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Abstract—We propose a new code design that aims to distribute
an LDPC code over a relay channel. It is based on asplit-
and-extend approach, which allows the relay to split the set
of bits connected to some parity-check of the LDPC code into
two or several subsets. Subsequently, the sums of bits within
each subset are used in a repeat-accumulate manner in order to
generate extra bits sent from the relay toward the destination. We
show that the proposed design yields LDPC codes with enhanced
correction capacity and can be advantageously applied to existing
codes, which allows for addressing cooperation issues for evolving
standards. Finally, we derive density evolution equationsfor the
proposed design, and we show that Split-Extended LDPC codes
can approach very closely the capacity of the Gaussian relay
channel.

I. I NTRODUCTION

By exploiting the broadcast nature and the inherent spa-
tial diversity of wireless communications, Sendonariset al.
introduced the concept ofcooperative diversity[1], [2] over
wireless relay channels and their multi-terminal extensions.
A relay channel is a three terminal network consisting of
a source, a relay, and a destination. The source broadcasts
a message to both relay and destination, while the relay
forwards the message to the destination. Subsequently, many
authors proposed cooperation protocols for the relay channel,
which can be classified into two major categories, namely the
amplify-and-forward (AF) and the decode-and-forward (DF)
[3]. In AF protocols, the relay simply amplifies the received
signal and forwards it to the destination. The DF protocol
allows the relay to decode the received signal, re-encode it, and
forward it to the destination. The forwarded message can either
be identical to, or part of the initial transmission (repetition
coding), or it can be obtained by using a dedicated coding
scheme at the relay (distributed coding). In the first case the
destination combines received signals from both source and
relay, which results in an improved signal-to-noise ratio (SNR)
on the received transmission. Besides, the same code is used
for encoding at the source and decoding at the destination.
In the second case, the destination gains knowledge of extra
information, but it needs a dedicated decoding scheme, able
to jointly decode received signals from both source and relay.

One of the most known examples of distributed coding is
the one of a distributed turbo-code [4]: the source broadcasts
a recursive convolutional code (RCC) to both relay and des-
tination. After decoding, the relay interleaves and re-encodes
the message using the same RCC, prior to forwarding it to
the destination. Because the destination receives both codes
in parallel, it can jointly decode received signals from source
and relay by using a parallel-concatenated turbo-code.

This work was partially carried out in the scope of Celtic CP5-026
(WINNER+) project.

Low-Density Parity-Check (LDPC) codes play a prominent
role in the family of error-correcting codes. They feature low
complexity decoding and can be optimized for a broad class
of channels, with performance approaching the theoretical
Shannon limit [5]. Although they lend themselves less easily
to distributed schemes, several approaches have been already
proposed in the literature [6], [7], [8], [9], [10], [11], [12],
[13]. Some of these approaches are somehow based either on
serial or parallel code concatenation1, or on punctured (rate-
compatible) LDPC codes. From the code design point of view,
the serial or parallel concatenation of LDPC codes has intrinsic
limitations, mainly because parity-check matrices used for
decoding at the relay and at the destination are included onein
the other, resulting in inappropriate matrix topologies (density
on non-zero entries, column and row weight distributions,
cycles, etc.). Punctured codes also present some weaknesses
in the context of coded cooperation. In such a cooperation
scheme, punctured bits, which are not broadcasted by the
source, are transmitted from the relay toward the destination.
Hence, the punctured code has to be robust, such as to allow
successful decoding at the relay: in practice punctured bits
are those bits which arethe easiest to retrieveby the iterative
decoding process. On the other hand, bits transmitted from the
relay to the destination encounter better channel conditions:
advantageously, these bits should be those which arethe
most difficult to retrieveby the iterative decoding process.
The contradiction between these two requirements leads to
an imbalance in the design of the puncturing pattern.

In this paper we propose a new code design method that
aims to create incremental redundancy for LDPC codes, while
avoiding both code concatenation and code puncturing. It is
based on asplit-and-extendapproach, which can be seen as the
“coding analogous of thedivide-and-conquerconcept”. After
decoding the received signal, the relay computes extra parity
bits by splitting parity-checks of the initial code. Hence,each
extra parity bit is the sum of some subset of bits participating
in the same parity-check of the initial code. Then the relay
transmits these new parity bits towards the destination. The
whole process amounts to create a new matrix, whose rows
correspond to parity-checks involving both old and new parity
bits. These parity-checks are therefore distributed over the
relay channel, in the sense that part of checked bits are
received on the source-to-destination link, and another part
are received on the relay-to-destination link. Consequently, this
new matrix can be used at the destination to jointly decode
the received signals from both the source and relay.

1Meaning that the graph of the LDPC code broadcasted from the source is
a subgraph of the destination decoding graph.
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The paper is organized as follows. The proposed code
design is introduced in Section II. In Section III we show
that the proposed design can be advantageously applied to
to existing codes, which allows for backward compatibility
while addressing cooperation issues for evolving standards.
In Section IV we propose a “coding-perspective” analysis
of cooperative systems. We introduce threshold and capacity
functions, and we derive density evolution equations for Split-
Extended (SE) LDPC codes over the Gaussian relay channel.

Numerical results are shown in Section V, and Section VI
concludes this paper.

II. SPLIT-EXTENDED LDPC CODES

A. Basic idea

The basic idea of the split-extend design can be resumed as
follows. LetH1 be the parity-check matrix of the LDPC code
broadcasted by the source to both relay and destination. Hence,
broadcasted bits satisfy parity-check equations corresponding
to the rows ofH1. After decoding the received signal, the relay
computes extra parity bits by splitting these parity-checks,
as illustrated at Figure 1. The parity-check in the middle
corresponds to a row ofH1. In the left example, a new parity
bit e1 is created by spitting the original parity-check into two
sub-checks. Precisely, this means that the set of bits connected
to the check-node is partitioned into two subsets, and the parity
bit e1 is generated as the sum of the bits of either one of the
two subsets. In the right example, two new parity bitse1 and
e2 are created by spitting the original parity-check into three
parity-checks. Precisely, the set of bits connected to the check-
node is partitioned into three subsets, ande1 is generated as
the sum of the bits in the first subset. Subsequently,e2 can be
generated either as the sum ofe1 and the bits in the second
subset, or as the sum of the bits in the third subset. The total
number of extra parity bits depends on the number of rows of
H1 and the number of extra bits generated for each row ofH1

(which may vary from one row to another). The sequence of
all the extra parity bits, denoted byE = (e1, e2, . . . ), is then
transmitted from the relay to the destination. The matrixH
obtained by the split-extension ofH1 (i.e. the incidence matrix
of the split-extended graph) verifiesH ·(X,E)t = 0, whereX
denotes the codeword broadcasted by the source. Therefore,
H can be used at the destination in order to jointly decode
the received signals from both source and relay.

A more general example of split-extension is illustrated at
Figure 2. The original check-node is split into several sub-
checks, and extended bits are generated in a repeat-accumulate
manner. Such a split-extension will be referred to latter inthe
paper (Section IV) asrepeat-accumulate split-extension.

Fig. 1. Split-Extension examples

B. The general case

The following notation will be used throughout this section:
• For any positive integerN , [1 : N ] = {1, . . . , N} denotes

the set of integers between1 andN , inclusive.
• For any subsetS ⊂ [1 : N ], [1 : N ] \ S denotes the set of

integers between1 andN that are not inS.
• For any length-N vectorV = (v1, . . . , vN ) and any subset
S = {i1, . . . , ik} ⊂ [1 : N ], V |S denotes the length-k
vector defined by the coordinates ofV which are inS, that
is V |S = (vi1 , . . . , vik)

• For any binary matrixH of sizeM ×N , R(H) ⊂ {0, 1}N

denotes the set of theM row-vectors ofH . A partition of
R(H) is a set of nonempty subsetsP1, . . . ,PM1 ⊆ R(H)
such that every row ofH is in exactly one of these subsets.

• For any binary vectorsV1, V2 ∈ {0, 1}N , V1 ⊕ V2 denotes
their componentwise sum modulo2.

[Definition] Let H1 andH be two parity-check matrices of
sizeM1×N1 andM×N , respectively, withN1 ≤ N . We say
that the matrixH is obtained bysplit-extendingthe matrixH1

if there exist a partition of theM rows of H in M1 disjoint
subsetsP1, . . . ,PM1 ⊆ R(H), and a subsetS ⊂ [1 : N ] with
cardinalityN1, such that for anym ∈ [1 : M1]:

⊕
L∈Pm

L|S = Rm and ⊕
L∈Pm

L|[1:N ]\S = 0,

whereR1, . . . , RM1 denote theM1 rows ofH1. In this case,
the setE = [1 : N ] \ S is calledset of extended bit-nodes.
The split-extension is callednon-singularif the columns ofH
corresponding toE are linearly independent.

Now, consider two parity-check matricesH1 andH , such
thatH is a non-singular split-extension ofH1. Then:
• If X is a codeword2 of H , thenX |S is a codeword ofH1

• For any codewordX1 of H1, there exists a unique codeword
X of H , such thatX |S = X1

Matrices (H1, H) can be used within a cooperative trans-
mission system as follows:
• The source encodes the packet of information bits, gener-

ating a codewordX1 of H1. It broadcastsX1 to both relay
and destination.

• The relay decodes the received signal, correcting the trans-
mission errors onX1. It generates a codewordX of H ,
such thatX |S = X1, and sends the set of extended bits
X |E towards the destination.

• Thus, the destination receives noisy versions ofX |S = X1

andX |E (from both the source and the relay), which can
be decoded using the matrixH .

2By abusing language, we say thatX is a codeword ofH, if HXt = 0

Fig. 2. Repeat-Accumulate Split-Extension



III. SPLIT-EXTEND DESIGN FOR BACKWARD

COMPATIBILITY

This section is independent of the following sections,
though, it highlights an interesting property of the proposed
design: it can be advantageously applied to existing codes,
which allows for addressing cooperation issues for evolving
standards, while maintaining backward compatibility witha
reduced impact on user equipment. To illustrate this, the LDPC
codes from the IEEE.802.16e (WiMAX) standard [14] with
coding rates1/2 and2/3 have been split-extended, such that
the number of generated extended bits be equal to the number
of information bits. Thus, for coding rate1/2, each row of
the parity-check matrix has been split into two rows; while for
rate 2/3, each row of the parity-check matrix has been split
into three rows (see Figure 1). Splitting has been performed
by a dedicated algorithm that search for short cycles in the
parity check matrix, then splits rows such that to break as
many short cycles as possible. Base matrix of the Quasi-Cyclic
(QC) LDPC WiMAX code with rate 1/2 and the corresponding
split-extended matrix are shown at Figure 3 (−1’s entries of
the base matrix are represented by a dash sign).

Clearly, split-extended matrices can be used to address
cooperation issues for uplink transmissions, in a completely
transparent way for the user: the user encodes the transmitted
signal by using the original parity check matrix; the relay
decodes the signal, then computes and sends the sequence of
extended parity bits to the base station, which will use the
split-extended matrix in order to decode the received signals
from both user and relay. Hence, split-extended matrix is only
needed at the relay and the base station. For downlink trans-
missions, if the user terminal is equipped with split-extended
matrices, the situation is symmetric. Otherwise, the relaycan
only repeat the sequence of information bits, which, however,
provides the user with an energy gain on the information
sequence.

Simulation results over the AWGN relay channel, with
QPSK modulation, are shown at Figures 4 and 5. The source
broadcasts either the WiMAX code with rate1/2 (Fig. 4) or
the WiMAX code with rate2/3 (Fig. 5), and the SNR on the
source-to-relay link is fixed to2.5 and 4.5 dB, respectively.
Both figures compare the performance of two cooperation
scenarios: the relay generates and transmits extended bits
in the first scenario, while in the second, it forwards the
(error-corrected) sequence of information bits. Plotted curves
represent SNRs required on source-to-destination and relay-to-
destination links, such that to obtain a target frame error rate
either of10−2 (dotted curves) or of10−4 (solid curves). The
Self-Corrected Min-Sum algorithm [15] is used for decoding
at both relay and destination. The gap between the dotted and
solid curves is determined by the slope of the frame error
rate curves in the waterfall region. However, for the second
scenario (repetition of the information sequence) the increased
gap between the two curves for small SNRSD values is also
justified by a frame error rate error floor above10−4. Note
also that only SNR pairs with SNRRD > SNRSD are likely to

Fig. 3. Base matrix of the QC-LDPC WiMAX code with rate 1/2 (top), and
corresponding split-extended base matrix (bottom)
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Fig. 4. Split-Extend vs. Repetition coding for WiMAX code with rate1/2
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Fig. 5. Split-Extend vs. Repetition coding for WiMAX code with rate2/3

be encountered in practice. The SNR gain between the two
scenarios can be measured either as the horizontal distance
(for the source-to-destination link) or the vertical distance (for
the relay-to-destination link) between corresponding curves. It
can be observed that split-extended codes achieve a significant
SNR gain, in order of several dBs, over the repetition scenario.



IV. A SYMPTOTIC ANALYSIS OFSE-LDPCCODES

We denote byE(λ, ρ) the ensemble of LDPC codes with
edge-perspective degree distribution polynomialsλ andρ [16].
It is well known that when the code length tends to infinity,
(almost) all the codes of the family behave alike, and they
exhibit a threshold phenomenon, separating the region where
reliable transmission is possible from that where it is not [16].

Consider some channel model depending on a parameter
σ, such that the channel conditions worsen whenσ increases
(for instance, the noise variance for the AWGN channel, or
the error probability for the BSC channel). Thethreshold
of the ensembleE(λ, ρ) is defined as the supremum value of
σ (worst channel condition) that allows transmission with an
arbitrary small error probability, assuming that the transmitted
data is encoded with an arbitrary-length code ofE(λ, ρ).

The above threshold phenomenon can be extended to the
relay channel, but the following must be taken into account:
• the channel is modeled by three parametersσSR, σSD, and
σRD, corresponding, with obvious notation, to the three links
between source, relay, and destination.

• the ensemble of SE-LDPC codes depends not only onλ and
ρ, but also on thesplitting distribution.

[Channel assumptions]Since we are strictly interested on code
analysis, the following assumptions will be made:
• when the relay fails to decode the received signal from

the source, it does not transmit any information to the
destination,

• the relay channel is degraded, in the sense that the above
parameters must satisfyσSR < σSD andσRD < σSD.

[Distributed code]A linear distributed code of dimensionK
is a vector subspaceC ⊂ F

N1
2 × F

N2
2 , such thatC and its

projection onFN1

2 are both of dimensionK. The distributed
rate of C is by definition(r1, r2) = ( K

N1
, K
N2

). Hence,r1 ≤ 1,
but r2 can be greater than1. The overall coding rate is defined
as r = K

N1+N2
= r1r2

r1+r2
. The idea behind is that the firstN1

bits of a codewordc ∈ C are broadcasted from the source to
both relay and destination and, in case that the relay manages
to decode the received signal3, it transmits the lastN2 bits
toward the destination.

[SE-LDPC ensembles]Let H1 be the parity-check matrix of
the LDPC code broadcasted by the source, and letθ ≥ 2. For
each parity-check ofH1, assume that:
• the set of bits connected to the parity-check is partitioned

into θ subsets of (almost) regular size; that is, each subset
contains either

⌊

d
θ

⌋

or
⌈

d
θ

⌉

bits participating in the parity-
check, whered denotes the parity-check degree,

• extended bits are generated in a repeat-accumulate manner
(Figure 2).

The resulting distributed SE-LDPC code will be referred to as
havingsplitting degreeθ. We denote byEθ(λ, ρ) the ensemble
of repeat-accumulate SE-LDPC with splitting degreeθ, ob-
tained by split-extending LDPC codes with edge-perspective
degree distribution polynomialsλ andρ.

3Thus, this definition is dependent on the above channel assumptions.

A. SE-LDPC ensemble thresholds

Given an ensemble of SE-LDPC codes, our intention is
to separate the region of parameters(σSR, σSD, σRD) where
reliable transmission is possible from that where it is not.

Let σ∗
1(λ, ρ) be the threshold of theE(λ, ρ) ensemble. If

σSR > σ∗
1(λ, ρ), the error decoding probability at the relay is

lower bounded by a positive constant. Consequently, reliable
cooperation cannot be achieved, as the relay does not transmit
any information to the destination when it fails to decode the
received signal, and the destination cannot reliably decode the
signal received from the source, sinceσSD > σSR > σ∗

1(λ, ρ).
From now on we consider thatσSR < σ∗

1(λ, ρ); hence, we
may assumeerror free4 transmission between source and relay.
We will also use the following notation:
• σ = σRD (we drop subscriptRD), which will be referred to

asnoise parameter,
• δ =

σSD

σRD
≥ 1, which will be referred to aschannel

discrepancy.

The threshold functionσ∗
θ,λ,ρ : [1,∞[→ R associates with

each discrepancy valueδ the noise thresholdσ∗
θ,λ,ρ(δ), defined

as the supremum value ofσ that allows transmission with an
arbitrary small error probability, assuming that the transmitted
data is encoded with an arbitrary-length distributed code from
Eθ(λ, ρ). This definition makes sense only under the implicit
assumption of a concentration theorem as in [16], which can
indeed be derived by using the same arguments as inloc. cit.

The threshold function can be efficiently computed by
tracking the density evolution of messages exchanged within
the iterative decoding, as explained in the next section.

B. Density evolution

Throughout this section, we assume binary-input AWGN
relay channel. We combine a multi-edge approach [17] and
the Gaussian approximation method proposed in [18], in order
to derive density evolution equations for the SE-LDPC code
ensembleEθ(λ, ρ). We separate the set of bit-nodes of the
expanded graph into two subsets:

• type-1 bit-nodes, which correspond to bits received by the
destination from the source,

• type-2 bit-nodes, which correspond to extended bits received
by the destination from the relay.

We distinguish between type-1 and type-2 edges, according
to whether they are incident to type-1 or type-2 bit-nodes.
Moreover, check-node degrees are also defined type-wise.
Hence, we say that a check-node is of degree(d1, d2) if it
is connected tod1 type-1 bit-nodes andd2 type-2 bit-nodes.
From our definition of SE-LDPC ensembles, it follows that
the type-2 degreed2 is equal either to1 or 2 (see Fig. 2).
Finally, for each typet = 1, 2, we define:

• λ
[t]
d is the fraction of type-t edges connected to bit-nodes

of degreed,
• ρ

[t]
d1,d2

is the fraction of type-t edges connected to check-
nodes of degree(d1, d2).

4With arbitrarily small error probability, as the code length tends to infinity.



It follows thatλ[1]
d = λd, λ[2]

2 = 1 (λ[2]
d = 0 for d 6= 2), while

ρ
[1]
d,i andρ[2]d,i (i = 1, 2) can be computed as follows:

ρ
[1]
d,1 = d

θ−1
∑

j=−θ+1

kj,1
ρdθ+j

dθ + j
, ρ

[2]
d,1 =

ρ̄ρ
[1]
d,1

2d(θ − 1)
,

ρ
[1]
d,2 = d

θ−1
∑

j=−θ+1

kj,2
ρdθ+j

dθ + j
, ρ

[2]
d,2 =

ρ̄ρ
[1]
d,2

d(θ − 1)
,

whereρ̄ =
1

∫ 1

0
ρ(x)dx

is the average check-node degree of the

original (unsplit) graph, and

kj,1 =







0, if 2 ≤ j ≤ θ − 1
1, if j = 1 or j = −θ + 1
2, if − θ + 1 < j ≤ 0

kj,2 = θ − |j| − kj,1

Now, under the Belief-Propagation decoding, letm
(ℓ)

v[t] de-
note the mean of outgoing messages from type-t bit-nodes

at iterationℓ. Let alsor[t]ℓ = 1 − E

(

tanh
m

(ℓ)

v
[t]

2

)

, whereE

denotes as usual the expected value operator. Define:

φ(x) = 1−

1

2
√

(πx)

∫

R

tanh
u

2
e−

(u−x)2

4x du, (φ(0) = 1)

ψ(x) = φ−1(1− x)

h[1](x, y) =
∑

j

λ
[1]
j φ





2

(δσ)2
+ (j − 1)

∑

i1,i2

ρ
[1]
i1,i2

ψ(xi1−1yi2 )





h[2](x, y) =
∑

j

λ
[2]
j φ





2

σ2
+ (j − 1)

∑

i1,i2

ρ
[2]
i1,i2

ψ(xi1yi2−1)





Then, under the assumption that the messages exchanged
during the iterative Belief-Propagation decoding are indepen-
dent and symmetric Gaussian distributed,r

[1]
ℓ and r

[2]
ℓ can be

recursively computed by:
(

r
[1]
ℓ
, r

[2]
ℓ

)

=
(

h[1](1− r
[1]
ℓ−1, 1− r

[2]
ℓ−1), h[2](1− r

[1]
ℓ−1, 1− r

[2]
ℓ−1)

)

,

with initial values
(

r
[1]
0 , r

[2]
0

)

=
(

φ
(

2
(δσ)2

)

, φ
(

2
σ2

)

)

. The
proof will be omitted, since it follows from the same argu-
ments as in [18]. The above recursion holds as long asℓ is
less than half the girth of the graph, which goes to infinity
with the code-length, and the successful decoding condition
for an “infinite” code from Eθ(λ, ρ) can be expressed as
(

r
[1]
ℓ , r

[2]
ℓ

)

→ 0. Therefore, the threshold function defined in
the above section, can be computed by:

σ∗
θ,λ,ρ(δ) = sup{σ | lim

ℓ→∞
r
[1]
ℓ = lim

ℓ→∞
r
[2]
ℓ = 0}

C. Theoretical limit

In order to evaluate the performance of an ensemble of
codes, we would like to compare its threshold function with
the capacity function, inferred from the channel capacity.

Capacities of various relaying strategies have been com-
puted in [19], [20], [21], and depend on the capacities of the

three links. Since we assumed that source-to-relay transmis-
sion is error free5, we only consider the two other links. Let
γRD(σ) denote the information rate capacity of the relay-to-
destination channel with parameterσ, and letγSD(σ) be de-
fined in a similar manner. The information rates are considered
by transmitted bit, thus bothγRD(σ), γSD(σ) ∈ [0, 1]. We also
assume that the noise parameterσ ∈ [0,+∞[ andγRD, γSD are
continuous decreasing functions, such thatγRD(0) = γSD(0) =
1 and lim

σ→+∞
γRD(σ) = lim

σ→+∞
γSD(σ) = 0.

Now, let (r1, r2) ∈ [0, 1]× [0,+∞[ be a target distributed
coding rate. The capacity functionγr1,r2 : [1,+∞[→ [0,+∞[
is defined byγr1,r2(δ) = σ, whereσ is the unique solution of
the equation:

γSD(δσ)

r1
+

γRD(σ)

r2
= 1

Note that forσ = 0, we haveγSD(0)
r1

+
γRD(0)

r2
= 1

r1
+ 1

r2
≥

1
r1

≥ 1, and lim
σ→+∞

γSD(δσ)
r1

+
γRD(σ)

r2
= 0, thus such a solution

always exists and it is unique, due to the above assumptions.
The meaning of the capacity function is the following.

Assume that we want to transmit information with distributed
rate (r1, r2) over some relay channel. The rater1 is chosen
according to the quality of the channel between source and
relay, such that to ensure error free transmission between
them. The rater2 is generally chosen according to the delay
constraints of the cooperation system. The question is to know
is there exists a distributed code with distributed rate(r1, r2)
allowing error free6 transmission. The answer is as follows.
If the discrepancy and noise parameters(δ, σ) of the relay
channel verifyσ < γr1,r2(δ) then such a distributed code exits.
However, note that a code allowing error free transmission for
some pair(δ, σ), might not be suitable for some other pair of
parameters satisfying the above condition. Ifσ > γr1,r2(δ),
then reliable transmission with distributed rate(r1, r2) is not
possible. The proof will be given in an extended version of
this paper.

V. NUMERICAL RESULTS

We assume BI-AWGN relay channel throughout this sec-
tion. The following degree distribution pair, with designed
coding rate1/2, was designed by exact density evolution, and
its threshold7 over the BI-AWGN channel isσ∗ = 0.9649 [5].

λ(x)= 0.2199x + 0.2333x2 + 0.0206x3 + 0.0854x5 + 0.0654x6

+0.0477x7 + 0.0191x8 + 0.0806x18 + 0.2280x19

ρ(x)= 0.6485x7 + 0.3475x8 + 0.0040x9

First, we consider the SE-LDPC code ensembleE2(λ, ρ).
The designed distributed rate is(r1, r2) = (1/2, 1), meaning
that the source broadcasts a code with rate1/2, and the relay
generates a number of extended-bits equal to the number
of information bits. If the standard deviation of the white
Gaussian noise on the source-to-relay link is less than the

5In practice, the channel need not be error free; the assumption is that the
σSR noise is below the threshold of the code broadcasted by the source.

6Arbitrary small error probability when the code length goesto infinity.
7Note that the threshold calculated by Gaussian approximation is 0.9459.



above thresholdσ∗ or, equivalently, the signal to noise ratio
is greater than SNR∗ = −2.70 dB8, we can assume error free
transmission between source and relay. From our definition
of the discrepancy, the signal to noise ratios on the source-
to-destination and relay-to-destination links, are related by
SNRRD = SNRSD + ∆, where ∆ = 10 log10(δ

2) is the
discrepancy value in dB. The ensemble threshold and the
capacity functions are plotted at Figure 6. We can observe that
the gap between the two curves is relatively small (between0.7
and0.3 dB) for discrepancy values∆ ∈ [0, 8.5], and it begins
to increase starting from this point. Hence, if a discrepancy
value∆ > 8.5 dB is not likely to be encountered in practice,
the above SE-LDPC code can be used to achieve reliable
communication for channel parameters(δ, σ) very close to
the capacity.
[Remark] HARQ systems with incremental redundancy rep-
resent another possible application of the proposed SE-LDPC
codes. In this case extended-bits are transmitted by the source
as incremental redundancy, whenever the destination failsto
decode the originally received signal. In such a case, the
discrepancy is expected to take on relatively small values.

Figure 6 shows also the threshold function for the SE-
LDPC code ensembleE3(λ, ρ), whose designed distributed
rate is (r1, r2) = (1/2, 1/2). We can observe that the gap
between the threshold and the capacity curves is between1 and
0.4 dB for discrepancy values∆ ∈ [0, 20]. This proves that
split-extending good codes for point-to-point communications
results in good distributed codes for cooperative communica-
tions.

VI. CONCLUSIONS

We proposed a new code-design method for LDPC coded
cooperation, which is based on a split-and-extend approach.
First, we showed that the proposed design can be advanta-
geously applied to existing codes, which allows for addressing
cooperation issues for evolving standards. Subsequently,we
introduced the concepts of threshold and capacity functions,
and we derived density evolution equations for split-extended
codes. Some ensemble thresholds have been presented, show-
ing that codes optimized for point-to-point communications
can be split-extended, so that the corresponding distributed
codes perform close to the capacity of the relay channel for
a wide range of discrepancy values. Optimization of split-
extended codes will be addressed in future works. Finally,
besides advantageous applications for cooperative transmission
systems, the proposed design can also be used for communi-
cation systems employing HARQ schemes with incremental
redundancy.
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