
“© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.”

A Compromise-based Particle Swarm Optimization Algorithm for Solving Bi-level

Programming Problems with Fuzzy Parameters

Jialin Han, Yaoguang Hu

School of Mechanical Engineering,

Beijing Institute of Technology,

Beijing, China

e-mail: hjl@bit.edu.cn,

hyg@bit.edu.cn

Jialin Han, Guangquan Zhang, Jie Lu

Faculty of Engineering and Information Technology,

University of Technology Sydney,

Sydney, Australia

e-mail: hjl@bit.edu.cn,

{guangquan.zhang, jie.lu}@uts.edu.au

Abstract—Bi-level programming has arisen to handle

decentralized decision-making problems that feature

interactive decision entities distributed throughout a bi-level

hierarchy. Fuzzy parameters often appear in such a problem in

applications and this is called a fuzzy bi-level programming

problem. Since the existing approaches lack universality in

solving such problems, this study aims to develop a particle

swarm optimization (PSO) algorithm to solve fuzzy bi-level

programming problems in the linear and nonlinear versions.

In this paper, we first present a general fuzzy bi-level

programming problem and discuss related theoretical

properties based on a fuzzy number ranking method

commonly used. A PSO algorithm is then developed to solve

the fuzzy bi-level programming problem based on different

compromised selections by decision entities on the feasible

degree for constraint conditions under fuzziness. Lastly, an

illustrative numerical example and two benchmark examples

are adopted to state the effectiveness of the compromise-based

PSO algorithm.

Keywords-bi-level programming; fuzzy number; swarm

computing; particle swarm optimization; compromise

I. INTRODUCTION

Bi-level programming (also known as bi-level decision-
making), motivated by Stackelberg game theory [1], seeks to
address comprises among interactive decision entities that
are distributed throughout a bi-level hierarchical organization.
Decision entities at the upper level and the lower level are
respectively termed the leader and the follower, and make
their individual decisions in sequence with the aim of
optimizing their respective objectives. This decision process
means that the leader has priority in making its own decision
and the follower reacts after and in full knowledge of the
leader's decision. However, the leader's decision is implicitly
affected by the follower's reaction. Since this category of
hierarchical decision-making process often appears in many
decentralized management problems in the real world, bi-
level programming has motivated a number of research on
solution approaches [2-4] and applications [5-7].

An important issue in modeling a bi-level programming
problem is that parameters involved are sometimes obtained
through experiments or experts' understanding of the nature
of the parameters, which are often imprecisely or
ambiguously known to the experts who establish the model;

clearly, these parameters cannot be described by precise
values [7]. With this observation, it would be certainly more
appropriate to interpret the experts' understanding of such
parameters as fuzzy numerical data that can be represented
by means of fuzzy sets theory. A bi-level programming
problem in which the parameters are described by fuzzy
values, often characterized by fuzzy numbers, is called a
fuzzy bi-level programming problem [8].

Since fuzzy bi-level programming can be used to handle
many decentralized decision-making problems in the real
world, it has motivated numerous research on solution
approaches [9]. Zhang and Lu [10] proposed a general fuzzy
linear bi-level programming problem and developed an
approximation Kuhn-Tucker approach to solve this problem.
They also presented an approximation Kth-Best algorithm to
solve the fuzzy linear bi-level decision problem [8]. Gao, et
al. [11] proposed a programmable λ-cut approximate
algorithm to solve a λ-cut set based fuzzy goal bi-level
programming problem. Budnitzki [12] used the selection
function approach and a modified version of Kth-Best
algorithm to solve a fuzzy linear bi-level programming
problem. Also, fuzzy bi-level programming with multiple
objectives has attracted numerous studies. Zhang, et al. [13]
developed an approximation branch-and-bound algorithm to
solve a fuzzy linear bi-level multi-objective programming
problem. Gao, et al. [14] proposed a λ-cut and goal-
programming-based algorithm to solve fuzzy linear bi-level
multi-objective programming problems. Sakawa, et al. [15]
proposed an interactive fuzzy programming approach to find
a satisfactory solution to a fuzzy linear bi-level programming
problem. They also extended the fuzzy approach to solve
fuzzy linear bi-level fractional programming problems [16],
fuzzy bi-level 0-1 programming problems [17] and fuzzy bi-
level non-convex programming problems [18]. Based on
fuzzy programming approaches proposed by Sakawa,
Pramanik [19] adopted a fuzzy goal programming approach
to solve fuzzy linear bi-level programming problems.
However, these solution approaches are limited to handling
some special fuzzy numbers and solving fuzzy programming
problems in the linear version or in a special situation where
all of the decision entities share the same constraint
conditions. In particular, these interactive fuzzy approaches
can only solve fuzzy bi-level programming problems in
which decision entities from different levels prefer to

cooperate with one another, but the cooperation is inhibited
in classical bi-level programming problems. Consequently,
further investigation into solution approaches for solving
fuzzy bi-level programming problems in much more
generalized versions is necessary.

Since bi-level programming problems are strongly NP-
hard and the existing solution approaches lack universality in
solving such problems, intelligent heuristic algorithms may
be used to generate an alternative for solving such problems.
Particle swarm optimization (PSO) is a population-based
heuristic algorithm first proposed by Kennedy and Eberhart

[20]，which is inspired by the social behavior of organisms

such as fish schooling and bird flocking. As PSO requires
only primitive mathematical operators, and is
computationally inexpensive in terms of both memory
requirements and speed [21], it has a good convergence
performance and has been successfully applied in many
fields such as multi-objective optimization [22], discrete
optimization [23] and large-scale optimization [24]. In this
study, we will try to develop a PSO algorithm to solve fuzzy
bi-level programming problems involving linear and
nonlinear versions.

The main contribution of this paper is the provision of a
compromise-based PSO algorithm with the aim of solving
much more generalized fuzzy bi-level programming
problems involving the linear and nonlinear versions. This
paper first presents a general fuzzy bi-level programming
problem and discusses related theoretical properties based on
a commonly used fuzzy number ranking method proposed by
Jiménez [25]. It then develops a PSO algorithm to solve the
proposed fuzzy bi-level programming problem based on the
compromise between the leader and the follower on the
satisfaction of constraint conditions under fuzziness. Lastly,
numerical examples are used to illustrate the effectiveness of
the proposed PSO algorithm.

II. PRELIMINARIES

In this section, we present related notations and
definitions that are used in the subsequent sections.

Definition 1 : [26] The membership function of a fuzzy

number a~ can be described in the following manner:

),,[

],,[

],,[

],,[

],,(

0

)(

1

)(

0

)(

4

43

32

21

1

~



























ax

aax

aax

aax

ax

xg

xf

xr

a

a

a

where the function fa and ga are called the left and the right

side of a~ , and fa is an increasing and ga is a decreasing

function. The r-cuts are closed and bounded intervals and

can be represented by)](),([11 rgrfa aar
 .

Definition 2: [26] The expected interval and the expected

value of a continuous fuzzy number a~ are respectively

defined as)~(aEI and)~(aEV :





 

 1

0

11

0

1
21)(,)(],[)~(drrgdrrfEEaEI aa
aa ,

2
)~(21

aa EE
aEV


 .

Definition 3: [27])
~

()~()
~~(bEIaEIbaEI   ,

)
~

()~()
~~(bEVaEVbaEV   .

Definition 4: [28] For any pair of fuzzy numbers a~ and

b
~

, the degree in which a~ is bigger than b
~

 is the following:
























,01

],,[0
)(

,00

)
~

,~(

21

1221

2112

12

12

ba

baba

baba

ba

ba

M

EE

EEEE
EEEE

EE

EE

ba

where],[21
aa EE and],[21

bb EE are the expected intervals of

a~ and b
~

. When 5.0)
~

,~(baM , a~ and b
~

 are indifferent.

 )
~

,~(baM means that a~ is bigger than, or equal to b
~

at

least in a degree  and that can be represented by ba
~~

 .

III. THE FUZZY BI-LEVEL PROGRAMMING PROBLEM AND

RELATED THEORETICAL PROPERTIES

In this section, we first present the fuzzy bi-level
programming problem that is solved in this paper. Second,
we discuss related theoretical properties based on the fuzzy
number ranking method defined by Definition 3.

A. The Fuzzy Bi-level Programming Problem

The general fuzzy bi-level programming problem that is
studied in this paper is defined as follows.

Definition 5: For pRXx  , qRYy  , a general

fuzzy bi-level programming problem is defined as:

),(~),(
~

min 1 yxFcyxF
Xx




 (Leader)

s.t. 1

~
),(

~
byxG  ,

 where, for each x fixed, y solves (1)

),(~),(
~

min 2 yxfcyxf
Yy




 (Follower)

 s.t. 2

~
),(~ byxg  ,

where x and y are the decision variables of the leader and the

follower respectively;)(~
1 RFc n ,)(~

2 RFc m ,

)(
~
1 RFb s ,)(

~
2 RFb t , nqp RRRyxF :),(,

mqp RRRyxf :),(,)(:),(
~

RFRRyxF qp  ,

)(:),(
~

RFRRyxf qp  ,)(:),(
~

RFRRyxG sqp 
,

)(:),(~ RFRRyxg tqp  ,)(RF is the set of all finite

fuzzy numbers.
To find an acceptable optimal solution to the fuzzy bi-

level programming problem (1), relevant solution concepts
are presented as follows:

Definition 6:
1) The constraint region of the fuzzy bi-level problem (1):

}
~

),(~,
~

),(
~

:),{(21 byxgbyxGYXyxS  .

2) The feasible set of the follower for each fixed x:

}
~

),(~:{)(2byxgYyxS  .

3) The rational reaction set of the follower:

)]}(:),(
~

min[arg:{)(xSyyxfyYyxP  .

4) The inducible region of the fuzzy bi-level problem (1):

)}(,),(:),{(xPySyxyxIR  .

5) The optimal solution set of the fuzzy bi-level problem (1):

]}),(:),(
~

min[arg),(:),{(IRyxyxFyxyxOS  .

It is clear from Definition 6 that the constraint domain
associated with a bi-level programming problem is implicitly
determined by two optimization problems which must be
solved in a predetermined sequence from the leader to the
follower [29].

B. Related Theoretical Properties

For the sake of developing an efficient algorithm to solve
the fuzzy bi-level programming problem (1), we now turn
our attention to related theoretical properties based on the
solution concepts and the fuzzy number ranking method,
which are above mentioned.

Definition 7: Given a decision vector),(yx , it is said to

be feasible in a degree  ( -feasible) to the constraint

region S if

 ))},(~,
~

()),,(
~

,
~

(min{ 21 yxgbyxGb MM . (2)

In view of Definition 4, the previous expression (2) can
be written as :

11
1212)1()1(
bbGG EEEE   ,

22
1212)1()1(
bbgg EEEE   .

The  -feasible constraint region of the fuzzy bi-level

programming problem (1) can be denoted by

 ,)1()1(:),{(11
1212
bbGG EEEEYXyxS  

})1()1(22

1212
bbgg EEEE   .

By Definition 7, if 21   , then SS
21   .

In line with Definition 7, we let

LM yxGb  )},(
~

,
~

(min{ 1 and FM yxgb  )},(~,
~

(min{ 2 ,

thus, },min{ FL   . For the fixed x by the leader, y can

be said to be F -feasible to the feasible set of the follower

S(x) under FM yxgb  )},(~,
~

(min{ 2 . Accordingly, the

feasible set of the follower in relation to all F -feasible

decision vectors can be denoted by:

})1()1(:{)(22
1212
b

F
b

F
g

F
g

F EEEEYyxS
F

  ,

and the F -feasible rational reaction set of the follower can

be written as:

)]}(:),(
~

min[arg:{)(xSyyxfyYyxP
FF   . (3)

Thus, the  -feasible inducible region of the fuzzy bi-level

problem (1) is:

)}(,),(:),{(xPySyxyxIR
F  .

Definition 8: For each given x by the leader, y is said to

be an acceptable optimal solution to the problem

)}(:),(
~

min{ xSyyxf
F

 if it is verified that:

5.0)),(
~

),,(
~

(yxfyxfM for)(xSy
F

 .

By Definition 3, we have

),(
~

),(
~

5.0
 yxfyxf for)(xSy

F
 . (4)

which means that y is a better choice of the follower at

least in degree 0.5 as opposed to the other feasible solutions

in)(xS
F

. Using the Definition 3, the previous expression

(4) can be written as:

5.0
)(

),(
~

2
),(

~

1
),(

~

1
),(

~

2

),(
~

1
),(

~

2 







yxfyxfyxfyxf

yxfyxf

EEEE

EE

or

22

),(
~

1
),(

~

2
),(

~

1
),(

~

2







yxfyxfyxfyxf

EEEE
.

In view of Definition 2 and Definition 3, the expression
allows us to set the following proposition:

Proposition 1: For each fixed x , y is an F -

acceptable optimal solution to the second-level problem

)}(:),(
~

min{ xSyyxf 

if it is an optimal solution to the

following crisp problem:

)}(:)),(
~

(min{ xSyyxfEV
F



)}(:),()~(min{ 2 xSyyxfcEV
F

 , (5)

where)()~(2 RFcEV m is the expected value of the fuzzy

vector 2
~c .

By Proposition 1, the expression (3) can be written as

)]}(:),()~(min[arg:{)(2 xSyyxfcEVyYyxP
FF   .

Similarly, we have the following Proposition 2.

Proposition 2:),(oo yx is an  -acceptable optimal

solution to the fuzzy bi-level programming problem (1) if it
is an optimal solution to the following crisp problem:

}),(:)),(
~

(min{ IRyxyxFEV 

}),(:),()~(min{ 1 IRyxyxFcEV  , (6)

where)()~(1 RFcEV n is the expected value of the fuzzy

vector 1
~c .

In the light of the proposed definitions and propositions,
we can find an optimal solution to the fuzzy bi-level
programming problem (1) under the minimal feasible

degrees  and F respectively preferred by the leader and

the follower; the solution obtained is considered as at least an

 -acceptable optimal solution where F  . However, to

find a solution to the fuzzy bi-level programming problem
(1), we should take into account two conflicting factors: the
acceptable value for the objective functions and the feasible
degree for the constraint conditions. On the one hand, for
each fixed x, the objective value of the follower will become

worse following the increase in the feasible degree F . On

the other hand, for all solutions IRyx ),(, the objective

value of the leader also becomes worse with the feasible
degree  going up. The optimal solution obtained depends

on the selection of the minimal feasible degrees  and F .

In this paper, we will use a particle swarm optimization
(PSO) algorithm to obtain optimal solutions in relation to

different compromised selections of  and F by the

leader and the follower. Finally, the decision marker can
choose the preferred optimal solution in line with different
decision situations. Note that if the leader and the follower
share the same constraint conditions in problem (1), any  -

acceptable optimal solution),(yx ensures F  .

IV. A COMPROMISE-BASED PARTICLE SWARM

OPTIMIZATION ALGORITHM

In this section, we develop a PSO algorithm for solving
the problem (1) based on the compromise on the feasible
degree for the constraint conditions between the leader and
the follower.

Particle swarm optimization (PSO) is a category of the
population-based heuristic algorithm that is motivated by the
social behavior of organisms such as fish schooling and bird
flocking. The population of PSO is known as a swarm, while
each element in the swarm is termed a particle. In a swarm
with the size N, the position vector of each particle with

index i),,2,1(Ni 

is denoted as),(t

i
t
i

t
i yxX  at

iteration t, which represents a potential solution to the
problem (1). For the sake of convenient discussion, we let

),(),(21
t
i

t
i

t
i

t
i

t
i xxyxX  . At iteration t, each particle i moves

from
t
iX to

1t
iX in the search space at a velocity

),(1
2

1
1

1   t
i

t
i

t
i vvV along each dimension. Each particle keeps

track of its coordinates in hyperspace which are associated

with the best solution (fitness), called pbest (),(21 iii ppp ),

it has achieved so far; while the PSO algorithm is divided
into two versions, respectively known as the GBEST version
and the LBEST version, due to different definitions of the
global best solution [21]. In the GBEST version, the particle
swarm optimizer keeps track of the overall best value, called

gbest (),(21 ggg ppp ), and its location obtained thus far by

any particle in the population, known as the global
neighborhood. For the LBEST version, particles only contain
their own and their nearest array neighbors’ best information
within a local topological neighborhood, rather than that of
the entire group. However, in either PSO version, the PSO
concept , at each iteration, always consists of an aggregated
acceleration of each particle towards its pbest and gbest
position. In this paper, the GBEST version of PSO is
followed, and in this section, detailed procedures for solving
the problem (1) are developed.

1) Initial population
In an initial population of particles with the number N ,

each particle i),,2,1(Ni  can be represented as

),(),(0
2

0
1

000
iiiii xxyxX  . We randomly construct an initial

population with the size N. where 0
iX is randomly generated

in S by setting 0 .

2) The updating rules of particles
In the PSO algorithm, each particle i moves toward

),(),(1
2

1
1

111   t
i

t
i

t
i

t
i

t
i xxyxX in the search space at a

velocity),(1
2

1
1

1   t
i

t
i

t
i vvV at each iteration t. In this paper,

the velocity and position of each particle i are updated as
follows for Nij ,,2,1,2,1  based on related definitions

proposed by Shi and Eberhart [30]:

)()(2211
1 t

ij
t
gj

t
ij

t
ij

t
ij

t
ij xprcxprcwvv 

, (7)

11   t
ij

t
ij

t
ij vxx . (8)

We now determine the selection of parameters involved
in the formula (7). For the updating velocity, there are

usually maximum and minimum velocity levels maxv and

minv . If the current velocity max
1 vv t

j 
, we set max

1 vv t
j 

;

while min
1 vv t

j 
 if min

1 vvt
j 

. In the beginning, we set

max
0 vv j  .

w is inertia weight, which controls the impact of the

previous velocities on the current velocity. The inclusion of
the inertia weight involves two definitions proposed by Shi
and Eberhart [30]: a fixed constant and a decreasing
function with time. In our PSO algorithm, we use the latter
to define the inertia weight, because large inertial weight
can be used to possess more exploitation ability at the
beginning to find a good seed while it is reduced for better
local exploitation later on in the search [30]. The inertia
weight is represented as:

t
Iter

ww
ww 




max_

minmax
max , (9)

where maxw and minw are the upper and lower bounds on

the inertia weight, which are determined by the practical
problem; Iter_max is the maximum number of PSO
iterations while t represents the current iteration number.

1c and 2c are known as learning factors or acceleration

coefficients, which control the maximum step size that the

particle can do. A recommended choice for constant 1c and

2c is integer 2 as proposed by Kennedy and Eberhart [20].

1r and 2r are uniform random numbers between 0 and 1.

3) Fitness evaluation

For each particle i at the iteration t),(t
i

t
i

t
i yxX  , adopt

the existing simplex method or interior point method to

solve the problem (5) under
t
ixx  and *

FF   specified

by the follower using the existing simplex method or

interior point method, then obtain the solution),(yxt
i

where)(t
ixPy

F



 and update),(),( yxyxX t

i
t
i

t
i

t
i . If

   L
t
i

t
iM yxGb)},(

~
,

~
(min{ 1 where  is specified by

the leader, then)(t
i

t
i xPy

F



 and Syx t

i
t
i 


),(, which

means IRyx t
i

t
i 


),(; that is,),(t

i
t
i yx is at least a  -

acceptable feasible solution to the fuzzy bi-level
programming problem (1). The pbest solution is

),(),(21
t
i

t
iiii yxppp  and the exact feasible degree for

the constraint region S is    },min{)(FLip , if

)),(
~

()),(
~

(21 ii
t
i

t
i ppFEVyxFEV  where we set

),(),(00
21 iiiii yxppp  , )),(

~
(21 ii ppFEV and

0)(ip at the beginning. The global best solution gbest

of the swarm is),(21 ggg ppp  and the corresponding

feasible degree for the constraint region S is)(gp 

where

},,2,1)),,(
~

(min{)),(
~

(2121 NippFEVppFEV iigg  .

Clearly,),(21 ggg ppp  is an  -acceptable optimal

solution to the fuzzy bi-level problem (1).

4) Termination criterion

The PSO algorithm will be terminated after a maximum
number of iterations Iter_max or when it achieves a
maximum CPU time.

Based on the theoretical basis proposed above, we will
present the complete computational procedures of the PSO
algorithm for solving the fuzzy bi-level programming
problem (1).
Step 1: Initialization.

a) Construct the population size N and generate the initial

population of particles NiyxX iii ,,2,1),,(000  ;

b) Initialize the pbest solution),(),(00
21 iiiii yxppp  ,

the fitness ))(
~

(ipFEV

and the feasible degrees for

the constraint conditions *
FF   ,  and 0)(ip ;

c) Set the maximum and minimum velocity levels maxv

and minv , and initialize max
0 vvij  ;

d) Set the upper and lower bounds on the inertia weight

maxw and minw , acceleration coefficients 1c and 2c , and

the maximum iteration number Iter_max;

e) Set the current iteration number t=0 and go to Step 2.

Step 2: Compute the fitness value and update the pbest

solution for each particle. Set i=1 and go to Step 2.1.

Step 2.1: Under
t
ixx  , solve the problem (5) under

t
ixx  and *

FF   using the existing simplex method or

interior point method, obtain the solution),(yxt
i and

update),(),( yxyxX t
i

t
i

t
i

t
i . Go to Step 2.2.

Step 2.2: If    L
t
i

t
iM yxGb)},(

~
,

~
(min{ 1 , go to Step

2.3; otherwise, go to Step 2.4.

Step 2.3: If)),(
~

()),(
~

(21 ii
t
i

t
i ppFEVyxFEV  , update

),(),(21
t
i

t
iiii yxppp 

and },min{)( FLip  . Go to

Step 2.4.

Step 2.4: If i<N, set i=i+1 and go to Step 2.1; otherwise,

go to Step 3.

Step 3: Update the gbest solution. Set),(21 ggg ppp  and

)(gp  where

},,2,1)),,(
~

(min{)),(
~

(2121 NippFEVppFEV iigg  .

Go to Step 4.

Step 4: Termination criterion. If t<Iter_max, go to Step 5;

otherwise, stop and),(21 ggg ppp  is an  -acceptable

optimal solution to the fuzzy bi-level programming problem

(1).

Step 5: Update the inertia weight, and the velocity and
the position of each particle by the formulas (7), (8) and (9).

If the current velocity max
1 vvt

ij 
, set max

1 vvt
ij 

; while

min
1 vvt

ij 
 if min

1 vvt
ij 

. Set t=t+1 and go to Step 2.

V. NUMERICAL EXAMPLES

In this section, we first illustrate how the proposed
compromise-based PSO algorithm works through solving a
fuzzy nonlinear bi-level programming problem in which the
fuzzy numbers are characterized by nonlinear membership
functions. Second, we use the proposed PSO algorithm to
solve two benchmark problems and compare the results with
that obtained by the existing algorithms.

A. An Illustrative Example

Consider the following fuzzy nonlinear bi-level
programming problem (10):

2
21

2
2

2
1 1

~
4
~

3
~

1
~

),(
~

min yyxxyxF
x



s.t. 4
~

2
~

1
~

2
2
1  xx ,

 0x ,

 where y solves: (10)

 2
2
1

2
1 5

~
1
~

2
~

),(
~

min yyxyxf
y



 s.t. 3
~

1
~

2
~

1
~

2
~

1
~

21
2
21

2
1  yyxxx ,

 4
~

4
~

3
~

1
~

212  yyx ,

 0y .

The membership functions of the coefficients in this
example are given as follows:


























20

21
3

4

10

00

)(2

2

1
~

t

t
t

tt

t

t ,



























30

32
5

9

21
3

1

10

)(
2

2

2
~

t

t
t

t
t

t

t ,



























40

43
7

16

32
5

4

20

)(
2

2

3
~

t

t
t

t
t

t

t ,



























50

54
9

25

43
7

9

30

)(
2

2

4
~

t

t
t

t
t

t

t ,



























60

65
11

36

54
9

16

40

)(
2

2

5
~

t

t
t

t
t

t

t .

Whereas the existing solution approaches cannot be
adopted to solve the fuzzy nonlinear bi-level programming
problem, we use the proposed PSO algorithm to find
compromised solutions for the problem. Based on the PSO
procedures developed in Section IV, the related parameters
involved in the algorithm are initialized in TABLE I.

TABLE I. PARAMETERS EMPLOYED IN THE PSO ALGORITHM FOR

SOLVING THE PROBLEM (10)

N vmax vmin wmax wmin
c1 c2 Iter_max

30 1.0 -1.0 0.5 0.01 2.0 2.0 60

The PSO algorithm is implemented in MATLAB R2014a.

The computational results under different compromised

selections of  and F are reported in TABLE II. In

TABLE II, the first column  and the second column 
F

are the minimal  and F respectively preferred by the

leader and the follower. The fifth column  represents the

exact feasible degree for constraint conditions under the
solution),(yx , which indicates that the solution),(yx is an

 -acceptable optimal solution to the numerical example.

The last column shows the iteration number when the PSO
algorithm is convergent. In the real world, decision entities
can make free choices of their preferred solutions from
TABLE II in view of various decision situations in relation
to their decentralized management problems.

TABLE II. THE COMPUTATIONAL RESULTS OF PROBLEM (10) UNDER DIFFERENT COMPROMISED CONDITIONS



F (x, y)))

~
(),

~
((fEVFEV 

Iterations

0.5 0.5 (0.0014, 1.9669, 1.7003, 0.8241) (-17.7991, -0.9220) 0.5 39

 0.6 (0.0010, 1.9669, 1.6050, 0.6290) (-17.7309, -0.2933) 0.5 32

 0.7 (0.0016, 1.9669, 1.5142, 0.4506) (-17.5797, 0.2870) 0.5 35

 0.8 (0.0002, 1.9669, 1.4276, 0.2872) (-17.3653, 0.8235) 0.5 39

 0.9 (0.0001, 1.9669, 1.3448, 0.1374) (-17.1032, 1.3202) 0.5 31

 1.0 (0, 1.9669, 1.2672, 0.0007) (-16.8121, 1.7809) 0.5 38

0.6 0.6 (0.0003, 1.8307, 1.6050, 0.5952) (-16.2103, -0.1238) 0.6 33

 0.7 (0.0005, 1.8307, 1.5142, 0.4205) (-16.0423, 0.4381) 0.6 32

 0.8 (0.0011, 1.8307, 1.4276, 0.2606) (-15.8149, 0.9571) 0.6 44

 0.9 (0.0009, 1.8307, 1.3448, 0.1141) (-15.5432, 1.4371) 0.6 37

 1.0 (0.0018, 1.8307, 1.3019, 0) (-15.3852, 1.8832) 0.6 36

0.7 0.7 (0.0009, 1.7063, 1.5142, 0.3930) (-14.7354, 0.5761) 0.7 46

 0.8 (0.0039, 1.7063, 1.4276, 0.2363) (-14.4965, 1.0790) 0.7 29

 0.9 (0.0051, 1.7063, 1.3448, 0.0928) (-14.2162, 1.5438) 0.7 41

 1.0 (0.0008, 1.7063, 1.3346, 0) (-14.1848, 1.9790) 0.7 47

0.8 0.8 (0.0004, 1.5924, 1.4276, 0.2140) (-13.3696, 1.1907) 0.8 36

 0.9 (0.0035, 1.5924, 1.3448, 0.0734) (-13.0817, 1.6414) 0.8 36

 1.0 (0.0097,1.5924, 1.3646, 0) (-13.1667, 2.0692) 0.8 46

0.9 0.9 (0.0009, 1.4877, 1.3448, 0.0555) (-12.1071, 1.7313) 0.9 38

 1.0 (0.0110, 1.4875, 1.3922, 0) (-12.3000,2.1537) 0.9 30

1.0 1.0 (0.0544, 1.3708, 1.4229, 0) (-11.4164, 2.2556) 1.0 48

Figure 1. The convergence curves of the leader's and the follower's

expected objective values

In regard to solving this numerical example (10), we can

also randomly generate a pair of  and 
F in the interval

[0.5, 1] and [ , 1]. The computational results imply that we

can obtain a convergent solution using the proposed PSO
algorithm under the parameters shown in TABLE I. For
example, the convergence curves of the expected objective

values of the leader and the follower))
~

(),
~

((fEVFEV under

)9386.0,8320.0(),(
F are shown in Figure 1. It can be

seen from Figure 1 that the expected objective values of the
leader and the follower have converged to

)8508.0,5979.15())
~

(),
~

((fEVFEV since the 30th

iteration. With this observation, we can obtain a gbest

solution)2960.0,4499.1,8048.1,0040.0(gp for the fuzzy

nonlinear bi-level programming problem. Clearly, the PSO
algorithm provides a practical way to solve bi-level
programming problems with fuzzy parameters.

B. Benchmark Examples

In this section, the proposed PSO algorithm is applied to
solve two benchmark problems that respectively appear in [8]
and [10]. Also, we compare the computational results that
are respectively obtained by the PSO algorithm and provided
in [8] and [10].

The related parameters involved in the PSO algorithm for
solving the problems are initialized as the same, shown in
TABLE III. TABLE IV and TABLE V respectively display
the results for the problems in [8] and [10] obtained by the

PSO algorithm under different compromised  and 
F .

Decision entities are able to choose their preferred optimal
solution from TABLE IV and TABLE V in line with
different decision situations. It is noticeable that the solution
provided in [8] is)25.1,5.0(),(yx that is the same as our

solution obtained under the compromised condition

7727.0 
F . As well, the solution reported in [10] is

)5.0,0(),(yx and)50.0,0.1())
~

(),
~

((fEVFEV that

satisfies IRyx 


),(with 8333.0 
F . Under the

same decision situation 8333.0 
F , our PSO

algorithm can find a better solution)11667,3334.0(),(yx

and)5001.1,0.2())
~

(),
~

((fEVFEV . Clearly, the PSO

algorithm provides not only more options of solutions due to
different decision environments but also better solutions
under the same decision situation for the decision entities.

TABLE III. PARAMETERS EMPLOYED IN THE PSO ALGORITHM FOR

SOLVING THE PROBLEMS IN [8] AND [10]

N vmax vmin wmax wmin
c1 c2 Iter_max

20 0.5 -0.5 0.5 0.01 2.0 2.0 40

TABLE IV. THE COMPUTATIONAL RESULTS OF THE PROBLEM IN [8]

OBTAINED BY THE PSO ALGORITHM



F (x, y)))

~
(),

~
((fEVFEV 

Iterations

0.5 0.5 (2.0, 2.0) (5.0, 2.0) 0.5 23

0.6 0.6 (1.2308, 1.6154) (5.0, 1.6154) 0.6 22

0.7 0.7 (0.75, 1.375) (5.0, 1.3750) 0.7 29

0.7727 0.7727 (0.50, 1.25) (5.0, 1.2500) 0.7727 22

0.8 0.8 (0.421, 1.2105) (5.0, 1.2105) 0.8 21

0.9 0.9 (0.1818, 1.0909) (5.0, 1.0909) 0.9 21

1.0 1.0 (0, 1.0) (5.0, 1.0) 1.0 33

TABLE V. THE COMPUTATIONAL RESULTS OF THE PROBLEM IN [10]

OBTAINED BY THE PSO ALGORITHM



F (x, y)))

~
(),

~
((fEVFEV 

Iterations

0.5 0.5 (2.0, 2.0) (-2.0, 4.0) 0.5 23

0.6 0.6 (1.2308, 1.6154) (-2.0, 2.8462) 0.6 24

0.7 0.7 (0.75, 1.375) (-2.0, 2.1250) 0.7 31

0.8 0.8 (0.421, 1.2105) (-2.0, 1.6315) 0.8 28

0.8333 0.8333 (0.3334, 1.1667) (-2.0, 1.5001) 0.8333 30

0.9 0.9 (0.1818, 1.0909) (-2.0, 1.2727) 0.9 25

1.0 1.0 (0, 1.0) (-2.0, 1.0) 1.0 32

VI. CONCLUSIONS AND FURTHER STUDY

This study developed a compromise-based PSO
algorithm to solve fuzzy bi-level programming problems.
First, we proposed the general fuzzy bi-level programming
problem and discussed related theoretical properties. Second,
we presented the procedures of the PSO algorithm, based on
the compromise on the feasible degree for the constraint
conditions between the leader and the follower, for solving
the proposed fuzzy bi-level programming problem. Lastly,
we illustrated how the PSO algorithm works through three
numerical examples. The computational results show that the

PSO algorithm provides a practical way to solve fuzzy bi-
level programming problems involve the linear and nonlinear
versions. Moreover, compared with the existing solution
approaches, the PSO algorithm can provide not only more
options of solutions due to different decision environments
but also better solutions under the same decision situation for
the decision entities. In the future, we will apply the fuzzy
bi-level programming techniques to handle decentralized
decision-making problems under an uncertain situation in the
real world. Also, we will explore the efficiency performance
of the PSO algorithm for solving large-scale fuzzy bi-level
programming problems in applications.

ACKNOWLEDGMENT

This work is supported by the Australian Research
Council (ARC) under discovery grant DP140101366 and the
National High Technology Research and Development
Program of China (NO. 2013AA040402).

REFERENCES

[1] H. V. Stackelberg, The Theory of Market Economy. Oxford: Oxford
University Press, 1952.

[2] W. F. Bialas and M. H. Karwan, "On two-level optimization," IEEE
Trans Automatic Control, vol. AC-26, pp. 211-214, 1982.

[3] J. F. Bard, Practical Bilevel Optimization: Algorithms and
Applications. Dordrecht, The Netherlands: Kluwer Academic
Publishers, 1998.

[4] C. Shi, H. Lu, and G. Zhang, "An extended Kth-best approach for
linear bilevel programming," Applied Mathematics and Computation,
vol. 164, pp. 843-855, May 2005.

[5] S. Dempe, V. V. Kalashnikov, G. A. Pérez-Valdés, and N. I.
Kalashnykova, "Natural gas bilevel cash-out problem: Convergence
of a penalty function method," European Journal of Operational
Research, vol. 215, pp. 532-538, 2011.

[6] G. Zhang, G. Zhang, Y. Gao, and J. Lu, "Competitive strategic
bidding optimization in electricity markets using bilevel
programming and swarm technique," IEEE Transactions on Industrial
Electronics, vol. 58, pp. 2138-2146, 2011.

[7] J. Han, J. Lu, Y. Hu, and G. Zhang, "Tri-level decision-making with
multiple followers: Model, algorithm and case study," Information
Sciences, vol. 311, pp. 182-204, 8/1/ 2015.

[8] G. Zhang and J. Lu, "Model and approach of fuzzy bi-level decision
making for logistics planning problem," Journal of Enterprise
Information Management, vol. 20, pp. 178-197, 2007.

[9] G. Zhang, J. Lu, and Y. Gao, Multi-Level Decision Making: Models,
Methods and Applications vol. 82. Berlin: Springer, 2015.

[10] G. Zhang and J. Lu, "The definition of optimal solution and an
extended Kuhn-Tucker approach for fuzzy linear bi-level
programming," IEEE Computational Intelligence Bulletin, vol. 2, pp.
1-7, 2005.

[11] Y. Gao, G. Zhang, J. Lu, T. Dillon, and X. Zeng, "A λ-cut-
approximate algorithm for goal-based bilevel risk management
systems," International Journal of Information Technology and
Decision Making vol. 7, pp. 589-610, 2008.

[12] A. Budnitzki, "The solution approach to linear fuzzy bilevel
optimization problems," Optimization, pp. 1-15, 2013.

[13] G. Zhang, J. Lu, and T. Dillon, "Decentralized multi-objective bilevel
decision making with fuzzy demands," Knowledge-Based Systems,
vol. 20, pp. 495-507, 2007.

[14] Y. Gao, G. Zhang, J. Ma, and J. Lu, "A λ-cut and goal programming
based algorithm for fuzzy linear multiple objective bi-level
optimization," IEEE Transactions on Fuzzy Systems, vol. 18, pp. 1-
13, 2010.

[15] M. Sakawa, I. Nishizaki, and Y. Uemura, "Interactive fuzzy
programming for multi-level linear programming problems with
fuzzy parameters," Fuzzy Sets and Systems, vol. 109, pp. 3-19, 2000.

[16] M. Sakawa, I. Nishizaki, and Y. Uemura, "Interactive fuzzy
programming for two-level linear fractional programming problems
with fuzzy parameters," Fuzzy Sets and Systems, vol. 115, pp. 93-103,
2000.

[17] M. Sakawa, I. Nishizaki, and M. Hitaka, "Interactive fuzzy
programming for multi-level 0-1 programming problems with fuzzy
parameters through genetic algorithms," Fuzzy Sets and Systems, vol.
117, pp. 95-111, 2001.

[18] M. Sakawa and I. Nishizaki, "Interactive fuzzy programming for two-
level nonconvex programming problems with fuzzy parameters
through genetic algorithms," Fuzzy Sets and Systems, vol. 127, pp.
185-197, 2002.

[19] S. Pramanik, "Bilevel programming problem with fuzzy parameters: a
fuzzy goal programing approach," Journal of Applied Quantitative
Methods, vol. 7, pp. 9-24, 2012.

[20] J. Kennedy and R. Eberhart, "Particle swarm optimization," in
Proceedings of IEEE International Conference on Neural Networks,
vol.4, pp. 1942-1948, 1995.

[21] R. Eberhart and J. Kennedy, "A new optimizer using particle swarm
theory," in Proceedings of the Sixth International Symposium on
Micro Machine and Human Science, pp. 39-43, 1995.

[22] T. Lixin and W. Xianpeng, "A Hybrid Multiobjective Evolutionary
Algorithm for Multiobjective Optimization Problems," IEEE
Transactions on Evolutionary Computation, vol. 17, pp. 20-45, 2013.

[23] C. Wei-Neng, Z. Jun, H. S. H. Chung, Z. Wen-Liang, W. Wei-gang,
and S. Yu-hui, "A Novel Set-Based Particle Swarm Optimization
Method for Discrete Optimization Problems," IEEE Transactions on
Evolutionary Computation, vol. 14, pp. 278-300, 2010.

[24] L. Xiaodong and Y. Xin, "Cooperatively Coevolving Particle Swarms
for Large Scale Optimization," IEEE Transactions on Evolutionary
Computation, vol. 16, pp. 210-224, 2012.

[25] M. Jiménez, "Ranking fuzzy numbers through the comparison of its
expected intervals," International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, vol. 04, pp. 379-388, 1996.

[26] S. Heilpern, "The expected value of a fuzzy number," Fuzzy Sets and
Systems, vol. 47, pp. 81-86, 1992.

[27] M. Jiménez, M. Arenas, A. Bilbao, and M. V. Rodrı´guez, "Linear
programming with fuzzy parameters: An interactive method
resolution," European Journal of Operational Research, vol. 177, pp.
1599-1609, 2007.

[28] M. JIMÉNEZ, "Ranking fuzzy numbers through the comparison of its
expected intervals," International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, vol. 4, pp. 379-388, 1996.

[29] V. Kalashnikov and R. Ríos-Mercado, "A natural gas cash-out
problem: A bilevel programming framework and a penalty function
method," Optimization and Engineering, vol. 7, pp. 403-420, 2006.

[30] C. Shi and R. Eberhart, "A modified particle swarm optimizer," in
IEEE World Congress on Computational Intelligence, Proceedings of
the 1998 IEEE International Conference on Evolutionary
Computation, pp. 69-73, 1998.

