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Abstract—In most of RF receivers (RX) the analog chain
aims to improve the overall Signal to Interference plus
Noise Ratio (SINR) by filtering out interferences in the
Signal Of Interest (SOI) vicinity. However, cognitive radio
applications require a high dynamic range RX, pushing
a high constraint on the analog section. In particular,
nonlinearities may damage the overall SINR and Bit Error
Rate (BER) due to blocking and intermodulation processes
in presence of strong interference. RX linearization state
of the art methods that rely on the feedforward concept
have shown the RX linearization improvement on the BER.
Nonetheless, benefits of other linearization methods such as
the feedback loop concept, are unstudied. In this article,
our aim is to decrease the power of unwanted harmonics
thanks to a feedback loop. We first explain the variable gain
enhancement concept. Then, we present an algorithm that
dynamically adapts the RX parameters (gains and ADC
margins) to make it work in a linear regime. We analyze
the effect of such a method in terms of BER. Important
BER improvement is noticed in blocking and saturating
situations due to co-channel interferers.

I. INTRODUCTION

In this article we consider the context of Professional
Mobile Radios (PMR) radios. The FITNESS project (see
[1]) aims to prepare the future of PMR in Europe and
in the world. New functionalities requested by mission-
critical markets are added, while preserving backwards
compatibility with existing narrowband PMR systems.
The considered receiver is narrowband, and has strin-
gent specifications to make it compliant with the four
European PMR norms in terms of receiver selectivity.

Several PMR communications channels close to the
signal of interest (SOI) may be present at ADC level
and 60 dB above the SOI. Commercial automatic gain
control (AGC) are unable to deal with a dynamic up
to 141 dB with channel bandwidth of 12.5 kHz. This
specification is particularly severe. So, a specific archi-
tecture that allows amplification stage to be reconfig-
urable was defined. This architecture is meant to be
fully integrated, and able to cope with tight linearity and

gain requirements of a PMR receiver (RX) front-end.
To ensure that ADCs will not clip the received signal,
large back-off digitization margins have to be left. One
other issue is caused by the nonlinear behavior of RX
analog components. Indeed, amplifiers or mixers (see
[2]) used outside of their linear region are responsible
for intermodulation products harmonic and even gain
blocking. Such terms lay into the SOI bandwidth, as
developed in [3]. In the following, unwanted signals are
referred as interferers.

The nonlinearity cancellation is a vast topic that is
generally addressed in an analog way. This is usually a
well-known designer problem, and examples of mecha-
nisms are proposed in [2], [4] to limit such effects under
specific bounds. Devices specifications could be adjusted
by a proper analog design to maximize one or several cri-
teria amongst power efficiency, linearity, peak to average
power ratio or adjacent channel power ratio. Three main
principles exist to compensate for nonlinearities in the
analog domain: feedback, feedforward and predistortion.

Nonetheless, in this paper we consider the whole RX
as a series of nonlinear blocks, instead of a single device
(e.g. a power amplifier). We assume that there is no
knowledge of the signal input, which at first discards
the feedback and the predistortion methods. To our best
knowledge, it appeared that all state of the art methods
of RX linearization rely on the feedforward principle.
Two main approaches are to be distinguished. On one
hand, there are many fully digital techniques [3], [5]–
[7]. In these papers, various ways allows the cancellation
of almost all the power of Inter Modulation Distortion
of order 3 (IMD3) harmonics. Their overall ideas are
similar: modeling IMD3 harmonics and then subtract it
from the received signal with an adaptive mechanism.
On the other hand, a mixed analog-digital strategy was
proposed in [8] and is refined in [9]. In theses papers
IMD terms are generated thanks to an analog mechanism



that model the nonlinear mechanism. This signal is
digitized and subtracted from the amplified input signal
thanks to a least mean square algorithm.

However, none of these methods allow to relax sig-
nificantly ADCs dynamic range and sampling frequency
requirements. Indeed, to be modeled, interferers have to
be digitized with respect of Shannon’s rule. In [10] we
have already proposed a novel method to decrease IMD3
products power as a proof of concept. It showed that
thanks to a sensing mechanism, the RX could be partially
aware of its spectral environment and able to change
its parameters (gains and ADC margins) to work in its
linear region. The proposed sensing mechanism is able to
detect nonlinear harmonics before the compression point
and gain clipping.

In this article, we design a feedback loop to adjust the
RX gain. We rely on the detection method [10] to detect
the nonlinear harmonics presence. Our aim is to maintain
the RX at the limit of detectable harmful harmonics.
It allows to take advantage of the largest gain while
decreasing the power of unwanted components. We
analyze the effect of such a system on decoding perfor-
mance, in blocking tests bench. In section II, we develop
the nonlinear system model and remind the variable
gain control concept. Section III is devoted to practical
implementation issues and the simulation counterpart.
Main detection mechanism principles are developed as
well. To underline possible improvements obtained with
our method, we show the BER improvement through
simulations in section IV. Section V concludes the paper.

II. SYSTEM MODEL

A. Received Signal Model
Let us define useful and interferer continuous base-

band signal models in (1).

zi(t) = βi

∞∑

k=−∞

ak,ih(t− kTi) (1)

Let Ti be the symbol period, ak,i be the complex random
symbols with unit variance, h(t) be a continuous shaping
filter (normalized in energy) and βi the square root power
of zi(t). Here z1(t) is meant to be the useful signal and
z2(t) the unwanted signal. In the following, only the h(t)
shape is known as a root raised cosine filter. We consider
that the SOI and the interferer are independent from each
other, and ak,i are independent MPSK symbols.

The signal yi(t) at carrier frequency fci can be ex-
pressed as:

yi(t) = <[zi(t)e
2πfcit] (2)

y2(t) parameters are assumed to be unknown except for
its carrier frequency fc2. The composite received signal
is the combination of SOI and interferer. This signal is
defined in (3).

x(t) =

2∑

i=1

yi(t) (3)

B. Nonlinear Model

Our whole receiver is modeled as a memoryless
polynomial expressed as:

p(t) = α1x(t) + α2x(t)2 + α3x(t)3 + w(t) (4)

where αk, k ∈ {1, 2, 3} are characteristics of the RX
front-end and w(t) is an additive white Gaussian noise.
In the following, α2 is assumed zero since harmonics in
|x(t)|2 are easily discarded in a heterodyne architecture
with proper filtering stages and a front-end differential
structure. The nonlinear amplification coefficient α3 is
obtained thanks to (5) (see [2]), where VIIP3 is the RX
Input Interception Point of third order.

α3 = −4

3

α1

V 2
IIP3

(5)

The substitution of (3) into (4) leads to the complete
formula of harmonic creation for the nonlinear model.
All terms are listed in [3], but α2 is not considered here.
We focus on the received signal baseband representation
in a given sub-band of interest. The SOI in this sub-band
is given by:

p(t) = <
{(

α1 +
3

4
α3|z1(t)|2

+
3

2
α3|z2(t)|2

)
z1(t)ej2πfc1t

}
+ w(t) (6)

We clearly see that in (6) the third right hand-side
term depends on interferer’s power. Hence, when the
interference power comes too high, the overall linear
gain α1 is blocked.

C. Variable Gain Enhancement Concept

In a conventional RF receiver, the dynamics of the use-
ful signal is determined by compromising between linear
amplification and the background noise (NF) added by
the chain components. The presence of unwanted signals
is also taken into account in this choice, by limiting
amplification and setting additional digitization margins
(e.g. PAPR). However, as presented in [10], having an
RX that is aware of the presence of interferers allows the
gain to be dynamically changed to remain in a linear
regime despite the presence of unwanted signals. This
method also reduces digitization margins by increasing
the conversion dynamic. There are two different use
scenarios:

1) Sensitivity: which reflects the presence of a low-
powered useful signal (there are no jammers,
β2 =0). If there is no disturbance signal, the gain
can be increased to reduce the background noise.

2) Linearity: which corresponds to two situations: a)
the useful signal is the only signal present but has
a high power; b) the wanted signal and at least
one high power interferer are present. In (6), these
cases correspond to a gain blocking situation due



to the third order term of (4). Thus, the gain should
be reduced to allow a better linearity, but at the
cost of a degradation of the NF.

III. VARIABLE GAIN IMPLEMENTATION ASPECTS

In this section we first develop the gain adaptation
issue in a real RX. Then, we go on with main principles
of the chosen spectrum sensing method. Finally, we
explain the practical method we used in simulation.

A. Gain Adaptation Mechanisms

For several cascaded nonlinear stages, the circuit non-
linearity is described by a relation equivalent to the well
known Friis formula. From [2], we have:

1

V 2
IIP3,tot

≈ 1

V 2
IIP3,1

+
α2
1,1

V 2
IIP3,2

+ . . .+

∏n−1
k=1 α

2
1,k

V 2
IIP3,n

(7)

An analysis of this equation is useful to underline
mathematically what we propose to do. The (7) is the
general expression for n cascaded nonlinear stages. Let
define α1,i the linear gain of stage i and VIIP3,i their
corresponding IIP3, with i ∈ {1, . . . , n}. From (5), we
recall that VIIP3,i coefficients are linked to (4) by the
nonlinear gain α3 such as:

α3,i = −4

3

α1,i

V 2
IIP3,i

(8)

(8) is a relation that can be applied indifferently for each
stage i or for the overall cascaded stage. Hence, any
modification on a particular analog component impacts
all the following RX chain.

In particular, if we consider the linearity scenario: the
linear gain has to be decreased. A short analysis of (7)
shows that when coefficients α1,i decrease, so do the
quantity 1/V 2

IIP3,tot. In (8), when VIIP3i increases the
nonlinear gain α3,i decreases. So, increasing VIIP3,tot

makes the circuit more linear, which is the searched
effect in the linearity scenario. However, the maximum
gain decrease is limited by the noise floor and the Friis
formula in (9). For m stages [2] indicates that:

NFtot = 1+(NF1−1)+
NF2 − 1

α1,1
+ . . .+

NFm − 1∏m−1
k=1 α1,k

(9)
Hence, a gain decrease makes the noise floor increases.
In practice the gain can be decreased until the noise
floor becomes too high. This approach is also valid in
the sensing scenario. In the two cases, the minimum
affordable gain makes the noise floor too important.
On the contrary, the maximum amplification makes the
circuit too nonlinear.

In an implementation point of view, the gain of each
RX components is not tunable. It means that, one has
to adapt specific gains coefficients in order to obtain the
desired amplification. Moreover, changing the gain of a
unique component makes the RX characteristic different.

In the following we assume that α1,tot and VIIP3,tot are
continuous and continuously modifiable.

Furthermore, to realize computer simulations a re-
lation between α1,tot and α3,tot has to be modeled.
In the aim to change the linear gain parameter, one
has to change in accordance with the VIIP3,tot value.
Nonetheless, as seen in (7) VIIP3,tot is a function of the
linear gain such as:

(VIIP3,tot)|dB = f

(
(α1,tot)|dB

)
(10)

This relation is useful only in a simulation context.
Indeed, in a real RX the gain is adapted to the needs and
the nonlinear amplification is a parameter controlled by
the chosen linear gain value. So, updating the VIIP3,tot

value is not necessary.

B. Detection of nonlinear harmonics

To make the receiver aware of its spectral environ-
ment, we must identify whether the RX is working in its
non-linear region, and why. The presence of an unwanted
signal and/or an excess of power of the wanted signal
creates many harmonics whose expressions are detailed
in [3]. We wish to use the presence of these harmonics to
detect the non-linear operation of the RX. We based our
work on the criterion developed in [11], which requires
few symbols and also allows a quick adaptation of the
gain. In the following, we refer to this method as the
Cyclostationary Nonlinear Harmonics Detector (CNHD).
The idea is to detect the most powerful harmonics that
are located at fc2, 2fc1 and 2fc2. They correspond
to the carrier frequency of the unwanted signal and
the frequencies of the non-linear harmonics due to the
wanted signal power and the interfering signal.

C. Practical Implementation

Let us now develop the feedback loop to adjust au-
tomatically the RX gain. The considered scenario is the
linearity scenario, which means that a powerful interferer
is present. We propose the scheme represented in fig.1.
In this figure, the CNHD bloc stands for Cyclostationary
Nonlinear Harmonics Detector (see section III.B). Let
us define the input signal vector xN(k) as the block
of N samples such as xN(k) =

[
x(kN), . . . , x(kN +

N − 1)
]
. N is considered large enough to perform the

detection with confidence. Let also define ΦN(k) =[
xN(k);x3

N(k)
]

a 2×N matrix, W =
[
α1, α3

]
a vec-

tor of gain and wN(k) =
[
w(kN), . . . , w(kN+N−1)

]

a 1×N complex AGWN samples vector such as p
N

(k)
is defined as in (11) (equivalent to (4)).

p
N

(k) = WΦN(k) + wN(k) (11)

For each bloc of N samples the CNHD estimates
ĴN,L(4fc2), the detection criterion. If ĴN,L(4fc2) is
greater than Γ (the detection threshold), it decides that
the saturation is due to the interferer presence. So, the
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Fig. 1. Adaptive Feedback Loop with a Cyclostationary Nonlinear
Harmonics Detector (CNHD)

distance of ĴN,L(4fc2) to Γ gives us an indication on
the power of this unwanted harmonic. Let define the
estimated error ê(k) for the block k in (12).

ê(k) = ĴN,L(4fc2)− Γ (12)

This formulation is equivalent to maintaining the RX
at the limit of detectable harmful harmonics. It allows
to take advantage of the largest affordable gain while
decreasing the power of unwanted components. How-
ever, one can notice that the chosen method is not
adaptive filtering. Indeed, original samples of xN(k)
before its processing through RX analog components
remain unknown. Hence, a minimization of the quadratic
error in the Wiener sense can not be done.

The best way to adjust the gain value is to realize a
gradient descent minimizing the quadratic error ê(k)2. It
requires to assume that ê(k)2 is convex, which implies
that ĴN,L(4fc2) depends on α1 and is monotone. The
ideal gradient descent updating relation is:

α̂1,tot(k + 1)|dB = α̂1,tot(k)|dB − µ
∂ê(k)2

∂α1
(13)

Here µ is a step size that is chosen in function of
the algorithm complexity. Indeed, it can be constant,
function of k or optimal depending on the needs. One
can notice that the gradient descent in (13) implies to use
the theoretical expression of ĴN,L(4fc2) as a function of
α1,tot.

As we lack such an expression, we propose an empir-
ical solution. We propose to use (12) as it represents the
distance to the ideal gain value, to adjust the amplifica-
tion of the whole circuit. This approach is valid since the
value of ĴN,L(4fc2) is linked to the gain thanks to (4).
So, we propose an approximated solution inspired from
the NLMS algorithm that takes into account the value of
ê(k) in (14).

α̂1,tot(k + 1)|dB = α̂1,tot(k)|dB − µ(k)sgn
(
ê(k)

)
·

log10

(
sgn
(
ê(k)

)
ê(k) + 1

)
(14)
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Fig. 2. Comparison of theoretical power of in-band components for
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Here, sgn
(
.
)

stands for the sign function and µ(k) =
10/k is a variable step size that allows a convergence to
a fixed value. Then, the V̂IIP3,tot value has to be updated
with the relation (10) to update the nonlinear model.

Now, two remarks can be made:
• The first point is that ê(k) directly depends on Γ,

which is set to satisfy a particular false alarm prob-
ability (Pfa). So, changing the false alarm proba-
bility directly impacts the estimated gain α̂1(k+1).
When we consider (14), one can observe that de-
creasing Pfa means less detection. So it leads to
decrease α̂1(k+1) less frequently and still working
in a nonlinear regime.

• The second point is that (14) is not optimal in the
Wiener sense. There is no guaranty that the relations
converge to a value that minimizes the MMSE
problem. Hence, we have to check if the final value
actually decreases the nonlinear harmonic power.

To answer these two points, we propose to examine
the power of the nonlinear term that lays in the SOI
bandwidth.

We saw in (6) that the theoretical expression of
the blocking term, denoted as s(t), is: s(t) =
3/2α3z1(t)|z2(t)|2. From this relation, s(t) theoretical
power is developed in (15).

Ps = E
[
|s(t)|2

]
=
(3

2
α3β1β

2
2

)2
(15)

(15) is used to define a new comparison metric between
the power of s(t) and the power of α1y1(t) (the ideally
amplified SOI): the Signal to In-band Harmonic Ratio
(SIHR).

SIHR =
Pα1y1

Ps
(16)

This definition is different from the SIR, which is the
ratio β1/β2 (SOI power over interferer power). The
relation in (16) is represented graphically in fig.2. The
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first noticeable point is the linear relation between the
SIHR and gain values. Let us now study the −30 dB SIR
curve as an example. Considering α1,tot equals 32 dB,
the corresponding SIHR is −11.4 dB. It means that the
in-band harmonic power is much higher than the SOI
power. For now, we assume that a SIHR close to 20 dB
implies that the in band unwanted harmonic has no influ-
ence on the decoding process. This assumption will be
verified thanks to simulations and the fig.3 analysis in the
next section. So, one can use fig.2 to check the best value
of α1 for each SIR values. That way, for a −30 dB SIR
the gain has to be set at 21 dB. Knowing the nonlinear
gain, signal and interferers powers, this method gives a
gain value without any adaptive algorithm. However, in
this application, we have no access to such informations.

In tab.I, we sum-up several values of gain after a
few algorithm iterations. According to this table, in the
previous example a 21 dB gain is obtained for a Pfa set
at 5%.

IV. SIMULATION AND NUMERICAL RESULTS

A. Experimental Conditions

To respect the Shannon’s condition for the interferer
signal, we set a sampling rate fs = 10fc1. The shaping
filter h(t) is defined as a square-root raised cosine
of period T = 2.5T1, a roll-off at 0.8 and span at
6 symbols. Blocker and useful signal are in adjacent
channels, and the interferer carrier frequency is defined

α1(∞) [dB] Pfa [%]
50 20 10 5 1 0.1

SNR = ∞ [dB] 12.6 17.2 20.0 21.0 22.2 23.9

TABLE I
GAIN VALUES AFTER ALGORITHM CONVERGENCE FOR SEVERAL

FALSE ALARM PROBABILITY, SIR = −30dB, Eb/N0 =∞

0 2 4 6 8 10 12 14
Eb/N0 [dB]

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

B
E

R
 @

 S
IR

 =
 -

30
d

B

uncorrected - α1  = 32dB

corrected - P fa  = 5% : α1  = 21dB

corrected - P fa  = 50% : α1  = 12dB

no jammer

Fig. 4. Comparison of BER curves for uncorrected and corrected RX
gain, for a SIR = −30dB

as T2 = T1/2.4. Both SOI and interferer are 4PSK
modulated, with independent and identically distributed
symbols. As discussed in [11], we assume that 8 symbols
are enough to perform a detection of such signals using
the CNHD method. We defined the SOI power β1 to
−106.0 dBm. The detection threshold Γ is fixed for a
Pfa of 5%, as it represents a good tradeoff between
detection and gain adjustment.

The RX gain is initialized at α1,tot(1) = 32dB,
when the corresponding VIIP3,tot(1) = −12.7dBm. For
different α1,tot(k) values the relation in (10) has to be
developed. The VIIP3,tot value can be measured for a
given α1,tot thanks to a two-tone test. For the particular
RX front-end we considered, we tested several linear
gain values and performed a two-tone test for each one.
That way, we obtained an experimental relation between
α1,tot and VIIP3,tot.

(VIIP3,tot(k))|dB = −
(
(α1,tot(k))|dB + 10.7

)
(17)

Nonlinear model coefficients are then adapted thanks to
relations (14) and (17).

B. Simulation Results

Let us first consider the assumption that a SIHR
close to 20 dB is enough to have a BER close to the
”no interferer” case. To make sure that the unwanted
harmonic power in the SOI band is small compared
to the SOI power, we provide fig.3. For several noise
levels, we measured the influence of the SIHR value.
We see that for each Eb/N0 level, a negative SIHR
(dB) implies a degraded BER. When the SIHR comes
positive, the BER improves to get closer of its value
when no interferer is present. One can see that the BER
decreases to a stable value when the SIHR increases. So,
past a SIHR of approximately 20 dB, even a larger gain
decrease may not lead to a significant BER improvement.
This behavior is verified in the following simulations.
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Let now tackle the effect of the gain adaptation
through a BER analysis. In fig.4, we defined a SIR
such as the RX is faintly nonlinear (i.e. −30 dB). As it
can be seen, the uncorrected BER is severely degraded:
for a −103 BER value, there is a 5 dB Eb/N0 gap
when compared to the ”no interferer” case. Nonetheless,
the RX is still able to decode a part of the received
signal as the curve decreases when the Eb/N0 ratio
increases. It means that the unwanted harmonic in the
SOI bandwidth is powerful, but not dominant. However,
our gain adjustment mechanism allows a significant
BER improvement. We represent several BER curves
for which α1 is different. In compliance with the SIHR
analysis, the BER is improved by a gain decrease, while
the SIHR is smaller than 20 dB. For a BER of 10−4,
the improvement is close to BER when no interferer is
present. Nonetheless, there is indeed a small difference
between the 21 dB and the 12 dB BER curves. If we
compare now the 21 dB BER curve with the no interferer
case, for a 10−7 BER the improvement margin is about
0.85 dB, which is small. Whatever the gain, there is
still a small gap between the theoretical bound and gain
adapted BER curves.

Finally, let us assume a SIR equals −40 dB such as
the RX works in a highly nonlinear regime. Such a
powerful interferer makes the RX saturates, as shown
in fig.5. We clearly see that without the gain adaptation
mechanism, the BER is constant even when the noise
power decreases. Our method allows the BER to be
significantly improved. When compared with the 5 dB
gain BER curve, the gap is very small, accordingly with
fig.3 remarks. However, as the interferer is very powerful
(even after the adapted filter), its contribution is too
important to be removed completely. That is why a large
gap exists between the corrected gain BER curve and the
theoretical bound.

V. CONCLUSION

In this work, we first recalled the method principles
to make the RX works in its linear region thanks to
a feedback loop. Based on results in [10], [11] we
proposed an adaptive mechanism to maintain nonlinear
harmonics power small. To our best knowledge, this
concept is not tackled yet in the state of the art. Then, we
analyzed the effects of a gain adaptation on in-band IP3
harmonics. This analysis allows to confirm that a gain
maximization is possible while minimizing the nonlinear
harmonics power. Important BER improvement is no-
ticed in blocking and saturating situation. This proof of
concept will soon be evaluated in a real device. Besides
previous developments concerning PMR radios, the same
method can be applied in every situation where co-
channel interference make the RX works in its nonlinear
region.
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