ 𝐼 (𝑉,𝑈,𝑈1,𝑈2;𝑌 ) − 𝐼 (𝑉 ; 𝑆).

Region of Coding scheme 2 in this case reduces to

R𝐶𝑆𝐼−𝐸𝐷,21 =

⋃
𝑃𝑈𝑈1𝑈2𝑋1𝑋2 |𝑆



𝑅1 ≤ min{𝐼 (𝑈1;𝑌 |𝑈,𝑈2) − 𝐼 (𝑈1; 𝑍 |𝑈2,𝑈, 𝑆)
− 𝐻 (𝑆 |𝑈,𝑈1,𝑈2, 𝑌 ) + 𝐻 (𝑆 |𝑍,𝑈,𝑈2),
𝐼 (𝑈1;𝑌 |𝑈,𝑈2) − 𝐻 (𝑆 |𝑈,𝑈1,𝑈2, 𝑌 )};

𝑅0 + 𝑅1 ≤ min{𝐼 (𝑈,𝑈1,𝑈2;𝑌 )
− 𝐼 (𝑈1; 𝑍 |𝑈2,𝑈, 𝑆)

− 𝐻 (𝑆 |𝑈,𝑈1,𝑈2, 𝑌 ) + 𝐻 (𝑆 |𝑍,𝑈,𝑈2),
𝐼 (𝑈,𝑈1,𝑈2;𝑌 ) − 𝐻 (𝑆 |𝑈,𝑈1,𝑈2, 𝑌 )}

and joint distribution such that 𝑃𝑆𝑃𝑈𝑈1𝑈2𝑋1𝑋2 |𝑆 =

𝑃𝑆𝑃𝑈𝑈1𝑈2𝑃𝑋1 |𝑈𝑈1𝑆𝑃𝑋2 |𝑈𝑈2𝑆 , and

R𝐶𝑆𝐼−𝐸𝐷,22 =
⋃

𝑃𝑈𝑈1𝑈2𝑋1𝑋2 |𝑆



𝑅1 ≤ min{𝐻 (𝑆 |𝑍,𝑈,𝑈2)
− 𝐻 (𝑆 |𝑈,𝑈1,𝑈2, 𝑌 ),

𝐼 (𝑈1;𝑌 |𝑈,𝑈2)
− 𝐻 (𝑆 |𝑈,𝑈1,𝑈2, 𝑌 )};

𝑅0 + 𝑅1 ≤ 𝐼 (𝑈,𝑈1,𝑈2;𝑌 )
− 𝐻 (𝑆 |𝑈,𝑈1,𝑈2, 𝑌 ).

The wiretap code region R𝐶𝑆𝐼−𝐸
𝐷,3 is obtained by setting 𝑅𝑆𝐾 =

0 and replacing 𝐼 (𝑈1; 𝑍 |𝑈2,𝑈, 𝑆) by 𝐼 (𝑈1; 𝑍 |𝑈2,𝑈) in R1.
Let R𝐶𝑆𝐼−𝐸

𝐷
be the convex closure of R𝐶𝑆𝐼−𝐸

𝐷,11 ∪ R𝐶𝑆𝐼−𝐸
𝐷,12 ∪

R𝐶𝑆𝐼−𝐸
𝐷,21 ∪ R𝐶𝑆𝐼−𝐸

𝐷,22 ∪ R𝐶𝑆𝐼−𝐸
𝐷,3 .

Theorem 2. For a multiple access wiretap channels with
degraded message sets and causal state information at both
encoders, it holds that R𝐶𝑆𝐼−𝐸

𝐷
⊆ 𝐶𝐶𝑆𝐼−𝐸

𝐷
.

Regions R𝐶𝑆𝐼−𝐸
𝐷,11 and R𝐶𝑆𝐼−𝐸

𝐷,12 follow by setting 𝑅20 =

𝑅21 = 0 and letting 𝑼 be determined by 𝑘0,𝑏 and common
message 𝑚0,𝑏 in each block in Section IV. Regions R𝐶𝑆𝐼−𝐸

𝐷,21
and R𝐶𝑆𝐼−𝐸

𝐷,22 follow by setting the private message rate of
Sender 2 to 0. The details are omitted due to space limitation.

Causal CSI at One Encoder and Strictly Causal CSI at the
Other: Now consider the case that causal CSI is only available
at the sender who sends both messages, and strictly CSI at
the other. Define region R𝐶𝑆𝐼−𝑆𝐶𝑆𝐼 by setting 𝑈2 = 𝑋2 in
R𝐶𝑆𝐼−𝐸
𝐷

.

Proposition 1. For SD-MAWCs with degraded messages with
causal CSI at the sender that sends both messages and
strictly causal CSI at the other, it holds that R𝐶𝑆𝐼−𝑆𝐶𝑆𝐼

𝐷
⊆

C𝐶𝑆𝐼−𝑆𝐶𝑆𝐼
𝐷

.

The proof is the same as that for Theorem 2 except that
the input of Sender 2 is independent to the channel states.
If we further assume that the wiretap channel is a degraded
version of the main channel and the legitimate receiver has
the knowledge of the CSI, we have the following:

Theorem 3. The capacity of degraded multiple access wiretap
channels with degraded message sets and causal CSI at one
sender and strictly causal CSI at the other and an informed
decoder is

𝐶𝐶𝑆𝐼−𝑆𝐶𝑆𝐼𝐷 =
⋃

𝑃𝑈𝑃𝑋1 |𝑈𝑆𝑃𝑋2 |𝑈
𝑅1 ≤ min{𝐼 (𝑋1;𝑌 |𝑈, 𝑋2, 𝑆) − 𝐼 (𝑋1; 𝑍 |𝑈, 𝑋2, 𝑆)

+ 𝐻 (𝑆 |𝑍,𝑈, 𝑋2), 𝐼 (𝑋1;𝑌 |𝑈, 𝑋2, 𝑆)};
𝑅0 + 𝑅1 ≤ min{𝐼 (𝑋1, 𝑋2;𝑌 |𝑆) − 𝐼 (𝑋1; 𝑍 |𝑈, 𝑋2, 𝑆)

+ 𝐻 (𝑆 |𝑍,𝑈, 𝑋2), 𝐼 (𝑋1, 𝑋2;𝑌 |𝑆)}.

For this model, both Coding schemes 1 and 2 are optimal.
The proof is given in Appendix D.

The capacity region in Theorem 3 is achieved when CSI
is revealed to the decoder, and then both coding schemes
are optimal. Intuitively, this can be seen as follows. By
setting 𝑉 = 𝑆, the Wyner-Ziv coding reduces to Slepian-Wolf
coding. Hence, the two coding schemes mainly differ from the
decoding procedure. However, by revealing CSI to the decoder,
this difference is eliminated, and it is possible for both coding
schemes to be optimal. The following numerical example is a
‘state-reproducing’ channel such that the capacity is achieved.

Example 2. Consider a state-dependent MAC with alphabets
X1 = X2 = S = Z = N = {0, 1} and Y = {0, 1} × {0, 1}.
The main channel output contains two components, i.e., 𝑌 =

(𝑌1, 𝑌2). The channel model is described by

(𝑌1, 𝑌2) = ((𝑋1 � 𝑋2) ⊕ 𝑆, 𝑋1 � 𝑋2), 𝑍 = 𝑌2 ⊕ 𝑁,



where 𝑆 v 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑞), 𝑁 v 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝), 𝑞, 𝑝 ∈ [0, 1
2 ],

and the causal CSI is available at the sender who sends both
messages. The capacity of this channel is⋃
𝛼∈[ 1

2 ,1]

{
𝑅1 ≤ min{ℎ(𝛼) + ℎ(𝑞) − ℎ(𝑝 ∗ 𝛼) + ℎ(𝑝), ℎ(𝛼)},
𝑅1 + 𝑅2 ≤ min{1 + ℎ(𝑞) − ℎ(𝛼 ∗ 𝑝) + ℎ(𝑝), 1},

where ℎ(·) is the binary entropy function with ℎ(𝑎) =

−𝑎 log(𝑎) − (1 − 𝑎) log(1 − 𝑎).

The proof is given in Appendix E.
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APPENDIX A
SECURITY ANALYSIS OF SECTION IV

The proof of the security relies on the following two
lemmas.

Lemma 1. For codebooks in each block satisfying 𝑅1 −𝑅10 >
𝐼 (𝑈1; 𝑍 |𝑈, 𝑆), 𝑅2 − 𝑅20 > 𝐼 (𝑈2; 𝑍 |𝑈, 𝑆), 𝑅1 + 𝑅2 − 𝑅10 − 𝑅20 >
𝐼 (𝑈1,𝑈2; 𝑍 |𝑆,𝑈), it follows that

𝐼 (𝑀10, 𝑀20; 𝒁, 𝑺 |C) ≤ 𝜖 .

This is proved using channel resolvability [18] and is omit-
ted here. The second lemma is used for secret key construction.

Lemma 2. Suppose 𝑉 − 𝑆 − (𝑌𝑍) forms a Markov chain. Let
CV = {𝒗(𝑖, 𝑗)}𝑖∈[1:2𝑛𝑅1 ], 𝑗∈[1:2𝑛𝑅2 ] be a codebook containing
2𝑛𝑅 codewords, where 𝑅 = 𝐼 (𝑉 ; 𝑆)+𝜏, 𝑅1 = 𝐼 (𝑉 ; 𝑆)− 𝐼 (𝑉 ;𝑌 )+
2𝜏, 𝑅2 = 𝐼 (𝑉 ;𝑌 ) − 𝜏, 𝜏 > 0. There exists a mapping ^ : [1 :
2𝑛𝑅2 ] → {1, ..., 𝑘}, where 𝑘 = 𝐼 (𝑉 ;𝑌 ) − 𝐼 (𝑉 ; 𝑍) such that

S(^(𝐽) |𝒁, 𝐼) ≤ 𝜖

for some 𝜖 > 0 that can be arbitrarily small, where S(𝐾 |𝑍) =
log |K | − 𝐻 (𝐾 |𝑍), K is the range of random variable 𝐾 . In
fact, by setting the size of codebook as above, we can further
construct a partition on the codebook such that

S(𝐼 |𝒁) ≤ 𝜖 .

When applying Lemma 2 to our model, 𝒁 is the wiretap
channel output, 𝐼 and 𝐽 index the lossy description 𝑽 (𝐼, 𝐽) of
state sequence 𝑺𝑏−1 from the last block, ^ is the secret key
mapping constructed in Key Message Codebook Generation.
The proof is given in Appendix B. To bound the information
leakage, let C̄𝐵+1 be all the codebooks used in 𝐵 + 1 blocks.
It follows that

𝐼 (𝑀𝐵+1
1 , 𝑀𝐵+1

2 ; 𝒁𝐵+1 |C̄𝐵+1)
≤ 𝐼 (𝑀𝐵+1

1 , 𝑀𝐵+1
2 ; 𝒁𝐵+1,𝑼𝐵+1 |C̄𝐵+1)

=
∑︁
𝑏

𝐼 (𝑀1,𝑏 , 𝑀2,𝑏; 𝒁𝐵+1,𝑼𝐵+1 |𝑀 [𝑏+1]
1 , 𝑀

[𝑏+1]
2 , C̄𝐵+1)

(𝑎)
≤

∑︁
𝑏

𝐼 (𝑀1,𝑏 , 𝑀2,𝑏; 𝒁𝐵+1,𝑼𝐵+1 |𝑺𝑏 , 𝑀 [𝑏+1]
1 , 𝑀

[𝑏+1]
2 , C̄𝐵+1)

(𝑏)
=

∑︁
𝑏

𝐼 (𝑀1,𝑏 , 𝑀2,𝑏; 𝒁𝑏 ,𝑼𝑏 |𝑺𝑏 , C̄
𝐵+1),

where (𝑎) follows by the independence between (𝑀1,𝑏 , 𝑀2,𝑏)
and 𝑺𝑏 , (𝑏) follows by the independence between
(𝑀1,𝑏 , 𝑀2,𝑏) and (𝑀 [𝑏+1]

1 , 𝑀
[𝑏+1]
2 , 𝒁 [𝑏+1] ,𝑼 [𝑏+1]) given

(𝒁𝑏 ,𝑼𝑏 , 𝑺𝑏). To bound 𝐼 (𝑀1,𝑏 , 𝑀2,𝑏; 𝒁𝑏 ,𝑼𝑏 |𝑺𝑏 , C̄
𝐵+1), it

follows that

𝐼 (𝑀1,𝑏 , 𝑀2,𝑏; 𝒁𝑏 ,𝑼𝑏 |𝑺𝑏 , C̄
𝐵+1)

= 𝐼 (𝑀1,𝑏 , 𝑀2,𝑏; 𝒁𝑏−1,𝑼𝑏−1 |𝑺𝑏 , C̄
𝐵+1)

+ 𝐼 (𝑀1,𝑏 , 𝑀2,𝑏; 𝒁𝑏 ,𝑼𝑏 |𝒁𝑏−1,𝑼𝑏−1, 𝑺𝑏 , C̄
𝐵+1)

= 𝐼 (𝑀1,𝑏 , 𝑀2,𝑏; 𝒁𝑏 ,𝑼𝑏 |𝒁𝑏−1,𝑼𝑏−1, 𝑺𝑏 , C̄
𝐵+1)

= 𝐼 (𝑀10,𝑏 , 𝑀20,𝑏; 𝒁𝑏 ,𝑼𝑏 |𝒁𝑏−1,𝑼𝑏−1, 𝑺𝑏 , C̄
𝐵+1)︸                                                        ︷︷                                                        ︸

=:𝐼1

+ 𝐼 (𝑀11,𝑏 , 𝑀21,𝑏; 𝒁𝑏 ,𝑼𝑏 |𝒁𝑏−1,𝑼𝑏−1, 𝑺𝑏 , 𝑀10,𝑏 , 𝑀20,𝑏 , C̄
𝐵+1)︸                                                                            ︷︷                                                                            ︸

=:𝐼2

,

where 𝐼1 satisfies

𝐼1 ≤ 𝐼 (𝑀10,𝑏 , 𝑀20,𝑏 , 𝒁
𝑏−1,𝑼𝑏−1; 𝒁𝑏 ,𝑼𝑏 |𝑺𝑏 , C̄

𝐵+1)
= 𝐼 (𝑀10,𝑏 , 𝑀20,𝑏; 𝒁𝑏 ,𝑼𝑏 |𝑺𝑏 , C̄

𝐵+1)
+ 𝐼 (𝒁𝑏−1,𝑼𝑏−1; 𝒁𝑏 ,𝑼𝑏 |𝑺𝑏 , 𝑀10,𝑏 , 𝑀20,𝑏 , C̄

𝐵+1)
≤ 𝐼 (𝑀10,𝑏 , 𝑀20,𝑏; 𝒁𝑏 ,𝑼𝑏 |𝑺𝑏 , C̄

𝐵+1)
+ 𝐼 (𝒁𝑏−1,𝑼𝑏−1; 𝒁𝑏 ,𝑼𝑏 , 𝑺𝑏 , 𝑀10,𝑏 , 𝑀20,𝑏 , 𝐾1,𝑏 |C̄

𝐵+1)
(𝑎)
= 𝐼 (𝑀10,𝑏 , 𝑀20,𝑏; 𝒁𝑏 ,𝑼𝑏 |𝑺𝑏 , C̄

𝐵+1)︸                                       ︷︷                                       ︸
=:𝐼11

+ 𝐼 (𝒁𝑏−1,𝑼𝑏−1;𝐾1,𝑏 , 𝐾0,𝑏 |C̄
𝐵+1)︸                                    ︷︷                                    ︸

=:𝐼12

.

where (𝑎) follows by the Markov chain (𝒁𝑏−1,𝑼𝑏−1) −
(𝐾0,𝑏 , 𝐾1,𝑏 , C̄

𝐵+1) − (𝒁𝑏 , 𝑺𝑏 , 𝑀10,𝑏 , 𝑀20,𝑏). By Lemma 1, we
have 𝐼11 ≤ 𝜖 . By Lemma 2 we have

𝐼 (𝐾1,𝑏;𝐾0,𝑏 |C̄
𝐵+1) ≤ 𝐼 (𝐾1,𝑏; 𝒁𝑏−1,𝑼𝑏−1, 𝐾0,𝑏 |C̄

𝐵+1)
≤ S(𝐾1,𝑏 |𝒁𝑏−1,𝑼𝑏−1, 𝐾0,𝑏) ≤ 𝜖,

𝐼 (𝐾0,𝑏; 𝒁𝑏−1,𝑼𝑏−1 | ¯C𝐵+1) ≤ S(𝐾0,𝑏 |𝒁𝑏−1,𝑼𝑏−1) ≤ 𝜖 .

Following the same recurrence argument as in [15] yields

𝐼 (𝐾0,𝑏 , 𝐾1,𝑏; 𝒁𝑏−1,𝑼𝑏−1 |C̄𝐵+1) ≤ 2(𝐵 + 1)𝜖

and 𝐼1 ≤ (2𝐵 + 3)𝜖 . To bound 𝐼2, it follows that

𝐼2 = 𝐼 (𝑀11,𝑏 , 𝑀21,𝑏; 𝒁𝑏 ,𝑼𝑏 |𝒁𝑏−1,𝑼𝑏−1, 𝑺𝑏 , 𝑀10,𝑏 , 𝑀20,𝑏 , C̄
𝐵+1)

≤ 𝐼 (𝑀11,𝑏 , 𝑀21,𝑏 , 𝒁
𝑏−1,𝑼𝑏−1; 𝒁𝑏 ,𝑼𝑏 |𝑺𝑏 , 𝑀10,𝑏 , 𝑀20,𝑏 , C̄

𝐵+1)
= 𝐼 (𝑀11,𝑏 , 𝑀21,𝑏; 𝒁𝑏 ,𝑼𝑏 |𝑺𝑏 , 𝑀10,𝑏 , 𝑀20,𝑏 , C̄

𝐵+1)
+ 𝐼 (𝒁𝑏−1,𝑼𝑏−1; 𝒁𝑏 ,𝑼𝑏 |𝑺𝑏 , 𝑀10,𝑏 , 𝑀20,𝑏 , C̄

𝐵+1
, 𝑀11,𝑏 , 𝑀21,𝑏)

≤ 𝐼 (𝑀11,𝑏 , 𝑀21,𝑏; 𝒁𝑏 ,𝑼𝑏 , 𝐶11,𝑏 , 𝐶21,𝑏 |𝑺𝑏 , 𝑀10,𝑏 , 𝑀20,𝑏 , C̄
𝐵+1)

+ 𝐼 (𝒁𝑏−1,𝑼𝑏−1; 𝒁𝑏 ,𝑼𝑏 |𝑺𝑏 , 𝑀10,𝑏 , 𝑀20,𝑏 , C̄
𝐵+1

, 𝑀11,𝑏 , 𝑀21,𝑏)
= 𝐼 (𝑀11,𝑏 , 𝑀21,𝑏;𝐶11,𝑏 , 𝐶21,𝑏 |𝑺𝑏 , 𝑀10,𝑏 , 𝑀20,𝑏 , C̄

𝐵+1)︸                                                                 ︷︷                                                                 ︸
=:𝐼21

+ 𝐼 (𝑀11,𝑏 , 𝑀21,𝑏; 𝒁𝑏 ,𝑼𝑏 |𝑺𝑏 , 𝑀10,𝑏 , 𝑀20,𝑏 , C̄
𝐵+1

, 𝐶11,𝑏 , 𝐶21,𝑏)︸                                                                            ︷︷                                                                            ︸
=:𝐼22

+ 𝐼 (𝒁𝑏−1,𝑼𝑏−1; 𝒁𝑏 ,𝑼𝑏 |𝑺𝑏 , 𝑀10,𝑏 , 𝑀20,𝑏 , C̄
𝐵+1

, 𝑀11,𝑏 , 𝑀21,𝑏)︸                                                                            ︷︷                                                                            ︸
=:𝐼23

.



Then, it follows that

𝐼21

= 𝐼 (𝑀11,𝑏 , 𝑀21,𝑏;𝐶11,𝑏 , 𝐶21,𝑏 |𝑺𝑏 , 𝑀10,𝑏 , 𝑀20,𝑏 , C̄
𝐵+1)

= 𝐼 (𝑀11,𝑏 , 𝑀21,𝑏;𝐶11,𝑏 , 𝐶21,𝑏 |C̄
𝐵+1)

= 𝐻 (𝐶11,𝑏 , 𝐶21,𝑏 |C̄
𝐵+1) − 𝐻 (𝐶11,𝑏 , 𝐶21,𝑏 |C̄

𝐵+1
, 𝑀11,𝑏 , 𝑀21,𝑏)

(𝑎)
≤ 𝐻 (𝐶11,𝑏 , 𝐶21,𝑏) − 𝐻 (𝐾11,𝑏 , 𝐾21,𝑏 |C̄

𝐵+1)
(𝑏)
≤ 𝐻 (𝐶11,𝑏 , 𝐶21,𝑏) − 𝐻 (𝐾11,𝑏 , 𝐾21,𝑏 |𝐾0,𝑏)
(𝑐)
= 𝐷 (𝑃𝐾1 |𝐾0 | |𝑃𝐶 ) ≤ S(𝐾1,𝑏 |𝒁, 𝐾0,𝑏) ≤ 𝜖,

where (𝑎) follows from the fact that 𝐶𝑖1,𝑏 = 𝑀𝑖1,𝑏 ⊕𝐾𝑖1,𝑏 ,and
𝑀𝑖1,𝑏 is independent of 𝐾𝑖1,𝑏 , 𝑖 = 1, 2, (𝑏) follows by the
Markov chain 𝐾1,𝑏−𝐾0,𝑏−C̄𝐵+1 and 𝐾1,𝑏 = (𝐾11,𝑏 , 𝐾21,𝑏), (𝑐)
follows by the fact that (𝐶11,𝑏 , 𝐶21,𝑏) is uniformly distributed
on [1 : 2𝑛𝑅11 ]× [1 : 2𝑛𝑅21 ] and 𝑃𝐶 is a uniform distribution on
[1 : 2𝑛𝑅11 ] × [1 : 2𝑛𝑅21 ]. Bounds of 𝐼22 and 𝐼23 are similar to
the single-user case in [15] and is omitted here. This completes
the proof.

APPENDIX B
PROOF OF LEMMA 2

In this section we prove Lemma 2. The proof is divided
into two steps. In Step 1, we prove there exists an equal
partition on CV = {CV (𝑘0)}𝑘𝑘0=1, as required by the Wyner-
Ziv Theorem, such that 𝐼 (𝐾0; 𝒁) ≤ 𝜖 . In Step 2, based on the
partition constructed in Step 1, we further construct a secret
key mapping such that the constructed secret key 𝐾1 satisfies

S(𝐾1 |𝒁, 𝐾0) ≤ 𝜖 .
Step 1: The constructions of the partition and the secret

key are based on the following extractor lemma by Csiszár
and Körner [19].

Lemma 3 (Lemma 17.3 in [19]). Let 𝑃 be a distribution on a
finite set V and F be a subset of V such that F = {𝑣 ∈ V :
𝑃(𝑣) ≤ 1/𝑑}. For some positive number 𝜖 , if 𝑃(F ) ≥ 1 − 𝜖 ,
then there exists a randomly selected mapping 𝐺 : V →
{1, . . . , 𝑘} satisfies

𝑘∑︁
𝑚=1

����𝑃(𝐺−1 (𝑚)) − 1
𝑘

���� ≤ 3𝜖 (2)

with probability at least 1 − 2𝑘𝑒−𝜖 2 (1−𝜖 )𝑑/2𝑘 (1+𝜖 ) .
Moreover, if each 𝑃 in a family P satisfies the hypothesis,

then the probability that formula (2) holds for all 𝑃 ∈ P is at
least 1 − 2𝑘 |P |𝑒−𝜖 2 (1−𝜖 )𝑑/2𝑘 (1+𝜖 ) .

Thus, the desired mapping exists if 𝑘 log 𝑘 < 𝜖 2 (1−𝜖 )𝑑 log 𝑒
2(1+𝜖 ) log 2 |P | .

This realization of 𝐺 is denoted by 𝑔.

The proof in this step uses the technique in the proof of
Lemma 17.5 and Theorem 17.21 in [19] where the key idea
is to construct set F and distribution family P satisfying
conditions in Lemma 3. We set parameters as follows.

𝑑 = 𝐼 (𝑉 ; 𝑆) − 𝐼 (𝑉 ;𝑌 ), 𝑘 = 𝐼 (𝑉 ; 𝑆) − 𝐼 (𝑉 ;𝑌 ) − 𝜏
P = 𝑃𝑉 𝑛

⋃
{𝑃𝑛
𝑉 |𝒛 : 𝒛 ∉ E},

(3)

where E is a subset of Z𝑛 with exponentially small probability
and will be defined later, and 𝑃𝑉 𝑛 is a uniform distribution on
the codebook CV . Let 𝜎, 𝛿, Z be positive real numbers such
that Z < 𝛿 < 𝜎. Define set

T1 = {𝒔 : 𝑇𝑛𝑃𝑆𝑉 , 𝛿 [𝒔] ≠ ∅}

and let 𝑓 be a function on T1 such that ( 𝑓 (𝑺), 𝑺) ∈
𝑇𝑃𝑆𝑉 , 𝛿 , 𝑓 (𝑺) ∈ CV . Further extend 𝑓 to function on S𝑛 by
setting 𝑓 (𝒔) to some fixed sequence in V𝑛 for 𝒔 ∉ T1. By [19,
Corollary 17.9A], such a function 𝑓 always exists by setting
the size of |CV | = 2𝑛(𝐼 (𝑉 ;𝑆)+𝜏) . Define set

T2 = {(𝒔, 𝒛) : 𝒔 ∈ T1, ( 𝑓 (𝒔), 𝒔, 𝒛) ∈ 𝑇𝑛𝑃𝑉𝑆𝑍 ,𝜎}

and let 𝜒 be the indicator function of set T2. Then, the joint
distribution of (𝒗, 𝒔, `) is given by

𝑃(𝒗, 𝒛, `) = 𝑃𝑟{ 𝑓 (𝑺) = 𝒗, 𝒁 = 𝒛, 𝜒(𝑺, 𝒁) = `}
=

∑︁
𝒔: 𝑓 (𝒔)=𝒗,𝜒 (𝒔,𝒛)=`

𝑃𝑛𝑆𝑍 (𝒔, 𝒛) (4)

Define set B = {(𝒗, 𝒛, 1) : 𝒗 ∈ CV , 𝒛 ∈ 𝑇𝑛𝑃𝑍 ,Z , 𝑇
𝑛
𝑃𝑉𝑆𝑍 ,𝜎

[𝒗, 𝒛] ≠
∅}. It follows that 𝑃(B) ≥ 𝑃𝑛

𝑆𝑍
(T2) − 𝑃𝑛𝑍 ((𝑇𝑛𝑃𝑍 ,Z )

𝑐) ≥ 1 − [2

for some exponentially small number [ and

|B|
(𝑎)
≤

∑︁
𝒛∈𝑇 𝑛

𝑃𝑍 ,Z

���{𝒗 : 𝒗 ∈ 𝑇𝑛
𝑃𝑉𝑍 ,𝜎 |S | [𝒛]}

���
≤ 2𝑛(𝐻 (𝑍 )+𝜖 )2𝑛(𝐼 (𝑉 ;𝑆)+𝜏−𝐼 (𝑉 ;𝑍 )+𝜖 ) ,

where (𝑎) follows by [19, Lemma 2.10]. For any (𝒗, 𝒛, 1) ∈ B,
by (4) and the definition of T2 we have

𝑃(𝒗, 𝒛, 1) ≤
∑︁

𝒔∈𝑇 𝑛
𝑃𝑉𝑆𝑍 ,𝜎

[𝒗,𝒛 ]
𝑃𝑛𝑆𝑍 (𝒔, 𝒛)

≤ 2𝑛(𝐻 (𝑆 |𝑉 𝑍 )+𝜖 )2−𝑛(𝐻 (𝑆𝑍 )−𝜖 ) <
1

𝛼 |B| ,

where 𝛼 = 2−𝑛(5𝜖 +𝜏) . Define B𝒛,1 := {𝒗 : (𝒗, 𝒛, 1) ∈ B}.
By [19, (17.15)], 𝒛 ∈ 𝑇𝑛

𝑃𝑍 ,Z
implies 𝑇𝑛

𝑃𝑉𝑍 , 𝛿
[𝒛] ≠ ∅, and 𝒗 ∈

𝑇𝑛
𝑃𝑉𝑍 , 𝛿

[𝒛] is a sufficient condition of 𝑇𝑛
𝑃𝑉𝑆𝑍 ,𝜎

[𝒗, 𝒛] ≠ ∅. Thus,
the size of B𝒛,1 can be lower bounded by��B𝒛,1

�� ≥ ���{𝒗 : 𝒗 ∈ 𝑇𝑛𝑃𝑉𝑍 , 𝛿 [𝒛], 𝒗 ∈ CV }
��� ≥ 2𝑛(𝐼 (𝑉 ;𝑆)−𝐼 (𝑉 ;𝑍 )+𝜏−𝜖 ) .

Now define D := {𝒛 : 𝑃𝑛
𝑍
(𝒛) ≥ 𝛼2 |B𝒛,1 |

|B | } and B ′ := B⋂{CV×
D}. By our assumption that 𝐼 (𝑉 ;𝑌 ) − 𝐼 (𝑉 ; 𝑍) > 𝜏1 > 2𝜏 +
16𝜖 > 0, for any (𝒗, 𝒛, 1) ∈ B ′ with 1 being the value of the
indicator function 𝜒,

𝑃𝑽 |𝒁 ,1 (𝒗 |𝒛, 1) =
𝑃(𝒗, 𝒛, 1)
𝑃𝒁 ,1 (𝒛, 1)

≤ 1
𝛼3 min |B𝒛,1 |

<
1
𝑑

and

𝑃𝑽𝒁 ,1 (B ′) ≥ 𝑃𝑽𝒁 ,1 (B) − 𝑃𝒁 ,1 (D𝑐) ≥ 𝑃𝑽𝒁 ,1 (B) − 𝛼2 ≥ 1 − [2
1

for exponentially small number [1. Now for each 𝒛, denote
B ′
𝒛,1 the set {𝒗 : (𝒗, 𝒛, 1) ∈ B ′} and E , {(𝒛, 1) :

𝑃𝑽 |𝒁 ,1 (B ′
𝒛,1 |𝒛, 1) ≤ 1 − [1}, we have 𝑃𝒁 ,1 (E) < [1. For each

𝒛 ∉ E, the distribution 𝑃𝑽 |𝒁 ,1 (·|𝒛, 1) satisfies the condition in



Lemma 3 with setting F = B ′
𝒛,1 (F is defined in Lemma 3)

and hence there exists a mapping satisfying (2) for all
𝑃𝑽 |𝒁 ,1 (·|𝒛, 1), (𝒛, 1) ∉ E.

For the uniform distribution, we define the set F = CV .
Since 𝑃𝑽 (𝒗) = 1

|CV|
< 1

𝑑
for any 𝒗 ∈ CV and 𝑃𝑽 (CV) = 1,

the conditions in Lemma 3 are also satisfied. The constructed
mapping satisfies

𝑘∑︁
𝑚=1

����𝑃𝑽 (𝑔−1 (𝑚)) − 1
𝑘

���� ≤ 3Y, (5)

𝑘∑︁
𝑚=1

����𝑃𝑽 |𝒁 ,1 (𝑔−1 (𝑚) |𝒛, 1) − 1
𝑘

���� ≤ 3Y for (𝒛, 1) ∉ E (6)

for some exponentially small number Y. By (6) and the
definition of the secure index S, it follows that

𝐼 (𝑔(𝑽); 𝒁) ≤ S(𝑔(𝑽) |𝒁) ≤ Y′ (7)

for some exponentially small number Y′. The partition on the
codebook arises from the mapping 𝑔. A codeword 𝒗 belongs
to bin 𝑘 if 𝑔(𝒗) = 𝑘 . Notice here by (5), the partition is
not necessarily an equi-partition. Now let 𝑔(𝑽) be a random
variable on CV following a nearly uniform distribution defined
by the mapping 𝑔.

Lemma 4. [20, Lemma 4] For any given codebook C, if the
function 𝑔 : C → [1 : 𝑘] satisfies (5), there exists a partition
{C𝑚}𝑘𝑚=1on C such that

1) |C𝑚 | = |C |
𝑘

for all 𝑚 ∈ [1 : 𝑘],
2) 𝐻 (𝐾0 |𝑔(𝑽)) < 4

√
𝜖 log 𝑘 ,

where 𝐾0 = 𝑔𝑒𝑞𝑢𝑎𝑙 (𝑽) is the index of the bin containing 𝑽,
and 𝑔𝑒𝑞𝑢𝑎𝑙 is the new mapping inducing the equal partition.

Now according to (7) and the above lemma, we have

𝐼 (𝐾0; 𝒁) ≤ 𝐼 (𝐾0, 𝑔(𝑽); 𝒁)
= 𝐼 (𝑔(𝑽); 𝒁) + 𝐼 (𝐾0; 𝒁 |𝑔(𝑽))
= 𝐼 (𝑔(𝑽); 𝒁) + 𝐻 (𝐾0 |𝑔(𝑽))
≤ 3Y + 4

√
Y log 𝑘.

Note that Y is an exponentially small number, and hence, the
information leakage is also exponentially small.

Step 2: The proof in Step 2 is almost the same as that
in Step 1 and is in fact the direct part proof of Theorem
17.21 in [19]. Here we replace the function 𝑓 in Step 1 by
a pair of functions 𝜙1 × 𝜙2 : S → K0 × K1 on T1 such that
(𝑽 (𝜙1 (𝑺), 𝜙2 (𝑺)), 𝑺) ∈ 𝑇𝑛𝑃𝑉𝑆 , 𝛿 , where 𝜙1 (𝑺) = 𝑔𝑒𝑞𝑢𝑎𝑙 ( 𝑓 (𝑺))
and 𝑔𝑒𝑞𝑢𝑎𝑙 is the final mapping we construct in Step 1.
The result of 𝜙2 is the index of 𝑽 in sub-bin CV (𝜙1 (𝑺)).
Rewriting the set B as B = {(𝑘0, 𝑘1, 𝒛, 1) : 𝑘0 ∈ K0, 𝑘1 ∈
K1, 𝒛 ∈ 𝑇𝑛

𝑃𝑍 ,Z
, 𝑇𝑛
𝑃𝑉𝑆𝑍 ,𝜎

[𝒗(𝑘0, 𝑘1), 𝒛] ≠ ∅} and set B𝒛,1 as
B𝑘0 ,𝒛,1 = {𝑘1 : (𝑘0, 𝑘1, 𝒛, 1) ∈ B}, the remaining proof is the
same as Step 1 and can be found in [19, Proof of Theorem
17.21]. The finally constructed mapping ^ satisfies

S(^(𝜙2 (𝑺)) |𝒁, 𝜙1 (𝑺)) ≤ 𝜖

and the proof is completed.

APPENDIX C
PROOF OF EXAMPLE 1

Setting 𝑝 = 𝑃𝑟{𝑆 = 1}. We first consider region R1. Set
variables as follows,

𝑉 = 𝑆,𝑈2 = ∅, 𝑋1 = 𝑈1, 𝑋2 = 𝑈

with (𝑈,𝑈1) and 𝑆 being independent and 𝑈 v 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖( 1
2 )

and 𝑈1 v 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖( 1
2 ). It follows that 𝐼 (𝑈1; 𝑍 |𝑆,𝑈) =

𝐼 (𝑈1; 𝑍 |𝑆,𝑈,𝑈2) = 𝐼 (𝑈1,𝑈2; 𝑍 |𝑆,𝑈) = 0. We further have

𝐼 (𝑈1;𝑌 |𝑉,𝑈,𝑈2) = 𝐼 (𝑈1;𝑌 |𝑆,𝑈) = 𝐻 (𝑌 |𝑆,𝑈)
= 𝑃𝑟{𝑆 = 1}𝐻 (𝑌 |𝑈, 𝑆 = 1) = 1 − 𝑝,
𝐼 (𝑉,𝑈,𝑈1,𝑈2;𝑌 ) − 𝐼 (𝑉 ; 𝑆) = 𝐻 (𝑌 ) − 𝐻 (𝑆) = 1 − ℎ(𝑝),

where ℎ(𝑝) = −𝑝 log 𝑝 − (1 − 𝑝) log(1 − 𝑝). Note that the
mutual information term 𝐼 (𝑉 ;𝑌 ) = 𝐼 (𝑆;𝑌 ) ≥ 0. Hence, a rate
pair (𝑅1, 0) satisfying 𝑅1 = min{1− 𝑝, 1−ℎ(𝑝)} is achievable.
Now consider region R2. Restricting 𝑅2 = 0 and assigning all
secret key rate to Sender 1, it follows that

𝐼 (𝑈1; 𝑍 |𝑈2, 𝑆) = 𝐼 (𝑈1; 𝑋2 |𝑈2, 𝑆) = 0,
𝐻 (𝑆 |𝑍) = 𝐻 (𝑆 |𝑍,𝑈1) = 𝐻 (𝑆),

and the maximum rate can be achieved by Sender 1 will
not be greater than 𝐼 (𝑈1;𝑌 |𝑈2). Hence, it is sufficient to
prove 𝐼 (𝑈1;𝑌 |𝑈2) < min{1− 𝑝, 1− ℎ(𝑝)}, where 𝐼 (𝑈1;𝑌 |𝑈2)
is in fact the constraint on 𝑅1 in the achievable rate
region of MAC with causal CSI using Shannon strategy.
To see this, note that 𝐼 (𝑈1;𝑌 |𝑈2) is a convex function of
conditional distribution 𝑃𝑌 |𝑈1𝑈2 , where 𝑃𝑌 |𝑈1𝑈2 (𝑦 |𝑢1, 𝑢2) =∑
𝑥1 ,𝑥2 ,𝑠 𝑃𝑌 |𝑋1𝑋2𝑆 (𝑦 |𝑥1, 𝑥2, 𝑠)𝑃𝑋1 |𝑈1𝑆 (𝑥1 |𝑢1, 𝑠)

𝑃𝑋2 |𝑈2𝑆 (𝑥2 |𝑢2, 𝑠)𝑃𝑆 (𝑠) is a linear function of 𝑃𝑋1 |𝑈1𝑆

and 𝑃𝑋2 |𝑈2𝑆 . Hence, it is also a convex function of 𝑃𝑋1 |𝑈1𝑆

and 𝑃𝑋2 |𝑈2𝑆 , where the maximum is achieved in extreme
points. Thus there is no loss of generality to replace the
distribution 𝑃𝑋1 |𝑈1𝑆 and 𝑃𝑋2 |𝑈2𝑆 with deterministic functions
𝑥1 (𝑢1, 𝑠) and 𝑥2 (𝑢2, 𝑠), respectively. It is shown by Example
4 in [7] that 𝐼 (𝑈1;𝑌 |𝑈2) < min{1 − 𝑝, 1 − ℎ(𝑝)} holds when
𝑝 is sufficiently large.

For the second channel model, consider the case that 𝑅1 = 0.
For Coding scheme 1, it follows that

𝐼 (𝑈2; 𝑍 |𝑈, 𝑆) = 𝐼 (𝑈2; 𝑋2 |𝑈, 𝑆)
(𝑎)
= 𝐼 (𝑈2; 𝑋2 |𝑈, 𝑆,𝑈1)

where (𝑎) follows by the fact that (𝑈2, 𝑋2) is independent to
𝑈1 given 𝑈. We further have

𝐼 (𝑈2;𝑌 |𝑉,𝑈,𝑈1) = 𝐻 (𝑈2 |𝑉,𝑈,𝑈1) − 𝐻 (𝑈2 |𝑉,𝑈,𝑈1, 𝑌 )
(𝑎)
≤ 𝐻 (𝑈2 |𝑆,𝑈,𝑈1) − 𝐻 (𝑈2 |𝑉,𝑈,𝑈1, 𝑌 , 𝑆)
(𝑏)
= 𝐻 (𝑈2 |𝑆,𝑈,𝑈1) − 𝐻 (𝑈2 |𝑈,𝑈1, 𝑌 , 𝑆)
(𝑐)
= 𝐼 (𝑈2;𝑌 |𝑆,𝑈,𝑈1)
= 𝐼 (𝑈2; 𝑋1 + 𝑋2 |𝑆,𝑈,𝑈1),

where (𝑎) follows by the fact that 𝑈2 is independent to 𝑆 given
𝑈 and conditions decrease entropy, (𝑏) follows from the fact
that 𝑉 is independent to anything else given 𝑆, (𝑐) follows by



substituting the channel model into the mutual information.
Applying the chain rule of mutual information yields

𝐼 (𝑈2; 𝑋1 + 𝑋2, 𝑋2 |𝑆,𝑈,𝑈1)
= 𝐼 (𝑈2; 𝑋2 |𝑆,𝑈,𝑈1) + 𝐼 (𝑈2; 𝑋1 + 𝑋2 |𝑆,𝑈,𝑈1, 𝑋2)
= 𝐼 (𝑈2; 𝑋2 |𝑆,𝑈,𝑈1) + 𝐼 (𝑈2; 𝑋1 |𝑆,𝑈,𝑈1, 𝑋2)
(𝑎)
= 𝐼 (𝑈2; 𝑋2 |𝑆,𝑈,𝑈1)
= 𝐼 (𝑈2; 𝑋1 + 𝑋2 |𝑆,𝑈,𝑈1) + 𝐼 (𝑈2; 𝑋2 |𝑆,𝑈,𝑈1, 𝑋1 + 𝑋2)

where (𝑎) holds since 𝑈2 is independent to 𝑋1 given
(𝑆,𝑈,𝑈1, 𝑋2). By the nonnegativity of the mutual information,
we have 𝐼 (𝑈2; 𝑍 |𝑈, 𝑆) = 𝐼 (𝑈2; 𝑋2 |𝑆,𝑈,𝑈1) ≥ 𝐼 (𝑈2; 𝑋1 +
𝑋2 |𝑆,𝑈,𝑈1) = 𝐼 (𝑈2;𝑌 |𝑆,𝑈,𝑈1). Hence, region R1 reduces
to R13. Now assign all the secret key rate to Sender 2. The
achievable rate of Sender 2 satisfies

𝑅2 ≤ 𝐼 (𝑉 ;𝑌 ) − 𝐼 (𝑉 ; 𝑍,𝑈,𝑈2)
= 𝐼 (𝑉 ;𝑌 ) − 𝐼 (𝑉 ; 𝑋2,𝑈,𝑈2)
(𝑎)
≤ 𝐼 (𝑉 ;𝑌 )

(𝑏)
≤ 𝐼 (𝑆;𝑌 ) = 𝐻 (𝑆) − 𝐻 (𝑆 |𝑌 )

(𝑐)
≤ ℎ(𝑝),

where (𝑎) follows by the nonnegativity of mutual information,
(𝑏) follows by data process inequality, the equality in (𝑐) holds
when 𝑉 = 𝑆 and 𝑆 can be determined by 𝑌 , which means
𝑋1 + 𝑋2 takes some fixed numbers. Now considering the case
that 𝑉 = 𝑆 and 𝑋1 + 𝑋2 are fixed. Without loss generality,
assume 𝑋1 + 𝑋2 = 0. The second constraint on Sender 2 in
Coding scheme 1 is

𝐼 (𝑈2;𝑌 |𝑆,𝑈,𝑈1) = 𝐻 (𝑌 |𝑆,𝑈,𝑈1) − 𝐻 (𝑌 |𝑆,𝑈,𝑈1,𝑈2)
(𝑎)
= 0,

where (𝑎) holds since 𝑌 is determined by 𝑆 when 𝑋1 + 𝑋2 = 0
is fixed. Hence, the rate of Sender 2 is 𝑅2 = 0 in this case.
We conclude that 𝑅2 < ℎ(𝑝) using Coding scheme 1 for this
model.

For Coding scheme 2, setting 𝑋1 = 𝑈1, 𝑋2 = 𝑈2,𝑈1 v
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖( 1

2 ) and 𝑈2 v 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖( 1
2 ), the first constraint on

Sender 2 is

𝐼 (𝑈2;𝑌 |𝑈1) = 𝐼 (𝑋2;𝑌 |𝑋1) = 𝐻 (𝑌 |𝑋1) − 𝐻 (𝑌 |𝑋1, 𝑋2)
= 1 − ℎ(𝑝).

The secret key rate of Sender 2 in this case is

𝐻 (𝑆 |𝑍,𝑈2) − 𝐻 (𝑆 |𝑌,𝑈1,𝑈2) = 𝐻 (𝑆) − 𝐻 (𝑆 |𝑌, 𝑋1, 𝑋2) = ℎ(𝑝).

When the distribution of channel states satisfies 1 − ℎ(𝑝) ≥
ℎ(𝑝), we have (0, ℎ(𝑝)) can be achieved by Coding scheme
2 but cannot be achieved by Coding scheme 1.

APPENDIX D
PROOF OF THEOREM 3

To see this, we first prove the achievability of Coding
scheme 1. Setting 𝑉 = 𝑆 and 𝑌 = (𝑌, 𝑆) in region R𝐶𝑆𝐼−𝑆𝐶𝑆𝐼

𝐷
,

the constraint on 𝑅1 by Coding scheme 1 is

𝑅1 ≤ 𝐼 (𝑈1;𝑌, 𝑆 |𝑈, 𝑋2, 𝑆) − 𝐼 (𝑈1; 𝑍 |𝑈, 𝑋2, 𝑆) + 𝐻 (𝑆 |𝑍,𝑈, 𝑋2)
= 𝐼 (𝑈1;𝑌 |𝑈, 𝑋2, 𝑆) − 𝐼 (𝑈1; 𝑍 |𝑈, 𝑋2, 𝑆) + 𝐻 (𝑆 |𝑍,𝑈, 𝑋2)

and 𝑅1 ≤ 𝐼 (𝑈1;𝑌 |𝑈, 𝑋2, 𝑆). Now by strong functional repre-
sentation lemma [21], for any random variables (𝑋1, 𝑆,𝑈) with
conditional distribution 𝑃𝑋1𝑆 |𝑈 , one can construct a random
variable 𝑈1 such that 𝑋1 can be specified by a deterministic
function 𝑥1 (𝑢, 𝑢1, 𝑠) and 𝑈1 is independent of 𝑆 given 𝑈.
Together with the fact that 𝑆 is independent of 𝑈, we have

𝐼 (𝑈1;𝑌 |𝑈, 𝑋2, 𝑆)
(𝑎)
= 𝐼 (𝑈1, 𝑋1;𝑌 |𝑈, 𝑋2, 𝑆)

(𝑏)
= 𝐼 (𝑋1;𝑌 |𝑈, 𝑋2, 𝑆),

where (𝑎) follows by the deterministic function 𝑥1 (𝑢, 𝑢1, 𝑠)
and (𝑏) follows by the Markov chain (𝑈,𝑈1) − (𝑋1, 𝑋2, 𝑆) −
(𝑌, 𝑍). Term 𝐼 (𝑈1; 𝑍 |𝑈, 𝑋2, 𝑆) follows similarly. The sum rate
satisfies

𝑅1 + 𝑅2 ≤ 𝐼 (𝑆,𝑈,𝑈1, 𝑋2;𝑌, 𝑆) − 𝐼 (𝑆; 𝑆) − 𝐼 (𝑈1; 𝑍 |𝑈, 𝑋2, 𝑆)
+ 𝐻 (𝑆 |𝑍,𝑈, 𝑋2)

= 𝐼 (𝑈,𝑈1, 𝑋2;𝑌 |𝑆) − 𝐼 (𝑈1; 𝑍 |𝑈, 𝑋2, 𝑆) + 𝐻 (𝑆 |𝑍,𝑈, 𝑋2).

Applying strong functional representation lemma again com-
pletes the proof. For Coding scheme 2, we have

𝑅1 ≤𝐼 (𝑈1;𝑌 |𝑈, 𝑋2) − 𝐼 (𝑈1; 𝑍 |𝑋2,𝑈, 𝑆) − 𝐻 (𝑆 |𝑈,𝑈1, 𝑋2, 𝑌 )
+ 𝐻 (𝑆 |𝑍,𝑈, 𝑋2)

(𝑎)
= 𝐼 (𝑈1;𝑌, 𝑆 |𝑈, 𝑋2) − 𝐼 (𝑈1; 𝑆 |𝑈, 𝑋2, 𝑌 )

− 𝐼 (𝑈1; 𝑍, 𝑆 |𝑋2,𝑈)
− 𝐻 (𝑆 |𝑈,𝑈1, 𝑋2, 𝑌 ) + 𝐻 (𝑆 |𝑍,𝑈, 𝑋2)

= 𝐼 (𝑈1;𝑌 |𝑈, 𝑋2, 𝑆) − 𝐼 (𝑈1; 𝑍 |𝑈, 𝑋2, 𝑆) − 𝐻 (𝑆 |𝑈, 𝑋2, 𝑌 )
+ 𝐻 (𝑆 |𝑈, 𝑋2, 𝑍),

= 𝐼 (𝑈1, 𝑆;𝑌 |𝑈, 𝑋2) − 𝐼 (𝑈1, 𝑆; 𝑍 |𝑈, 𝑋2) (8)

where (𝑎) follows by the strictly causal assumption and
the fact that 𝑆 is independent of (𝑈,𝑈1, 𝑋2). Replacing 𝑌

with (𝑌, 𝑆) and applying functional representation lemma
(FRL)[22] gives the desired bound. The rest of the proof
follows similarly and is omitted here. To prove the converse,
it follows that

𝑛𝑅1 = 𝐻 (𝑀1)
≤ 𝐼 (𝑀1;𝒀 , 𝑺 |𝑀0, 𝑿2) − 𝐼 (𝑀1; 𝒁 |𝑀0, 𝑿2) + 𝛿
(𝑎)
= 𝐼 (𝑀1;𝒀 , 𝑺 |𝒁, 𝑀0, 𝑿2) + 𝛿
≤ 𝐼 (𝑀1, 𝑿1, 𝑺;𝒀 , 𝑺 |𝒁, 𝑀0, 𝑿2) + 𝛿
= 𝐼 (𝑿1, 𝑺;𝒀 , 𝑺 |𝒁, 𝑀0, 𝑿2)

+ 𝐼 (𝑀1;𝒀 , 𝑺 |𝒁, 𝑀0, 𝑿2, 𝑿1, 𝑺) + 𝛿
(𝑏)
= 𝐼 (𝑿1, 𝑺;𝒀 , 𝑺 |𝒁, 𝑀0, 𝑿2) + 𝛿
= 𝐻 (𝑿1, 𝑺 |𝒁, 𝑀0, 𝑿2) − 𝐻 (𝑿1, 𝑺 |𝒁, 𝑀0, 𝑿2,𝒀 , 𝑺) + 𝛿
(𝑐)
= 𝐻 (𝑿1, 𝑺 |𝒁, 𝑀0, 𝑿2) − 𝐻 (𝑿1, 𝑺 |𝑀0, 𝑿2,𝒀 , 𝑺) + 𝛿
= 𝐼 (𝑿1, 𝑺;𝒀 , 𝑺 |𝑀0, 𝑿2) − 𝐼 (𝑿1, 𝑺; 𝒁 |𝑀0, 𝑿2) + 𝛿 (9)

where (𝑎), (𝑐) follows by the degradedness of the wiretap
channel, (𝑏) follows from the Markov chain (𝑀1, 𝑀0) −



(𝑿1, 𝑿2, 𝑺) − (𝒀 , 𝒁). Set 𝑈𝑖 = (𝑌 𝑖−1, 𝑆𝑖−1, 𝑿2, 𝑀0), it follows
that 𝑈𝑖 is independent of 𝑆𝑖 . Then, we have

𝐼 (𝑿1, 𝑺;𝒀 , 𝑺 |𝑀0, 𝑿2) − 𝐼 (𝑿1, 𝑺; 𝒁 |𝑀0, 𝑿2)

=

𝑛∑︁
𝑖=1

𝐼 (𝑿1, 𝑺;𝑌𝑖 , 𝑆𝑖 |𝑌 𝑖−1, 𝑆𝑖−1, 𝑀0, 𝑿2)

− 𝐼 (𝑿1, 𝑺; 𝑍𝑖 |𝑍 𝑖−1, 𝑀0, 𝑿2)

=

𝑛∑︁
𝑖=1

𝐻 (𝑌𝑖 , 𝑆𝑖 |𝑌 𝑖−1, 𝑆𝑖−1, 𝑀0, 𝑿2)

− 𝐻 (𝑌𝑖 , 𝑆𝑖 |𝑌 𝑖−1, 𝑆𝑖−1, 𝑀0, 𝑿2, 𝑿1, 𝑺)
− 𝐻 (𝑍𝑖 |𝑍 𝑖−1, 𝑀0, 𝑿2) + 𝐻 (𝑍𝑖 |𝑍 𝑖−1, 𝑀0, 𝑿2, 𝑿1, 𝑺)

(𝑎)
≤

𝑛∑︁
𝑖=1

𝐻 (𝑌𝑖 , 𝑆𝑖 |𝑈𝑖 , 𝑋2,𝑖) − 𝐻 (𝑌𝑖 , 𝑆𝑖 |𝑈𝑖 , 𝑋2,𝑖 , 𝑋1,𝑖 , 𝑆𝑖)

− 𝐻 (𝑍𝑖 |𝑌 𝑖−1, 𝑆𝑖−1, 𝑍 𝑖−1, 𝑀0, 𝑿2)
+ 𝐻 (𝑍𝑖 |𝑌 𝑖−1, 𝑆𝑖−1, 𝑀0, 𝑿2, 𝑋1,𝑖 , 𝑆𝑖)

(𝑏)
=

𝑛∑︁
𝑖=1

𝐻 (𝑌𝑖 , 𝑆𝑖 |𝑈𝑖 , 𝑋2,𝑖) − 𝐻 (𝑌𝑖 , 𝑆𝑖 |𝑈𝑖 , 𝑋2,𝑖 , 𝑋1,𝑖 , 𝑆𝑖)

− 𝐻 (𝑍𝑖 |𝑌 𝑖−1, 𝑆𝑖−1, 𝑀0, 𝑿2)
+ 𝐻 (𝑍𝑖 |𝑌 𝑖−1, 𝑆𝑖−1, 𝑀0, 𝑿2, 𝑋1,𝑖 , 𝑆𝑖)

=

𝑛∑︁
𝑖=1

𝐼 (𝑋1,𝑖 , 𝑆𝑖;𝑌𝑖 , 𝑆𝑖 |𝑈𝑖 , 𝑋2,𝑖) − 𝐼 (𝑋1,𝑖 , 𝑆𝑖; 𝑍𝑖 |𝑈𝑖 , 𝑋2,𝑖)

= 𝑛(𝐼 (𝑋1;𝑌, 𝑆 |𝑈, 𝑋2, 𝑆) − 𝐼 (𝑋1; 𝑍 |𝑈, 𝑋2, 𝑆) + 𝐻 (𝑆 |𝑍,𝑈, 𝑋2)),
where (𝑎) and (𝑏) follows by the Markov chain (𝑈𝑖 , 𝑀0) −
(𝑋1,𝑖 , 𝑋2,𝑖 , 𝑆𝑖) − (𝑌𝑖 , 𝑍𝑖) and the degradedness of the wiretap
channel. The second constraint on 𝑅1 follows similarly and is
omitted here. For the sum rate, it follows that

𝑛(𝑅0 + 𝑅1)
= 𝐻 (𝑀0) + 𝑛𝑅1

≤ 𝐼 (𝑀0;𝒀 , 𝑺) + 𝑛𝑅1 + 𝛿

≤
𝑛∑︁
𝑖=1

𝐼 (𝑀0;𝑌𝑖 , 𝑆𝑖 |𝑌 𝑖−1, 𝑆𝑖−1) + 𝐼 (𝑋1,𝑖 , 𝑆𝑖;𝑌𝑖 , 𝑆𝑖 |𝑈𝑖 , 𝑋2,𝑖)

− 𝐼 (𝑋1,𝑖 , 𝑆𝑖; 𝑍𝑖 |𝑈𝑖 , 𝑋2,𝑖) + 𝛿

≤
𝑛∑︁
𝑖=1

𝐼 (𝑀0, 𝑌
𝑖−1, 𝑆𝑖−1, 𝑿2;𝑌𝑖 , 𝑆𝑖) + 𝐼 (𝑋1,𝑖 , 𝑆𝑖;𝑌𝑖 , 𝑆𝑖 |𝑈𝑖 , 𝑋2,𝑖)

− 𝐼 (𝑋1,𝑖 , 𝑆𝑖; 𝑍𝑖 |𝑈𝑖 , 𝑋2,𝑖) + 𝛿

=

𝑛∑︁
𝑖=1

𝐼 (𝑈𝑖 , 𝑋1,𝑖 , 𝑋2,𝑖 , 𝑆𝑖;𝑌𝑖 , 𝑆𝑖) − 𝐼 (𝑋1,𝑖 , 𝑆𝑖; 𝑍𝑖 |𝑈𝑖 , 𝑋2,𝑖) + 𝛿

= 𝑛(𝐼 (𝑋1, 𝑋2; 𝑆) − 𝐼 (𝑋1; 𝑍 |𝑈, 𝑋2, 𝑆) + 𝐻 (𝑆 |𝑍,𝑈, 𝑋2) + 𝛿).
The second constraint on the sum rate follows similarly and
is omitted here.

APPENDIX E
PROOF OF EXAMPLE 2

Converse: By Appendix D and replacing (𝑌, 𝑆) with 𝑌 , it
follows that (for simplicity, we omit 𝛿.)

𝑛𝑅1 ≤ 𝐼 (𝑿1, 𝑺;𝒀 |𝑀0, 𝑿2) − 𝐼 (𝑿1, 𝑺; 𝒁 |𝑀0, 𝑿2)

= (𝐻 (𝒀 |𝑀0, 𝑿2) − 𝐻 (𝒀 |𝑀0, 𝑿2, 𝑿1, 𝑺)) − (𝐻 (𝒁 |𝑀0, 𝑿2)
− 𝐻 (𝒁 |𝑀0, 𝑿2, 𝑿1, 𝑺))

= (𝐻 (𝒀2 |𝑀0, 𝑿2) + 𝐻 (𝒀1 |𝑀0, 𝑿2,𝒀2))
− (𝐻 (𝒁 |𝑀0, 𝑿2) − 𝑛ℎ(𝑝))

(𝑎)
≤ 𝑛 + 𝑛ℎ(𝑞) − (𝐻 (𝒀2 ⊕ 𝑁 |𝑀0, 𝑿2) − 𝑛ℎ(𝑝)),

where (𝑎) follows by 𝐻 (𝒀2 |𝑀0, 𝑿2) ≤ ∑𝑛
𝑖=1 𝐻 (𝑌𝑖) ≤ 𝑛.

Hence, there exists some 𝛼 ∈ [ 1
2 , 1] such that

𝑛𝑅1 ≤ 𝑛ℎ(𝛼) + 𝑛ℎ(𝑞) − (𝐻 (𝒀2 ⊕ 𝑁 |𝑀0, 𝑿2) − 𝑛ℎ(𝑝)).

To bound 𝐻 (𝒀2 ⊕ 𝑁 |𝑀0, 𝑿2), we invoke Lemmas 5 and 6 in
[3] (proposed in [23]).

𝐻 (𝒀2 ⊕ 𝑁 |𝑀0, 𝑿2)
= E𝑀0 ,𝑿2 [𝐻 (𝒀2 ⊕ 𝑁 |𝑀0 = 𝑚0, 𝑿2 = 𝒙2)]
(𝑎)
≥ E𝑀0 ,𝑿2

[
𝑛ℎ

(
𝑝 ∗ ℎ−1

(
𝐻 (𝒀2 |𝑀0 = 𝑚0, 𝑿2 = 𝒙2)

𝑛

))]
(𝑏)
≥ 𝑛ℎ

(
𝑝 ∗ ℎ−1

(
E𝑀0 ,𝑿2

[
𝐻 (𝒀2 |𝑀0 = 𝑚0, 𝑿2 = 𝒙2)

𝑛

] ))
= 𝑛ℎ

(
𝑝 ∗ ℎ−1

(
𝐻 (𝒀2 |𝑀0, 𝑿2)

𝑛

))
= 𝑛ℎ

(
𝑝 ∗ ℎ−1

(
𝑛ℎ(𝛼)
𝑛

))
= 𝑛ℎ(𝑝 ∗ 𝛼).

where (𝑎) follows by Lemma 6 in [3], (𝑏) follows by Lemma
5 in [3]. Combining previous bounds yields

𝑛𝑅1 ≤ 𝑛ℎ(𝛼) + 𝑛ℎ(𝑞) − 𝑛ℎ(𝑝 ∗ 𝛼) + 𝑛ℎ(𝑝). (10)

For the second constraint, by Appendix D, we have

𝑛𝑅1 ≤ 𝐼 (𝑿1;𝒀 |𝑀0, 𝑿2, 𝑺)
= 𝐼 (𝑿1, 𝑺;𝒀 |𝑀0, 𝑿2) − 𝐼 (𝑺;𝒀 |𝑀0, 𝑿2)
(𝑎)
= 𝐼 (𝑿1, 𝑺;𝒀 |𝑀0, 𝑿2) − 𝐻 (𝑺)
= 𝑛ℎ(𝛼) + 𝑛ℎ(𝑞) − 𝑛ℎ(𝑞) = 𝑛ℎ(𝛼). (11)

where (𝑎) follows by the fact that 𝑺 is independent to
(𝑀0, 𝑿2) and the receiver can always recover 𝑺 by 𝑆𝑖 =

𝑌1,𝑖 	 𝑌2,𝑖 .
For the first constraint of the sum rate, by Appendix D, we

have

𝑛(𝑅1 + 𝑅2) ≤ 𝐼 (𝑀0;𝒀) + 𝑛𝑅1

≤ 𝐼 (𝑀0, 𝑿2;𝒀) + 𝑛𝑅1

≤ 𝐼 (𝑀0, 𝑿1, 𝑿2, 𝑺;𝒀) − 𝐼 (𝑿1, 𝑺; 𝒁 |𝑀0, 𝑿2)
≤ 𝑛 + 𝑛ℎ(𝑞) − 𝑛ℎ(𝛼 ∗ 𝑝) + 𝑛ℎ(𝑝). (12)

The second constraint follows similarly and is omitted.
Direct Part: The achievable region is obtained by first

applying FRL to (8) directly, and other terms follows similarly
by setting 𝑈2 = 𝑋2 in region R𝐶𝑆𝐼−𝐸

𝐷,21 and using FRL as (8).
Then, set 𝑃𝑟{𝑋2 = 1} = 1 and define 𝑋1 = 𝑈 ⊕ 𝑆 ⊕ 𝑋 ′,
where 𝑃𝑟{𝑈 = 1} = 1

2 , 𝑋 ′ is a random variable independent
to (𝑈, 𝑋2, 𝑆, 𝑁) with 𝑃𝑟{𝑋 ′ = 1} = 𝛽 such that 𝑞 ∗ 𝛽 = 𝛼 for
some 𝛼 ∈ [ 1

2 , 1]. The proof is completed.
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