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Abstract

The risk estimator called “Direct Eigenvalue Estimator” (DEE) is studied. DEE was developed for small
sample regression. In contrast to many existing model selection criteria, derivation of DEE requires neither
any asymptotic assumption nor any prior knowledge about the noise variance and the noise distribution. It
was reported that DEE performed well in small sample cases but DEE performed a little worse than the
state-of-the-art ADJ. This seems somewhat counter-intuitive because DEE was developed for specifically
regression problem by exploiting available information exhaustively, while ADJ was developed for general
setting. In this paper, we point out that the derivation of DEE includes an inappropriate part in spite that
the resultant form of DEE is valid in a sense. As its result, DEE cannot derive its potential. We introduce
a class of ‘valid’ risk estimators based on the idea of DEE and show that better risk estimators (mDEE)
can be found in the class. By numerical experiments, we verify that mDEE often performs better than or
at least equally the original DEE and ADJ.

1 Introduction

The most famous approach of model selection is to derive a risk estimator and to choose the model minimizing it.
This type of model selection includes cross-validation and so-called “information criteria” including AIC (Akaike,
1972), BIC (Schwartz, 1979), GIC (Konishi and Kitagawa, 1996) and so on. Basically, information criteria have
been derived by using asymptotic expansion, which requires the sample number n to go to the infinity. Though
the cross-validation was not derived by asymptotic assumption, its unbiasedness or performance is guaranteed
basically by asymptotic theory. For regression, Chapelle et al. (2002) proposed an interesting model selection
criteria called Direct Eigenvalue Estimator (DEE). DEE has the following remarkable characteristics: (i) DEE
is an approximately unbiased risk estimator for finite n. (ii) no asymptotic assumption (n → ∞) is necessary
to derive it. (iii) no prior knowledge about the noise variance and the noise distribution is necessary. Due
to these virtues, DEE is expected to perform nicely for small sample cases. DEE requires two assumptions
in its derivation instead of using the asymptotic assumption. The first assumption is that a large number of
unlabeled data are available in addition to the labeled data. This assumption is often made in recent machine
learning literatures and is practical because the unlabeled data can usually be gathered automatically. The
other assumption is most important, which imposes statistical independence between the inside-the-model part
and the outside-the-model part of the dependent variable y. This assumption holds not exactly in general
but hold approximately. By numerical experiments, Chapelle et al. (2002) showed that DEE performed better
than many of the conventional information criteria and the cross-validation. However, they also reported that
another criterion ADJ (Schuurmans, 1997) often performed better than DEE. It should be noted here that the
comparison between ADJ and DEE is fair since ADJ also assumes that a lot of unlabeled data are available. Even
though ADJ is the state-of-the-art, that result seems somewhat strange because DEE was derived specifically
for regression by exploiting the properties of regression exhaustively while the derivation of ADJ is somewhat
heuristic and was developed for general setting. By careful investigation, we found an inappropriate part in the
derivation process of DEE, although the resultant form of DEE is ‘valid’ in a sense. As a result, DEE cannot
derive its potential. To clarify these facts, we formulate the derivation process of DEE again and introduce
a class of ‘valid’ risk estimators based on the idea of DEE. Then, we show that DEE belongs to this class
but is not close to the optimal estimator among this class. Indeed, we can find several more reasonable risk
estimators (mDEE) in this class. The variations arise from how to balance a certain bias-variance trade-off.
The performance of mDEE is investigated by numerical experiments. We compare the performance of mDEE
with the original DEE, ADJ and other existing model selection methods.
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This paper is an extended version of the conference paper (Kawakita et al., 2010). We pointed out the
above inappropriate part in the derivation of DEE and proposed a naive modification in the paper. However,
theoretical analysis and numerical experiments are significantly strengthened in this paper.

The paper is organized as follows. We set up a regression problem and introduce some notations in Section
2. In Section 3, we briefly review the result of Chapelle et al. (2002) and explain which part is inappropriate
in the derivation of DEE. In Section 4, a class of valid risk estimators are defined. We explain why DEE is
valid but not close to the optimal estimator in this class. In addition, some modifications of DEE are proposed.
Section 6 provided numerical experiments to investigate the performance of our proposal. The conclusion is
described in Section 7.

2 Setup and Notations

We employ a usual regression setting as reviewed briefly below. Let X ⊂ ℜM and Y := ℜ. Suppose that we
have training data D := {(x1, y1), (x2, y2), · · · , (xn, yn)} generated from the joint density p(x, y) = p(x)p(y|x)
i.i.d. (independently and identically distributed), where (xi, yi) ∈ X × Y for each i. Here, we further assume
the following regression model:

yi = f∗(xi) + ξi, (1)

where f∗(x) is a certain regression function belonging to L2(X ) and ξi is a noise random variable which is subject
to pξ(ξ) with mean zero and variance σ2 and is independent of x. This implies that p(y|x) = pξ(y− f∗(x)). The
goal of regression problem is to estimate f∗(x) based on the given data set. To estimate f∗(x), let us consider
a model of regression function defined by

f(x; ᾱ) :=

∞∑

k=1

ᾱkφk(x), (2)

where ᾱ = (ᾱ1, ᾱ2, · · · )T . Here, T denotes the transposition of vectors or a matrices. Just for convenience, we
can assume that {φk(x)} is a basis of L2(X ). If not, we can always extend it as such without loss of generality.
By this assumption, there exists ᾱ∗ := (ᾱ∗

1, ᾱ
∗
2, · · · )T such that f∗(x) ≡ f(x; ᾱ∗) almost everywhere. Our task

now reduces to find an estimator f̂(x) of f(x; ᾱ∗) as accurate as possible. Its accuracy is measured by the loss
function (Mean Squared Error) defined as

L(f̂) := Ex,y[(y − f̂(x))2]. (3)

Here, Ex,y[·] denotes the expectation with respect to random variables x, y. Similarly, each expectation E has
subscripts expressing over which random variables the expectation is taken. Since f(x; ᾱ) essentially can express
an arbitrary element of L2(X ), f(x; ᾱ) itself is too flexible and tends to cause overfitting in general. Therefore,
we usually use a truncated version of f(x; ᾱ) as a model

Md :=

{
fd(x;α) :=

d∑

k=1

αkφk(x)

∣∣∣∣α = (α1, α2, · · · , αd)
T ∈ ℜd

}
,

where d is a positive integer. The ideal estimate of parameter α is obtained by minimizing the loss function L
in (3) with respect to α. However, L is not available because the distribution p(x, y) is unknown. Therefore,
we usually minimize an empirical loss function based on D, which is defined as

LD(fd(·;α)) :=
1

n

n∑

i=1

(yi − fd(xi;α))
2. (4)

For notation simplicity, we define y = (y1, y2, · · · , yn)T and Φ as (n×d) matrix whose (i, k) component is φk(xi).
Then, LD(fd(·;α)) = (1/n)‖y − Φα‖2, where ‖ · ‖ is the Euclidean norm. The estimator α̂(D) minimizing LD

is referred to as Least Squares Estimator (LSE), i.e.,

α̂(D) := argmin
α∈ℜd

LD(fd(·;α)) = (ΦTΦ)−1ΦT y. (5)

We sometimes drop (D) of α̂(D) for notation simplicity. An important task is to choose the optimal d. When d
is too large, fd tends to overfit, while fd cannot approximate f∗(x) with too small d. To choose d, we assume that
additional unlabeled data DU := {x′

1, x
′
2, · · · , x′

n′} are available, where each x′
j is subject to p(x) independently.
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The number of unlabeled data n′ is assumed to be significantly larger than n. Note that DU is used not for
parameter estimation but only for model selection as well as Chapelle et al. (2002). The basic idea to choose d
is as follows. The following risk (expected loss function)

R∗(d) := ED[L(fd(·; α̂(D)))] (6)

is often employed to measure the performance of the model. Hence, one of natural strategies is deriving an
estimate of R∗(d) (denoted by R̂D(d)) using D∪DU , and then choosing the model as d̂ := argmind R̂D(d). Many
researchers have proposed estimators of R∗(d) so far. In the next section, we introduce one of such estimators,
which was proposed by Chapelle et al. (2002).

3 Review of Direct Eigenvalue Estimator

Most of past information criteria have been derived based on asymptotic expansion. That is, they postulate that
n → ∞. In contrast, Chapelle et al. (2002) derived a risk estimator called DEE (Direct Eigenvalue Estimator)
without using asymptotic assumption. In this section, we briefly review DEE and explain that its derivation
includes an inappropriate part. As is well known, LD(fd(·; α̂(D))) is not an unbiased estimator of R∗(d). That
is,

bias(LD(fd(·; α̂(D)))) := ED[LD(fd(·; α̂(D))) −R∗(d)]

is not equal to zero. Let T ∗(n, d) be

T ∗(n, d) =
ED[L(fd(·; α̂(D)))]

ED[LD(fd(·; α̂(D)))]
.

Using T ∗(n, d), let us consider the following risk estimator

R̂∗
D(d) := T ∗(n, d)LD(fd(·; α̂(D))).

It is immediate to see that this estimator is exactly unbiased, i.e., bias(R̂∗
D(d)) = 0. That is, T ∗(n, d) is a

so-called bias-correcting term. Remarkably, this estimator corrects the bias multiplicatively, whereas the most
of existing information criteria correct the bias additively like AIC. Chapelle et al. (2002) showed that T ∗(n, d)
can be calculated as the following theorem.

Theorem 1 (Chapelle et al., 2002). Let φ1(x) ≡ 1. Define Ĉ := (1/n)ΦTΦ. Suppose that the following
assumptions hold.n

A1 Assume that {φk(x)|k = 1, 2, · · · , d} is orthonormal with respect to the expectation inner product <
a(x), b(x) >p:= Ex[a(x)b(x)], i.e.,

∀k, ∀k′, < φk(X), φk′(X) >p= δkk′ , (7)

where δkk′ is Kronecker’s delta.

A2 Let f∗
d := minf∈Md

L(f). Define ỹi := yi − f∗
d (xi) and ỹ := (ỹ1, ỹ2, · · · , ỹn). Assume that

“ỹ and Φ are statistically independent.” (8)

Then T ∗(n, d) is exactly calculated as

T ∗(n, d) =
1 + (1/n)ED[Tr(Ĉ−1)]

1− (d/n)
. (9)

See Chapelle et al. (2002) for the meaning of the assumption A2. A key fact is that Theorem 1 holds for

finite n and the resultant form of T ∗(n, d) does not depend on any unknown quantities except ED[Tr(Ĉ−1)].

In addition, it seems to be not difficult to find valid estimators of ED[Tr(Ĉ−1)]. Indeed, Chapelle et al. (2002)
derived its estimator as

Tr
(
Ĉ−1C̃

)
, (10)

where C̃ is defined by C̃ = 1
n′
(Φ′)TΦ′ and Φ′ is an (n′ × d) matrix whose (j, k) component is φk(x

′
j). The

resultant risk estimator is called DEE and is given by

R̂DEE
D (d) =

1 + (1/n)Tr(Ĉ−1C̃)

1− (d/n)
LD(fd(·; α̂(D))). (11)

3



Note that the resultant bias correction factor is invariant under coordinate transformation. That is, the or-
thonormal assumption (7) can be removed by chance. However, this is somewhat queer. DEE was derived based
on (9) but (9) is not invariant under coordinate transformation (it was derived by assuming the orthonormality

of basis). Actually, (10) is not a consistent estimator of ED[Tr(Ĉ−1)] in non-orthonormal case. This is because
the derivation of estimator (10) includes an inappropriate part. We explain it in the remark at the end of
this section. However, we must emphasize that the resultant form of DEE in (11) is valid as a risk estimator
in a sense in spite of the above fact. Indeed, DEE dominated other model selection methods in numerical
experiments, as reported by Chapelle et al. (2002). However, due to the inappropriate derivation, DEE cannot
demonstrate its potential performance. We will explain it in details in the next section.

Remark We explain here which part of the derivation of DEE is inappropriate. Chapelle et al. (2002) derived

(10) as follows. First, they rewrote ED[Tr(Ĉ−1)] as

ED[Tr(Ĉ−1)] = ED

[
d∑

k=1

(1/λk)

]
,

where λk is the k-th eigenvalue of Ĉ. The subsequent part is described by quoting the corresponding part of
their paper (page 16 of Chapelle et al. (2002)). Note that some notations and equation numbers are replaced
in order to be consistent with this paper.

Quote 1 (Derivation of DEE). In the case when along with training data, unlabeled data are available (x without

y), one can compute two covariance matrices: one from unlabeled data C̃ and another from the training data

Ĉ. There is a unique matrix P (Horn and Johnson, 1985; Corollary 7.6.5) such that

PT C̃P = Id and PT ĈP = Λ, (12)

where Λ is a diagonal matrix with diagonal elements λ1, λ2, · · · , λd. To perform model selection, we used
the correcting term in (9), where we replace E

∑d
k=1 1/λk with its empirical value,

d∑

k=1

1/λk = Tr
(
P−1Ĉ−1(PT )−1PT C̃P

)

= Tr
(
Ĉ−1C̃

)
. (13)

However, Corollary 7.6.5 in Horn and Johnson (1985) does not guarantee the existence of a matrix P satisfying
(12). We quote the statement of the corollary.

Quote 2 (Corollary 7.6.5 in Horn and Johnson (1985)). If A ∈ Mn is positive definite and B ∈ Mn is Hermitian,
then there exists a nonsingular matrix C ∈ Mn such that C∗BC is diagonal and C∗AC = I.

Here, Mn denotes the set of all square matrices of dimension n, whose elements are complex numbers.
Furthermore, the symbol ∗ denotes the Hermitian adjoint. As seen in the quote, the above corollary only
guarantees that PT C̃P = Id and PT ĈP is diagonal. However, Quote 1 claims that PT ĈP must be not only
a diagonal matrix but also a diagonal matrix whose elements are equal to the eigenvalues of Ĉ (See the bold
part of Quote 1). This claim does not hold correct in general. Indeed, (13) is queer. Since (13) implies that

Tr(Ĉ−1) = Tr(Ĉ−1C̃) for any unlabeled data, unlabeled data plays exactly no role.

4 Modification of Direct Eigenvalue Estimator

In this section, we consider what estimators are valid based on the idea of Chapelle et al. and which estimator
is ‘good’ among valid estimators. To do so, let us calculate the bias correction factor T ∗(n, d) without the
orthonormal assumption (7). As described before, the invariance of DEE under coordinate transformation was
obtained based on the inappropriate way.

Theorem 2. Let φ1(x) ≡ 1. Suppose that only the assumption A2 is satisfied in Theorem 1. Then T ∗(n, d)
is exactly calculated as

T ∗(n, d) =
1 + (1/n)ED[Tr(CĈ−1)]

1− (d/n)
, (14)

where C = [Ckk′ ] is a (d× d) matrix with Ckk′ := Ex[φk(x)φk′ (x)].
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See Section 5.1 for its proof. The form of (14) is invariant under coordinate transformation. It is natural
because the definition of T ∗(n, d) is invariant under coordinate transformation due to the property of LSE. There

remain two unknown quantities C and V := ED[Ĉ−1] in (14). Remarkably, both of them can be estimated using
only the information about covariates x. Let us define D0 := {x1, x2, · · · , xn} and Dx := D0 ∪ DU . Taking
Theorem 2 into account, it is natural to consider the following class of risk estimators.

Definition 3 (a class of valid risk estimators). We say that a risk estimator R̂D(d) is valid (in the sense of

DEE) if there exists a consistent estimator1 Ĥ(Dx) of CV such that

R̂D(d) = T̂ (n, d)LD(fd(·; α̂)), T̂ (n, d) :=
1 + (1/n)Tr(Ĥ(Dx))

1− (d/n)
.

We can easily understand that the resultant form of DEE is valid under some regularity conditions because
C̃ and Ĉ−1 in (11) are statistically independent and are consistent estimators of C and V respectively. We
imagine that Chapelle et al. knew the result of Theorem 2 because they implied this result in Remark 3 of
Section 2.2 of (Chapelle et al., 2002). Based on this fact, they seemingly recognized that the resultant form of
DEE is valid. However, it is unclear that DEE is close to the optimal estimator in this class. In general, V is
more difficult to estimate than C because V is based on the inverse matrix of Ĉ. More concretely, Ĉ−1 tends to
fluctuate more largely than Ĉ especially when n is not large enough. Hence, spending more samples to estimate
V seems to be a reasonable strategy. However, DEE spends the most of Dx (i.e., n′ samples) to estimate C and
spends only n samples to estimate V . Note that this strategy of DEE for estimation of CV has no necessity
since the corresponding part was derived inappropriately. Therefore, let us discuss what estimators are good in
among valid risk estimators. We start from the following theorem.

Theorem 4. Let R̂D be a valid risk estimator with Ĥ(Dx). Define R̂∗
D(α̂) := T ∗(n, d)LD(fd·; α̂) with

T ∗(n, d) in (14). If Ĥ(Dx) depends on only unlabeled data i.e., Ĥ(Dx) = Ĥ(DU ), then

ED

[(
R∗(d)− R̂D(d)

)2]
= ED

[ (
R∗(d)− R̂∗

D(d)
)2 ]

+2
bias(Ĥ)

n− d
cov(R̂∗

D(d), LD(fd(·; α̂(D)))) +
MSE(Ĥ)

(n− d)2
ED

[
LD(fd(·; α̂(D)))2

]
. (15)

Here, cov(X,Y ) denotes usual covariance between X and Y and

bias(Tr(Ĥ)) := E[Tr(Ĥ)− Tr(CV )], MSE(Tr(Ĥ)) := E

[(
Tr
(
Ĥ
)
− Tr (CV )

)2]
.

The first term of the right side of (15) is independent of the choice of Ĥ . It expresses error of the ideally

unbiased (but unknown) risk estimator R̂∗
D(d). The second term is of order O(1/n) while the third term is of

order O(1/n2). Therefore, it is natural to use an unbiased estimator of CV as Ĥ . If Ĥ is unbiased,

ED

[(
R∗(d)−R̂D(d)

)2]
= ED

[(
R∗(d)−R̂∗

D(d)
)2]

+
Var

(
Ĥ
)

(n− d)2
ED

[
LD(fd(·; α̂(D)))2

]
, (16)

where Var(Ĥ) denotes a variance of Tr(Ĥ). That is, as long as Ĥ is unbiased, Ĥ having the smallest Var(Ĥ)
gives the best performance. This fact motivates us to consider the following estimator. Let us divide the
unlabeled data set DU into two data sets D1

U := {x′
1, x

′
2, · · · , x′

n1
} and D2

U := {x′
n1+1, x

′
n1+2, · · · , x′

n1+n2
} for

estimating C and V respectively. Furthermore, we divide D2
U into B2 := ⌊n2/n⌋ subsets such that the b-th

subset is
Db := {x′

(b−1)·n+1+n1
, x′

(b−1)·n+2+n1
, · · · , x′

b·n+n1
}.

As a result, eachDb is an i.i.d. copy ofD0. Define Ĉb as an empirical correlationmatrix of φ(x) = (φ1(x), φ2(x), · · · , φd(x))
T

based on Db. Then, it is natural to estimate V as

V̂ :=
1

B2

B2∑

b=1

Ĉ−1
b .

1That is, Ĥ(Dx) converges to the true value CV in probability as n and n′ go to the infinity.

5



On the other hand, we can estimate C using D1
U simply as

Ĉ+ :=
1

n1




n1∑

j=1

φ(x′
j)φ(x

′
j)

T


 .

Then, we simply make Ĥ1 := Ĉ+V̂ . The resultant risk estimator is

R̂1
D :=

1 + (1/n)Tr(Ĥ1)

1− (d/n)
LD(fd(·; α̂(D))). (17)

We refer to this modified version of DEE as mDEE1. There are other possible variations depending on how to
estimate C and V based on unlabeled data. We prepare the three candidates shown in Table 1. Both mDEE2

Table 1: Variation of mDEE. This table expresses which data are used to estimate C and V .

data used for Ĉ+ data used for V̂
mDEE1 D1

U D2
U

mDEE2 D1
U DU

mDEE3 DU DU

and mDEE3 construct Ĉ+, V̂ and Ĥ in the same way as mDEE1. We write Ĥ used for mDEE1-3 as Ĥ1, Ĥ2

and Ĥ3. While mDEE1 has no overlapped samples between Ĉ+ and V̂ , mDEE3 uses all unlabeled data to
estimate both C and V . The other estimator mDEE2 is their intermediate. By checking some properties of
these estimators, we have the following theorem.

Theorem 5. Assume that both n1 and n2 can be divided by n. Let B1 := n1/n, B2 := n2/n and B := n′/n.

Let µ and ν be column vectors obtained by vectorizing C and V respectively. Similarly, we vectorize Ĉa and
Ĉ−1

b as µ̂a and ν̂b. We also define µ̂ and ν̂ as i.i.d. copies of µ̂a and ν̂b. Then,

bias(Ĥ1) = 0, bias(Ĥ2) = bias(Ĥ3) =
d− Tr(CV )

B
,

Var(Tr(Ĥ1)) =
Tr (Var(µ̂)Var(ν̂))

B1B2
+

Tr
(
Var(ν̂)µµT

)

B2
+

Tr
(
Var(µ̂)ννT

)

B1
.

Furthermore, if we fix B (or equivalently n and n′), the variance of Tr(Ĥ1) is minimized by the ceiling or
flooring of

B∗
1 =

{ (
a1−

√
a1a2

a1−a2

)
B if a1 6= a2

B/2 otherwise
, (18)

where

a1:=
Tr(Var(µ̂)Var(ν̂))

B
+Tr(Var(µ̂)ννT ), a2 :=

Tr(Var(µ̂)Var(ν̂))

B
+Tr(Var(ν̂)µµT ).

See Section 5.3 for its proof. The estimator mDEE1 seems to be the most reasonable estimator because
its first order term O(1/n) vanishes. Furthermore, MSE(Ĥ1) = Var(Tr(Ĥ1)) can be calculated explicitly as in
Theorem 5. This is beneficial because the optimal balance of sample numbers used to estimate C and V , i.e.,
B∗

1 , can be estimated as follows. By the above theorem, it suffices to estimate the quantities a1 and a2 in order
to estimate B∗

1 . Both quantities can be calculated if we know µ, ν, Var(µ̂) and Var(ν̂). We estimate them such
as

µ̄ =
1

B

B∑

b=1

µ̂b, ν̄ =
1

B

B∑

b=1

ν̂b,

Var(µ̂) =
1

B − 1

B∑

b=1

(µ̂bµ̂
T
b − µ̄µ̄T ), Var(ν̂) =

1

B − 1

B∑

b=1

(ν̂bν̂
T
b − ν̄ν̄T ).

Thus, we propose to choose the optimal B1 as the rounded value of (18) with a1 and a2 calculated by using the
above empirical estimates.
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In contrast to the case of mDEE1, the estimators mDEE2 and mDEE3 admit the bias. Therefore, we should
discuss their performance through (15) instead (16). Then, we must care about MSE of Ĥ . Recall that MSE
can be decomposed into bias and variance terms (for example, see (Hastie et al., 2001)), i.e.,

MSE(Ĥ) = E

[(
Tr(Ĥ)− Tr(CV )

)2]

= E

[(
Tr
(
Ĥ
)
− E

[
Tr
(
Ĥ
)])2]

+
(
E
[
Tr
(
Ĥ
)]

− Tr(CV )
)2

= Var(Tr(Ĥ)) + bias(Tr(Ĥ))2.

The estimators mDEE2 and mDEE3 are developed to decrease the variance of Ĥ at cost of the bias increase.
This is effective when the variance is much larger than bias. If the bias increases, the second term of (15) gets

larger. When we can obtain unlabeled data as many as we like, bias(Tr(Ĥ)) can be decreased to zero as B → ∞
by Theorem 5. MSE also decreases to zero as B → ∞ because of the consistency of Ĥ. Nevertheless, if the
number of unlabeled data is not enough, we have to take care which is better mDEE1 or mDEE2-3.

Many readers may think that the variance of Tr(Ĥ2) should be calculated to estimate the optimal B1 for
mDEE2. Surely, it is possible. However, the resultant form is excessively complicated and includes the third
and the fourth cross moments. Hence, the resultant way to choose B1 is also computationally expensive and
instable when d gets large. Thus, we do not employ the exact variance evaluation and survey the performance
of mDEE2 by numerical simulations.

Finally, we review again DEE. DEE does not satisfy the assumption of Theorem 4 because Ĥ of DEE utilizes
D0. When Ĥ is allowed to depend on D0, then we cannot obtain any clear result like Theorem 4. Hence, we
cannot compare DEE and mDEE through Theorem 4. However, DEE looks similar to mDEE1 when B1 = B−1
is selected. Since B1 of mDEE1 is optimized by the above way, mDEE1 does not necessarily behave similarly
to DEE. Actually, it will be turned out by numerical experiments that the estimated B∗

1 for mDEE1 tends to
be very small compared to B. This fact indicates that the most unlabeled data should be used to estimate V .
As a result, DEE does not exploit available data efficiently.

5 Proofs of Theorems

In this section, we provide proofs to all original theorems.

5.1 Proof of Theorem 2

Proof. We do not need to trace the whole derivation of DEE. The result for non-orthonormal cases is obtained
by using (9) as follows. For convenience, let φ(x) := (φ1(x), φ2(x), · · · , φd(x))

T for each d. Because the basis is
not orthonormal, C = Ex[φ(x)φ(x)

T ] is not an identity matrix. Using C, define

φ′(x) := C−1/2φ(x).

Then, {φ′
k(x)|k = 1, 2, · · · , d} comprises an orthonormal basis of Span(φ). Note that the LSE estimate of

regression function does not change if we replace the original basis {φk(x)} with this orthonormal basis {φ′
k(x)}.

Therefore, using the basis {φ′
k(x)}, we obtain the same result as (14) except the replacement of Ĉ with Ĉ′ =

(1/n)(Φ′)TΦ′, where φ′ is a matrix whose (i, k) element is φ′
k(xi). Noting that Φ′ = ΦC−1/2, we can rewrite Ĉ′

as

Ĉ′ =
1

n
C−1/2ΦTΦC−1/2 = C−1/2ĈC−1/2.

Substituting this into (14), we obtain a new version of (14) as

T ∗(n, d) =
1 + (1/n)Tr(ED[C1/2Ĉ−1C1/2])

1− (d/n)
=

1 + (1/n)Tr(CED[Ĉ−1])

1− (d/n)

for non-orthonormal cases.
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5.2 Proof of Theorem 4

Proof. The left side of (15) is calculated as

ED

[(
R∗(d)− R̂D(d)

)2]
= ED

[ (
R∗(d)− R̂∗

D(d)
)2

+
(
R̂∗

D(d)− R̂D(d)
)2

+2
(
R∗(d)− R̂∗

D(d)
)(

R̂∗
D(d)− R̂D(d)

) ]
. (19)

The last term is calculated as

E
[(

R∗(d)− R̂∗
D(d)

)(
R̂∗

D(d)− R̂D(d)
)]

= E
[(

R∗(d)− R̂∗
D(d)

) (
T ∗(n, d)− T̂ (n, d)

)
LD(fd(·; α̂(D)))

]

= E
[(

R∗(d)− R̂∗
D(d)

)
LD(fd(·; α̂(D)))

]
E
[(

T ∗(n, d)− T̂ (n, d)
)]

= cov(R̂∗
D(d), LD(fd(·; α̂(D))))E

[(
T̂ (n, d)− T ∗(n, d)

)]
.

The second last equality is obtained since T̂ (n, d) is statistically independent of D (T̂ (n, d) depends only on
DU ). The second term of (19) is calculated as

E
[ (

R̂∗
D(d) − R̂D(d)

)2 ]
= E

[(
T ∗(n, d)− T̂ (n, d)

)2
LD(fd(·; α̂(D)))2

]

= E

[(
T ∗(n, d)− T̂ (n, d)

)2]
E
[
LD(fd(·; α̂(D)))2

]
.

The proof is completed by noting that

T̂ (n, d)− T ∗(n, d) =
1 + 1

nTr
(
Ĥ
)
−
(
1 + 1

nTr (CV )
)

1− (d/n)
=

Tr
(
Ĥ
)
− Tr (CV )

n− d
.

5.3 Proof of Theorem 5

Proof. Let us partition the whole unlabeled data set DU into subsets consisting of n samples. We write them
as D1, D2, · · · , DB. Then, we can write D1

U = ∪B1

a=1Da and D2
U = ∪B

b=B1+1Db. As before, each empirical

correlation matrix based on Db is denoted by Ĉb. The bias of Ĥ1 trivially vanishes because of the statistical
independence between Ĉ+ and V̂ . As for mDEE2, it holds that

Ĥ2 =

(
1

B1

B1∑

a=1

Ĉa

)(
1

B

B∑

b=1

Ĉ−1
b

)
=

1

B1B

B1∑

a=1

B∑

b=1

ĈaĈ
−1
b .

Taking expectation, we have

E[Ĥ2] =
1

B1B

B1∑

a=1

B∑

b=1

E[ĈaĈ
−1
b ] =

1

B1B

B1∑

a=1

B∑

b=1

(δabId + (1− δab)CV )

=
1

B1B
(B1Id + (BB1 −B1)CV ) =

1

B
(Id + (B − 1)CV ) .

Hence, the bias of Tr(Ĥ2) is

E[Tr(Ĥ2)− Tr(CV )] =
d− Tr(CV )

B
.

This does not depend on B1, so that Tr(Ĥ3) has the same bias. Next, we calculate the variance of Tr(Ĥ1). Let
B1 = {1, 2, ..., B1} and B2 = {B1 + 1, B1 + 2, ..., B}. Since B1 and B2 are disjoint, ETr(ĈaĈ

−1
b ) = µT ν for
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any a ∈ B1 and b ∈ B2. Hence, we have

Var(Tr(Ĥ1)) =E
( 1

B1B2

∑

a∈B1

∑

b∈B2

Tr(ĈaĈ
−1
b )− µT ν

)2

=E
( 1

B1B2

∑

a∈B1

∑

b∈B2

µ̂T
a ν̂b − µT ν

)2

=
1

B2
1B

2
2

E
( ∑

a∈B1

∑

b∈B2

(
µ̂T
a ν̂b − µT ν

))2

=
1

B2
1B

2
2

∑

a∈B1

∑

b∈B2

∑

c∈B1

∑

d∈B2

E
(
µ̂T
a ν̂b − µT ν

)(
µ̂T
c ν̂d − µT ν

)
.

We will make a case argument for the terms in the last summation. If c 6= a and b 6= d, both factors are
independent of each other. Hence, we have

E
(
µ̂T
a ν̂b − µT ν

)(
µ̂T
c ν̂d − µT ν

)
= 0.

If c = a and d 6= b, we have

E
(
µ̂T
a ν̂b − µT ν

)(
µ̂T
c ν̂d − µT ν

)
= E

(
µ̂T
a ν̂b − µT ν

)(
µ̂T
a ν̂d − µT ν

)

= E
(
µ̂T
a ν − µT ν

)(
µ̂T
a ν − µT ν

)

= E(µ̂T
a − µT )ν(µ̂T

a − µT )ν

= Tr(Var(µ̂)ννT )

Similarly, if c 6= a and d = b, we have

E
(
µ̂T
a ν̂b − µT ν

)(
µ̂T
c ν̂d − µT ν

)
= Tr(µµTVar(ν̂)).

Finally, if c = a and b = d,

E
(
µ̂T
a ν̂b − µT ν

)(
µ̂T
c ν̂d − µT ν

)

= E(µ̂T
a ν̂b − µT ν)2 = E(µ̂T

a (ν̂b − ν) + (µ̂T
a − µT )ν)2

= E
(
(µ̂T

a − µT )(ν̂b − ν) + µT (ν̂b − ν) + (µ̂T
a − µT )ν

)2
.

Since the three terms in the last side are not correlated to each other, we have

E(µ̂T
a ν̂b − µT ν)2 = E

(
(µ̂T

a − µT )(ν̂b − ν)
)2

+ E
(
µT (ν̂b − ν)

)2
+ E

(
(µ̂T

a − µT )ν
)2

= Tr(Var(µ̂)Var(ν̂)) + Tr(µµTVar(ν̂)) + Tr(Var(µ̂)ννT ).

Therefore, we have

Var(Tr(Ĥ1))

=
1

B2
1B

2
2

(
B1B2Tr(Var(µ̂)Var(ν̂)) +B2

1B2Tr(µµ
TVar(ν̂)) + B1B

2
2Tr(Var(µ̂)νν

T )
)

=
1

B1B2

(
Tr(Var(µ̂)Var(ν̂)) +B1Tr(µµ

TVar(ν̂)) +B2Tr(Var(µ̂)νν
T )
)
.

Finally, we minimize the variance in terms of B1. Since B is fixed, B2 = B − B1. Using 1/(B(B − B1)) =

(1/B)(1/B + 1/(B −B1)), Var(Tr(Ĥ1)) is rewritten as

Var(Tr(Ĥ1)) =
1

B1

(
Tr (Var(µ̂)Var(ν̂))

B
+Tr

(
Var(µ̂)ννT

))

+
1

B −B1

(
Tr (Var(µ̂)Var(ν̂))

B
+Tr

(
Var(ν̂)µµT

))

=
a1
B1

+
a2

B −B1
.
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By regarding Var(Tr(Ĥ1)) as a continuous function of B1 and differentiating it,

d

dB1
Var(Tr(Ĥ1)) =

a2
(B −B1)2

− a1
B2

1

.

By setting this to zero, we obtain the second order equation of B1. Its solution is

(
a1 ±

√
a1a2

a1 − a2

)
B.

It is easy to check that (a1+
√
a1a2)/(a1−a2) /∈ (0, 1) while (a1−

√
a1a2)/(a1−a2) ∈ (0, 1). Since Var(Tr(Ĥ1))

is convex in B1 ∈ (0, B), the minimum is attained by (a1 −
√
a1a2)/(a1 − a2). Therefore, the optimal integer

B1 is its ceiling or floor.

6 Numerical Experiments

By numerical experiments, we compare the performance of mDEE with the original DEE and ADJ and other
existing methods. We basically employ the same setting as Chapelle et al. (2002). Define Fourier basis functions
φk : ℜ → ℜ as

φ1(x) = 1, φ2p(x) =
√
2 cos(px), φ2p+1(x) =

√
2 sin(px).

The regression model fd : ℜM → ℜ is defined by

fd(x;α) =
M∑

m=1

d∑

k=1

αkφk(xm), (20)

where xm denotes the m-th component of x. Note that fd(x;α) cannot span L2(X ) even with d → ∞ when
M > 1. For each d = 1, 2, · · · , d̄, we compute LSE2 α̂(D) for model Md. Then, we calculate various risk

estimators (model selection criteria) for each d and choose d̂ minimizing it. The performance of each risk
estimator is measured by so-called regret defined by the log ratio of risk to the best model:

log

(
R̂D(fd̂(x; α̂(D)))

mind R̂D(fd(x; α̂(D)))

)
. (21)

Here, R̂D(fd(·; α̂(d))) expresses a test error, R̂D(fd(x; α̂(d))) :=
1
n̄

∑n̄
i=1(y

′′
i −fd(x

′′
i ; α̂(d)))

2, where the test data
{(x′′

i , y
′′
i ) | i = 1, 2, · · · , n̄} are generated from the same distribution as the training data. We compare mDEE1-3

with FPE (Akaike, 1970), cAIC (Sugiura, 1978) and cv (five-fold cross-validation) in addition to DEE and ADJ.
In calculation of mDEE1, B1 (or n1) was chosen according to the way described in Section 4. We also used the
same B1 for mDEE2.

6.1 Synthetic Data

First, we conduct the same experiments as that of Chapelle et al. (2002) as follows. We prepare the following
two true regression functions,

sinc function f1(x) = sin(4x)/4x, step function f2(x) = I(x > 0),

where I(·) is an indicator function returning 1 if its argument is true and zero otherwise. The sinc function can
be approximated well by fewer terms in (20) compared to the step function. The training data are generated
according to the regressionmodel in (1) with the above regression functions. The noise ξi is subject toN(ξi; 0, σ

2)
which denotes the normal distribution with mean 0 and variance σ2. We prepare n = 10, 20, 50 training
samples and n′ = 1500 unlabeled data. Covariates xi are generated from N(0, σ̄2) independently in contrast to
(Chapelle et al., 2002). Note that the above basis functions are not orthonormal with respect to p(x) in this
case. The model candidate number d̄ was chosen as d̄ = 8 for n = 10, d̄ = 15 for n = 20 and d̄ = 23 for
n = 50. The number of test data is set as n̄ = 1000 in all simulations. We conducted a series of experiments
by varying the regression function and the sample number n summarized in Table 2. In each experiment, σ2 is
varied among {0.01, 0.05, 0.1, 0.2, 0.3, 0.4}. The experiments were repeated 1000 times. The results are shown
in Tables 3-8. These tables show the median and IQR (InterQuartile Range) of regret of each method.
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Table 2: This table summarizes which table shows the result of which experiment.

Table 3 4 5 6 7 8
regression function sinc sinc sinc step step step

n 10 20 50 10 20 50

Table 3: Median (IQR) of regret of each model selection method when the true regression function is f1(x),
n = 10.

σ2 0.01 0.05 0.1 0.2 0.3 0.4
FPE 1.030 (2.720) 0.888 (3.070) 0.880 (2.780) 0.707 (2.690) 0.697 (2.540) 0.650 (2.910)
cAIC 1.250 (1.050) 0.452 (0.456) 0.281 (0.271) 0.114 (0.160) 0.084 (0.127) 0.058 (0.116)
ADJ 0.336 (0.949) 0.190 (0.492) 0.197 (0.379) 0.116 (0.277) 0.107 (0.296) 0.103 (0.287)
cv 0.929 (1.160) 0.427 (0.548) 0.280 (0.373) 0.146 (0.253) 0.102 (0.214) 0.085 (0.252)

DEE 0.497 (1.390) 0.361 (0.718) 0.298 (0.503) 0.180 (0.358) 0.150 (0.393) 0.113 (0.375)
mDEE1 1.190 (1.050) 0.483 (0.510) 0.300 (0.340) 0.144 (0.215) 0.102 (0.171) 0.077 (0.170)
mDEE2 1.190 (1.050) 0.483 (0.511) 0.300 (0.341) 0.144 (0.215) 0.102 (0.170) 0.077 (0.170)
mDEE3 1.210 (1.050) 0.479 (0.510) 0.299 (0.330) 0.140 (0.212) 0.103 (0.169) 0.076 (0.162)

As for these synthetic data, the performance of mDEE1-mDEE3 are almost same. Hence, we do not dis-
criminate them here. When the true regression function is easy to estimate (i.e., f1) and the noise variance
σ2 is small enough, DEE performs comparatively or a little bit dominated mDEE. Otherwise, all mDEE dom-
inated DEE. Especially, mDEE is more stable than DEE because IQR of mDEE is usually smaller than that
of DEE. Compared to ADJ, mDEE also performed better than ADJ except the case where σ2 is small and the
true regression function is f1. This observation holds to some extent in comparison with other methods. As a
whole, mDEE is apt to be dominated by existing methods when the regression function is easy to estimate and
the noise variance is almost equal to zero. In other cases, mDEE usually dominated other methods. Finally,
we remark that the estimated B1 for mDEE1 took its value usually around 1 − 20. This fact indicates that
V = ED[Ĉ−1] requires much more samples to estimate than C.

6.2 Real World Data

We conducted the similar experiments on some real-world data sets from UCI (Bache and Lichman, 2013),
StatLib and DELVE benchmark databases as shown in Table 9. We used again (20) as the regression model.
The number of model candidates d̄ was determined by ⌈(n− 1)/M⌉. We varied n as n = 20, 50 in experiments.
The total number of unlabeled data n′ is described in Table 9. The test data number n̄ was set to ’total data
number’−(n+ n′) in each experiment.

The results are shown in Fig. 1-2. First, we should mention that mDEE seemed to work poorly for the data
sets “eeheat” and “eecool.” These data sets include discrete covariates taking only a few values. Thus, there
are some sub data sets Db in which the above covariates take the exactly same value. In such cases, Ĉ−1

b based

on such Db diverges to infinity. To see this, we show the histogram of Tr(Ĉ+Ĉ
−1
b ) of mDEE3 for “eeheat” data

with n = 10 in Fig. 3. From Fig. 3, we can see that some values of them take extremely large values. There are
some ways to avoid this difficulty. The simplest way is to replace the empirical mean 1

B+1

∑B
b=0 Tr(Ĉ+Ĉ

−1
b ) in

(17) with the median of
{
Tr(Ĉ+Ĉ

−1
0 ),Tr(Ĉ+Ĉ

−1
1 ), · · · ,Tr(Ĉ+Ĉ

−1
B )
}
. Applying this idea to mDEE3, we obtain

a new criterion referred to as rmDEE (robust mDEE). Each panel of “eeheat” and “eecool” in Fig. 2 contains
the result of rmDEE instead mDEE2. From Fig. 2, we can see that rmDEE worked significantly better than
mDEE1 or mDEE3. On real-world data, mDEE1 slightly performed better than mDEE2 or mDEE3. However,
their differences are little. In most cases, mDEE (or rmDEE) dominated DEE or at least performed equally.
Remarkably, mDEE always dominated ADJ except ‘eeheat’ when n = 20. As a whole, mDEE (or rmDEE)
often performed the best or the second best.

2To avoid the singularity of ΦTΦ, we used Ridge estimator. However, its regularization coefficient is set to λ = 10−9. Therefore,
it almost works like LSE.
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Table 4: Median (IQR) of regret of each model selection method when the true regression function is f1(x),
n = 20.

σ2 0.01 0.05 0.1 0.2 0.3 0.4
FPE 0.901 (3.630) 0.626 (2.910) 0.562 (2.760) 0.469 (3.180) 0.340 (2.320) 0.325 (2.380)
cAIC 0.342 (0.620) 0.204 (0.537) 0.265 (0.393) 0.236 (0.214) 0.139 (0.146) 0.112 (0.127)
ADJ 0.254 (0.660) 0.164 (0.478) 0.155 (0.324) 0.151 (0.217) 0.104 (0.178) 0.099 (0.158)
cv 0.335 (0.698) 0.220 (0.518) 0.215 (0.390) 0.199 (0.236) 0.134 (0.185) 0.121 (0.167)

DEE 0.179 (0.619) 0.162 (0.433) 0.148 (0.341) 0.181 (0.249) 0.152 (0.199) 0.132 (0.175)
mDEE1 0.462 (0.468) 0.179 (0.493) 0.211 (0.375) 0.205 (0.220) 0.141 (0.160) 0.124 (0.151)
mDEE2 0.462 (0.467) 0.178 (0.494) 0.213 (0.375) 0.205 (0.220) 0.140 (0.159) 0.124 (0.149)
mDEE3 0.469 (0.427) 0.181 (0.500) 0.215 (0.379) 0.210 (0.218) 0.139 (0.152) 0.123 (0.150)

Table 5: Median (IQR) of regret of each model selection method when the true regression function is f1(x),
n = 50.

σ2 0.01 0.05 0.1 0.2 0.3 0.4
FPE 0.036 (0.247) 0.068 (0.197) 0.064 (0.207) 0.055 (0.188) 0.081 (0.210) 0.077 (0.161)
cAIC 0.002 (0.033) 0.041 (0.111) 0.040 (0.071) 0.037 (0.096) 0.055 (0.133) 0.068 (0.109)
ADJ 0.022 (0.120) 0.060 (0.130) 0.052 (0.124) 0.058 (0.170) 0.092 (0.160) 0.080 (0.129)
cv 0.011 (0.075) 0.051 (0.118) 0.048 (0.095) 0.043 (0.123) 0.073 (0.162) 0.071 (0.118)

DEE 0.009 (0.063) 0.042 (0.112) 0.047 (0.090) 0.038 (0.102) 0.053 (0.132) 0.064 (0.114)
mDEE1 0.005 (0.041) 0.028 (0.102) 0.040 (0.076) 0.035 (0.086) 0.048 (0.120) 0.061 (0.106)
mDEE2 0.005 (0.041) 0.028 (0.101) 0.040 (0.076) 0.035 (0.088) 0.048 (0.121) 0.061 (0.106)
mDEE3 0.005 (0.042) 0.027 (0.099) 0.040 (0.076) 0.036 (0.088) 0.048 (0.120) 0.062 (0.107)

7 Conclusion

Even though the idea of DEE seems to be promising, it was reported that DEE performs worse than ADJ
which was the state-of-the-art. By checking the derivation of DEE, we found that the resultant form of DEE is
valid in a sense but its derivation includes an inappropriate part. By refining the derivation in the generalized
setting, we defined a class of valid risk estimators based on the idea of DEE and showed that more reasonable
risk estimators could be found in that class.

Both DEE and mDEE assume that a large set of unlabeled data is available. Even though these unlabeled
data can also be used to estimate the parameter (i.e., semi-supervised learning), DEE and mDEE do not
use them for parameter estimation. Hence, combining the idea of DEE with semi-supervised estimator is an
interesting future work. However, it seems not to be an easy task because the derivation of DEE strongly
depends on the explicit form of LSE.
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σ2 0.01 0.05 0.1 0.2 0.3 0.4
FPE 0.522 (1.550) 0.273 (1.120) 0.169 (0.571) 0.087 (0.342) 0.077 (0.274) 0.072 (0.274)
cAIC 0.140 (0.217) 0.095 (0.105) 0.071 (0.077) 0.053 (0.060) 0.028 (0.075) 0.013 (0.091)
ADJ 0.093 (0.125) 0.076 (0.095) 0.058 (0.089) 0.049 (0.070) 0.034 (0.106) 0.039 (0.152)
cv 0.122 (0.153) 0.092 (0.101) 0.072 (0.088) 0.051 (0.068) 0.031 (0.093) 0.024 (0.128)

DEE 0.150 (0.246) 0.100 (0.131) 0.080 (0.109) 0.058 (0.081) 0.038 (0.106) 0.023 (0.137)
mDEE1 0.116 (0.156) 0.084 (0.105) 0.071 (0.085) 0.055 (0.069) 0.036 (0.087) 0.020 (0.118)
mDEE2 0.116 (0.155) 0.085 (0.105) 0.071 (0.085) 0.055 (0.070) 0.036 (0.087) 0.020 (0.118)
mDEE3 0.112 (0.146) 0.084 (0.104) 0.071 (0.084) 0.055 (0.070) 0.036 (0.087) 0.019 (0.116)

Table 9: Properties of real world data sets and experimental setting.

data set dim(x) total data number n′ source
concrete compressive strength (concrete) 8 1030 800 UCI

NO2 (NO2) 7 500 350 StatLib
bank 8nm (bank) 8 8192 1300 DELVE

pumadyn family 8nm (puma) 8 8192 1300 DELVE
heating energy efficiency (eeheat) 8 768 550 UCI
cooling energy efficiency (eecool) 8 768 550 UCI

abalone 7 4177 1300 UCI
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(b) data: concrete, n = 50
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(c) data: NO2, n = 20
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(d) data: NO2, n = 50
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(e) data: bank, n = 20
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(f) data: bank, n = 50
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(g) data: puma, n = 20
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(h) data: puma, n = 50

Figure 1: Boxplot of regret for real-world data sets.

15



FPE cAIC ADJ cv DEE mDEE1 mDEE3 rmDEE

0.0
0.5

1.0
1.5

model selection method

reg
ret

(a) data: eeheat, n = 20
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(b) data: eeheat, n = 50

FPE cAIC ADJ cv DEE mDEE1 mDEE3 rmDEE

0.0
0.5

1.0
1.5

model selection method

reg
ret

(c) data: eecool, n = 20
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(d) data: eecool, n = 50
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(e) data: abalone, n = 20
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(f) data: abalone, n = 50

Figure 2: Boxplot of regret for real-world data sets.
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