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Abstract—Bi-level programming has arisen to handle 

decentralized decision-making problems that feature 

interactive decision entities distributed throughout a bi-level 

hierarchy. Fuzzy parameters often appear in such a problem in 

applications and this is called a fuzzy bi-level programming 

problem. Since the existing approaches lack universality in 

solving such problems, this study aims to develop a particle 

swarm optimization (PSO) algorithm to solve fuzzy bi-level 

programming problems in the linear and nonlinear versions. 

In this paper, we first present a general fuzzy bi-level 

programming problem and discuss related theoretical 

properties based on a fuzzy number ranking method 

commonly used. A PSO algorithm is then developed to solve 

the fuzzy bi-level programming problem based on different 

compromised selections by decision entities on the feasible 

degree for constraint conditions under fuzziness. Lastly, an 

illustrative numerical example and two benchmark examples 

are adopted to state the effectiveness of the compromise-based 

PSO algorithm. 

Keywords-bi-level programming; fuzzy number; swarm 

computing; particle swarm optimization; compromise 

I.  INTRODUCTION 

Bi-level programming (also known as bi-level decision-
making), motivated by Stackelberg game theory [1], seeks to 
address comprises among interactive decision entities that 
are distributed throughout a bi-level hierarchical organization. 
Decision entities at the upper level and the lower level are 
respectively termed the leader and the follower, and make 
their individual decisions in sequence with the aim of 
optimizing their respective objectives. This decision process 
means that the leader has priority in making its own decision 
and the follower reacts after and in full knowledge of the 
leader's decision. However, the leader's decision is implicitly 
affected by the follower's reaction. Since this category of 
hierarchical decision-making process often appears in many 
decentralized management problems in the real world, bi-
level programming has motivated a number of research on 
solution approaches [2-4] and applications [5-7]. 

An important issue in modeling a bi-level programming 
problem is that parameters involved are sometimes obtained 
through experiments or experts' understanding of the nature 
of the parameters, which are often imprecisely or 
ambiguously known to the experts who establish the model; 

clearly, these parameters cannot be described by precise 
values [7]. With this observation, it would be certainly more 
appropriate to interpret the experts' understanding of such 
parameters as fuzzy numerical data that can be represented 
by means of fuzzy sets theory. A bi-level programming 
problem in which the parameters are described by fuzzy 
values, often characterized by fuzzy numbers, is called a 
fuzzy bi-level programming problem [8]. 

Since fuzzy bi-level programming can be used to handle 
many decentralized decision-making problems in the real 
world, it has motivated numerous research on solution 
approaches [9]. Zhang and Lu [10] proposed a general fuzzy 
linear bi-level programming problem and developed an 
approximation Kuhn-Tucker approach to solve this problem. 
They also presented an approximation Kth-Best algorithm to 
solve the fuzzy linear bi-level decision problem [8]. Gao, et 
al. [11] proposed a programmable λ-cut approximate 
algorithm to solve a λ-cut set based fuzzy goal bi-level 
programming problem. Budnitzki [12] used the selection 
function approach and a modified version of Kth-Best 
algorithm to solve a fuzzy linear bi-level programming 
problem. Also, fuzzy bi-level programming with multiple 
objectives has attracted numerous studies. Zhang, et al. [13] 
developed an approximation branch-and-bound algorithm to 
solve a fuzzy linear bi-level multi-objective programming 
problem. Gao, et al. [14] proposed a λ-cut and goal-
programming-based algorithm to solve fuzzy linear bi-level 
multi-objective programming problems. Sakawa, et al. [15] 
proposed an interactive fuzzy programming approach to find 
a satisfactory solution to a fuzzy linear bi-level programming 
problem. They also extended the fuzzy approach to solve 
fuzzy linear bi-level fractional programming problems [16], 
fuzzy bi-level 0-1 programming problems [17] and fuzzy bi-
level non-convex programming problems [18]. Based on 
fuzzy programming approaches proposed by Sakawa, 
Pramanik [19] adopted a fuzzy goal programming approach 
to solve fuzzy linear bi-level programming problems. 
However, these solution approaches are limited to handling 
some special fuzzy numbers and solving fuzzy programming 
problems in the linear version or in a special situation where 
all of the decision entities share the same constraint 
conditions. In particular, these interactive fuzzy approaches 
can only solve fuzzy bi-level programming problems in 
which decision entities from different levels prefer to 



cooperate with one another, but the cooperation is inhibited 
in classical bi-level programming problems. Consequently, 
further investigation into solution approaches for solving 
fuzzy bi-level programming problems in much more 
generalized versions is necessary. 

Since bi-level programming problems are strongly NP-
hard and the existing solution approaches lack universality in 
solving such problems, intelligent heuristic algorithms may 
be used to generate an alternative for solving such problems. 
Particle swarm optimization (PSO) is a population-based 
heuristic algorithm first proposed by Kennedy and Eberhart 

[20]，which is inspired by the social behavior of organisms 

such as fish schooling and bird flocking. As PSO requires 
only primitive mathematical operators, and is 
computationally inexpensive in terms of both memory 
requirements and speed [21], it has a good convergence 
performance and has been successfully applied in many 
fields such as multi-objective optimization [22], discrete 
optimization [23] and large-scale optimization [24]. In this 
study, we will try to develop a PSO algorithm to solve fuzzy 
bi-level programming problems involving linear and 
nonlinear versions. 

The main contribution of this paper is the provision of a 
compromise-based PSO algorithm with the aim of solving 
much more generalized fuzzy bi-level programming 
problems involving the linear and nonlinear versions. This 
paper first presents a general fuzzy bi-level programming 
problem and discusses related theoretical properties based on 
a commonly used fuzzy number ranking method proposed by 
Jiménez [25]. It then develops a PSO algorithm to solve the 
proposed fuzzy bi-level programming problem based on the 
compromise between the leader and the follower on the 
satisfaction of constraint conditions under fuzziness. Lastly, 
numerical examples are used to illustrate the effectiveness of 
the proposed PSO algorithm. 

II. PRELIMINARIES 

In this section, we present related notations and 
definitions that are used in the subsequent sections. 

Definition 1 : [26] The membership function of a fuzzy 

number a~ can be described in the following manner: 
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where the function fa and ga are called the left and the right 

side of a~ , and fa is an increasing and ga is a decreasing 

function. The r-cuts are closed and bounded intervals and 

can be represented by )](),([ 11 rgrfa aar
 . 

Definition 2: [26] The expected interval and the expected 

value of a continuous fuzzy number a~  are respectively 

defined as )~(aEI  and )~(aEV : 
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Definition 4: [28] For any pair of fuzzy numbers a~  and 

b
~

, the degree in which a~  is bigger than b
~

 is the following: 
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bb EE  are the expected intervals of 
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III. THE FUZZY BI-LEVEL PROGRAMMING PROBLEM AND 

RELATED THEORETICAL PROPERTIES 

In this section, we first present the fuzzy bi-level 
programming problem that is solved in this paper. Second, 
we discuss related theoretical properties based on the fuzzy 
number ranking method defined by Definition 3. 

A. The Fuzzy Bi-level Programming Problem 

The general fuzzy bi-level programming problem that is 
studied in this paper is defined as follows. 

Definition 5: For pRXx  , qRYy  , a general 

fuzzy bi-level programming problem is defined as: 
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where x and y are the decision variables of the leader and the 

follower respectively; )(~
1 RFc n , )(~

2 RFc m , 
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)(:),(~ RFRRyxg tqp  , )(RF  is the set of all finite 

fuzzy numbers. 
To find an acceptable optimal solution to the fuzzy bi-

level programming problem (1), relevant solution concepts 
are presented as follows: 

Definition 6:  
1) The constraint region of the fuzzy bi-level problem (1): 
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2) The feasible set of the follower for each fixed x: 
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3) The rational reaction set of the follower: 
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min[arg:{)( xSyyxfyYyxP  . 

4) The inducible region of the fuzzy bi-level problem (1): 

)}(,),(:),{( xPySyxyxIR  . 

5) The optimal solution set of the fuzzy bi-level problem (1): 
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It is clear from Definition 6 that the constraint domain 
associated with a bi-level programming problem is implicitly 
determined by two optimization problems which must be 
solved in a predetermined sequence from the leader to the 
follower [29]. 

B. Related Theoretical Properties 

For the sake of developing an efficient algorithm to solve 
the fuzzy bi-level programming problem (1), we now turn 
our attention to related theoretical properties based on the 
solution concepts and the fuzzy number ranking method, 
which are above mentioned.  

Definition 7: Given a decision vector ),( yx , it is said to 

be feasible in a degree  (  -feasible) to the constraint 

region S if 
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In view of Definition 4, the previous expression (2) can 
be written as : 
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The  -feasible constraint region of the fuzzy bi-level 

programming problem (1) can be denoted by 
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In line with Definition 7, we let 

LM yxGb  )},(
~

,
~

(min{ 1  and FM yxgb  )},(~,
~

(min{ 2 , 

thus, },min{ FL   . For the fixed x by the leader, y can 

be said to be F -feasible to the feasible set of the follower 

S(x) under FM yxgb  )},(~,
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(min{ 2 . Accordingly, the 

feasible set of the follower in relation to all F -feasible 

decision vectors can be denoted by: 
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and the F -feasible rational reaction set of the follower can 

be written as: 
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Thus, the   -feasible inducible region of the fuzzy bi-level 

problem (1)  is: 
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Definition 8: For each given x by the leader, y  is said to 

be an acceptable optimal solution to the problem  
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which means that y  is a better choice of the follower at 

least in degree 0.5 as opposed to the other feasible solutions 

in )(xS
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. Using the Definition 3, the previous expression 
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In view of  Definition 2 and Definition 3, the expression 
allows us to set the following proposition: 

Proposition 1: For each fixed x , y  is an F -

acceptable optimal solution to the second-level problem 

)}(:),(
~

min{ xSyyxf 
 
if it is an optimal solution to the 

following crisp problem: 
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where )()~( 2 RFcEV m  is the expected value of the fuzzy 

vector 2
~c . 

By Proposition 1, the expression (3) can be written as

)]}(:),()~(min[arg:{)( 2 xSyyxfcEVyYyxP
FF   .

Similarly, we have the following Proposition 2. 

Proposition 2: ),( oo yx  is an  -acceptable optimal 

solution to the fuzzy bi-level programming problem (1) if it 
is an optimal solution to the following crisp problem: 

}),(:)),(
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}),(:),()~(min{ 1 IRyxyxFcEV  ,                              (6) 

where )()~( 1 RFcEV n  is the expected value of the fuzzy 

vector 1
~c . 

In the light of the proposed definitions and propositions, 
we can find an optimal solution to the fuzzy bi-level 
programming problem (1) under the minimal feasible 

degrees   and F  respectively preferred by the leader and 

the follower; the solution obtained is considered as at least an 

 -acceptable optimal solution where F  . However, to 

find  a solution to the fuzzy bi-level programming problem 
(1), we should take into account two conflicting factors: the 
acceptable value for the objective functions and the feasible 
degree for the constraint conditions. On the one hand, for 
each fixed x, the objective value of the follower will become 



worse following the increase in the feasible degree F . On 

the other hand, for all solutions IRyx ),( , the objective 

value of the leader also becomes worse with the feasible 
degree   going up. The optimal solution obtained depends 

on the selection of the minimal feasible degrees   and F . 

In this paper, we will use a particle swarm optimization 
(PSO) algorithm to obtain optimal solutions in relation to 

different compromised selections of   and F  by the 

leader and the follower. Finally, the decision marker can 
choose the preferred optimal solution in line with different 
decision situations. Note that if the leader and the follower 
share the same constraint conditions in problem (1), any  -

acceptable optimal solution ),( yx ensures F  . 

IV. A COMPROMISE-BASED PARTICLE SWARM 

OPTIMIZATION ALGORITHM 

In this section, we develop a PSO algorithm for solving 
the problem (1) based on the compromise on the feasible 
degree for the constraint conditions between the leader and 
the follower. 

Particle swarm optimization (PSO) is a category of the 
population-based heuristic algorithm that is motivated by the 
social behavior of organisms such as fish schooling and bird 
flocking. The population of PSO is known as a swarm, while 
each element in the swarm is termed a particle. In a swarm 
with the size N, the position vector of each particle with 

index i ),,2,1( Ni 
 
is denoted as ),( t

i
t
i

t
i yxX   at 

iteration t, which represents a potential solution to the 
problem (1). For the sake of convenient discussion, we let 
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t
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t
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t
i xxyxX  . At iteration t, each particle i moves 

from 
t
iX  to 

1t
iX  in the search space at a velocity 

),( 1
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1
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1   t
i

t
i

t
i vvV  along each dimension. Each particle keeps 

track of its coordinates in hyperspace which are associated 

with the best solution (fitness), called pbest ( ),( 21 iii ppp  ), 

it has achieved so far; while the PSO algorithm is divided 
into two versions, respectively known as the GBEST version 
and the LBEST version, due to different definitions of the 
global best solution [21]. In the GBEST version, the particle 
swarm optimizer keeps track of the overall best value, called 

gbest ( ),( 21 ggg ppp  ), and its location obtained thus far by 

any particle in the population, known as the global 
neighborhood. For the LBEST version, particles only contain 
their own and their nearest array neighbors’ best information 
within a local topological neighborhood, rather than that of 
the entire group. However, in either PSO version, the PSO 
concept , at each iteration, always consists of an aggregated 
acceleration of each particle towards its pbest and gbest 
position. In this paper, the GBEST version of PSO is 
followed, and in this section, detailed procedures for solving 
the problem (1) are developed. 

1) Initial population 
In an initial population of particles with the number N , 

each particle i ),,2,1( Ni   can be represented as 

),(),( 0
2

0
1

000
iiiii xxyxX  . We randomly construct an initial 

population with the size N. where 0
iX  is randomly generated 

in S  by setting 0 .  

2) The updating rules of particles 
In the PSO algorithm, each particle i moves toward 
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i xxyxX  in the search space at a 

velocity ),( 1
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1
1

1   t
i

t
i

t
i vvV at each iteration t. In this paper, 

the velocity and position of each particle i are updated as 
follows for Nij ,,2,1,2,1   based on related definitions 

proposed by Shi and Eberhart [30]: 
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We now determine the selection of parameters involved 
in the formula (7). For the updating velocity, there are 

usually maximum and minimum velocity levels maxv  and 

minv . If the current velocity max
1 vv t

j 
, we set max

1 vv t
j 

; 

while min
1 vv t

j 
 if min

1 vvt
j 

. In the beginning, we set 

max
0 vv j  . 

w  is inertia weight, which controls the impact of the 

previous velocities on the current velocity. The inclusion of 
the inertia weight involves two definitions proposed by Shi 
and Eberhart [30]: a fixed constant and a decreasing 
function with time. In our PSO algorithm, we use the latter 
to define the inertia weight, because large inertial weight 
can be used to possess more exploitation ability at the 
beginning to find a good seed while it is reduced for better 
local exploitation later on in the search [30]. The inertia 
weight is represented as: 

t
Iter

ww
ww 


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max_

minmax
max ,                                 (9) 

where maxw and minw  are the upper and lower bounds on 

the inertia weight, which are determined by the practical 
problem; Iter_max is the maximum number of PSO 
iterations while t represents the current iteration number. 

1c  and 2c  are known as learning factors or acceleration 

coefficients, which control the maximum step size that the 

particle can do. A recommended choice for constant 1c  and 

2c  is integer 2 as proposed by Kennedy and Eberhart [20]. 

1r  and 2r  are uniform random numbers between 0 and 1. 

3) Fitness evaluation 

For each particle i at the iteration t ),( t
i

t
i

t
i yxX  , adopt 

the existing simplex method or interior point method to 

solve the problem (5) under 
t
ixx   and *

FF    specified 

by the follower using the existing simplex method or 

interior point method, then obtain the solution ),( yxt
i  
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i
t
i

t
i

t
i . If 
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acceptable feasible solution to the fuzzy bi-level 
programming problem (1). The pbest solution is 
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iiii yxppp   and the exact feasible degree for 

the constraint region S is    },min{)( FLip , if 
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0)( ip  at the beginning. The global best solution gbest 

of the swarm is ),( 21 ggg ppp   and the corresponding 

feasible degree for the constraint region S is )( gp 

where 

},,2,1)),,(
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(min{)),(
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Clearly, ),( 21 ggg ppp   is an  -acceptable optimal 

solution to the fuzzy bi-level problem (1). 

4) Termination criterion 

The PSO algorithm will be terminated after a maximum 
number of iterations Iter_max or when it achieves a 
maximum CPU time. 

Based on the theoretical basis proposed above, we will 
present the complete computational procedures of the PSO 
algorithm for solving the fuzzy bi-level programming 
problem (1). 
Step 1: Initialization. 

a) Construct the population size N and generate the initial 

population of particles NiyxX iii ,,2,1),,( 000  ; 

b) Initialize the pbest solution ),(),( 00
21 iiiii yxppp  , 

the fitness ))(
~

( ipFEV
 
and the feasible degrees for 

the constraint conditions *
FF   ,   and 0)( ip ; 

c) Set the maximum and minimum velocity levels maxv  

and minv , and initialize max
0 vvij  ; 

d) Set the upper and lower bounds on the inertia weight 

maxw and minw , acceleration coefficients 1c  and 2c , and 

the maximum iteration number Iter_max; 

e) Set the current iteration number t=0 and go to Step 2. 

Step 2: Compute the fitness value and update the pbest 

solution for each particle. Set i=1 and go to Step 2.1. 

Step 2.1: Under 
t
ixx  , solve the problem (5) under 

t
ixx   and *

FF    using the existing simplex method or 

interior point method, obtain the solution ),( yxt
i  and 

update ),(),(  yxyxX t
i

t
i

t
i

t
i . Go to Step 2.2. 

Step 2.2: If    L
t
i

t
iM yxGb )},(

~
,

~
(min{ 1 , go to Step 

2.3; otherwise, go to Step 2.4. 

Step 2.3: If )),(
~

()),(
~

( 21 ii
t
i

t
i ppFEVyxFEV  , update

),(),( 21
t
i

t
iiii yxppp 

 
and },min{)(  FLip  . Go to 

Step 2.4. 

Step 2.4: If i<N, set i=i+1 and go to Step 2.1; otherwise, 

go to Step 3. 

Step 3: Update the gbest solution. Set ),( 21 ggg ppp   and 

)( gp   where 

},,2,1)),,(
~

(min{)),(
~

( 2121 NippFEVppFEV iigg  . 

Go to Step 4. 

Step 4: Termination criterion. If t<Iter_max, go to Step 5; 

otherwise, stop and ),( 21 ggg ppp   is an  -acceptable 

optimal solution to the fuzzy bi-level programming problem 

(1). 

Step 5: Update the inertia weight, and the velocity and 
the position of each particle by the formulas (7), (8) and (9). 

If the current velocity max
1 vvt

ij 
, set max

1 vvt
ij 

; while 

min
1 vvt

ij 
 if min

1 vvt
ij 

. Set t=t+1 and go to Step 2. 

V. NUMERICAL EXAMPLES 

In this section, we first illustrate  how the proposed 
compromise-based PSO algorithm works through solving a 
fuzzy nonlinear bi-level programming problem in which the 
fuzzy numbers are characterized by nonlinear membership 
functions. Second, we use the proposed PSO algorithm to 
solve two benchmark problems and compare the results with 
that obtained by the existing algorithms. 

A. An Illustrative Example 

Consider the following fuzzy nonlinear bi-level 
programming problem (10): 

2
21

2
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2
1 1

~
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3
~

1
~

),(
~

min yyxxyxF
x

  

s.t. 4
~

2
~

1
~

2
2
1  xx , 

       0x , 

        where y solves:                                                       (10) 
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         s.t. 3
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~

2
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2
~
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21
2
21

2
1  yyxxx , 

               4
~

4
~

3
~

1
~

212  yyx , 

                0y . 

The membership functions of the coefficients in this 
example are given as follows: 
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Whereas the existing solution approaches cannot be 
adopted to solve the fuzzy nonlinear bi-level programming 
problem, we use the proposed PSO algorithm to find 
compromised solutions for the problem. Based on the PSO 
procedures developed in Section IV, the related parameters 
involved in the algorithm are initialized in TABLE I. 

TABLE I.  PARAMETERS EMPLOYED IN THE PSO ALGORITHM FOR 

SOLVING THE PROBLEM (10) 

N vmax vmin wmax wmin 
c1 c2 Iter_max 

30 1.0 -1.0 0.5 0.01 2.0 2.0 60 

 
The PSO algorithm is implemented in MATLAB R2014a. 

The computational results under different compromised 

selections of   and F  are reported in TABLE II. In 

TABLE II, the first column   and the second column 
F  

are the minimal   and F  respectively preferred by the 

leader and the follower. The fifth column   represents the 

exact feasible degree for constraint conditions under the 
solution ),( yx , which indicates that the solution ),( yx  is an 

 -acceptable optimal solution to the numerical example. 

The last column shows the iteration number when the PSO 
algorithm is convergent. In the real world, decision entities 
can make free choices of their preferred solutions from 
TABLE II in view of various decision situations in relation 
to their decentralized management problems. 

 

TABLE II.  THE COMPUTATIONAL RESULTS OF PROBLEM (10) UNDER DIFFERENT COMPROMISED CONDITIONS 

  

F  (x, y) ))

~
(),

~
(( fEVFEV  

 
Iterations 

0.5 0.5 (0.0014, 1.9669, 1.7003, 0.8241) (-17.7991, -0.9220) 0.5 39 

 0.6 (0.0010, 1.9669, 1.6050, 0.6290) (-17.7309, -0.2933) 0.5 32 

 0.7 (0.0016, 1.9669, 1.5142, 0.4506) (-17.5797, 0.2870) 0.5 35 

 0.8 (0.0002, 1.9669, 1.4276, 0.2872) (-17.3653, 0.8235) 0.5 39 

 0.9 (0.0001, 1.9669, 1.3448, 0.1374) (-17.1032, 1.3202) 0.5 31 

 1.0 (0, 1.9669, 1.2672, 0.0007) (-16.8121, 1.7809) 0.5 38 

0.6 0.6 (0.0003, 1.8307, 1.6050, 0.5952) (-16.2103, -0.1238) 0.6 33 

 0.7 (0.0005, 1.8307, 1.5142, 0.4205) (-16.0423, 0.4381) 0.6 32 

 0.8 (0.0011, 1.8307, 1.4276, 0.2606) (-15.8149, 0.9571) 0.6 44 

 0.9 (0.0009, 1.8307, 1.3448, 0.1141) (-15.5432, 1.4371) 0.6 37 

 1.0 (0.0018, 1.8307, 1.3019, 0) (-15.3852, 1.8832) 0.6 36 

0.7 0.7 (0.0009, 1.7063, 1.5142, 0.3930) (-14.7354, 0.5761) 0.7 46 

 0.8 (0.0039, 1.7063, 1.4276, 0.2363) (-14.4965, 1.0790) 0.7 29 

 0.9 (0.0051, 1.7063, 1.3448, 0.0928) (-14.2162, 1.5438) 0.7 41 

 1.0 (0.0008, 1.7063, 1.3346, 0) (-14.1848, 1.9790) 0.7 47 

0.8 0.8 (0.0004, 1.5924, 1.4276, 0.2140) (-13.3696, 1.1907) 0.8 36 

 0.9 (0.0035, 1.5924, 1.3448, 0.0734) (-13.0817, 1.6414) 0.8 36 

 1.0 (0.0097,1.5924, 1.3646, 0) (-13.1667, 2.0692) 0.8 46 

0.9 0.9 (0.0009, 1.4877, 1.3448, 0.0555) (-12.1071, 1.7313) 0.9 38 

 1.0 (0.0110, 1.4875, 1.3922, 0) (-12.3000,2.1537) 0.9 30 

1.0 1.0 (0.0544, 1.3708, 1.4229, 0) (-11.4164, 2.2556) 1.0 48 

 



 
Figure 1.  The convergence curves of the leader's and the follower's 

expected objective values 

In regard to solving this numerical example (10), we can 

also randomly generate a pair of   and 
F  in the interval 

[0.5, 1] and [  , 1]. The computational results imply that we 

can obtain a convergent solution using the proposed PSO 
algorithm under the parameters shown in TABLE I. For 
example, the convergence curves of the expected objective 

values of the leader and the follower ))
~

(),
~

(( fEVFEV under 

)9386.0,8320.0(),( 
F  are shown in Figure 1. It can be 

seen from Figure 1 that the expected objective values of the 
leader and the follower have converged to 

)8508.0,5979.15())
~

(),
~

(( fEVFEV  since the 30th 

iteration. With this observation, we can obtain a gbest 

solution )2960.0,4499.1,8048.1,0040.0(gp  for the fuzzy 

nonlinear bi-level programming problem. Clearly, the PSO 
algorithm provides a practical way to solve bi-level 
programming problems with fuzzy parameters. 

B. Benchmark Examples 

In this section, the proposed PSO algorithm is applied to 
solve two benchmark problems that respectively appear in [8] 
and [10]. Also, we compare the computational results that 
are respectively obtained by the PSO algorithm and provided 
in  [8] and [10].  

The related parameters involved in the PSO algorithm for 
solving the problems are initialized as the same, shown in 
TABLE III. TABLE IV and TABLE V respectively display 
the results for the problems in [8] and [10] obtained by the 

PSO algorithm under different compromised   and 
F . 

Decision entities are able to choose their preferred optimal 
solution from TABLE IV and TABLE V in line with 
different decision situations. It is noticeable that the solution 
provided in [8] is )25.1,5.0(),( yx  that is the same as our 

solution obtained under the compromised condition 

7727.0 
F . As well, the solution reported in [10] is 

)5.0,0(),( yx  and )50.0,0.1())
~

(),
~

(( fEVFEV  that 

satisfies IRyx 


),(  with 8333.0 
F . Under the 

same decision situation 8333.0 
F , our PSO 

algorithm can find a better solution )11667,3334.0(),( yx  

and )5001.1,0.2())
~

(),
~

(( fEVFEV . Clearly, the PSO 

algorithm provides not only more options of solutions due to 
different decision environments but also better solutions 
under the same decision situation for the decision entities. 

TABLE III.  PARAMETERS EMPLOYED IN THE PSO ALGORITHM FOR 

SOLVING THE PROBLEMS IN [8] AND [10] 

N vmax vmin wmax wmin 
c1 c2 Iter_max 

20 0.5 -0.5 0.5 0.01 2.0 2.0 40 

 

TABLE IV.  THE COMPUTATIONAL RESULTS OF THE PROBLEM IN [8] 

OBTAINED BY THE PSO ALGORITHM 

  

F  (x, y) ))

~
(),

~
(( fEVFEV  

 
Iterations 

0.5 0.5 (2.0, 2.0) (5.0, 2.0) 0.5 23 

0.6 0.6 (1.2308, 1.6154) (5.0, 1.6154) 0.6 22 

0.7 0.7 (0.75, 1.375) (5.0, 1.3750) 0.7 29 

0.7727 0.7727 (0.50, 1.25) (5.0, 1.2500) 0.7727 22 

0.8 0.8 (0.421, 1.2105) (5.0, 1.2105) 0.8 21 

0.9 0.9 (0.1818, 1.0909) (5.0, 1.0909) 0.9 21 

1.0 1.0 (0, 1.0) (5.0, 1.0) 1.0 33 

 

TABLE V.  THE COMPUTATIONAL RESULTS OF THE PROBLEM IN [10] 

OBTAINED BY THE PSO ALGORITHM 

  

F  (x, y) ))

~
(),

~
(( fEVFEV  

 
Iterations 

0.5 0.5 (2.0, 2.0) (-2.0, 4.0) 0.5 23 

0.6 0.6 (1.2308, 1.6154) (-2.0, 2.8462) 0.6 24 

0.7 0.7 (0.75, 1.375) (-2.0, 2.1250) 0.7 31 

0.8 0.8 (0.421, 1.2105) (-2.0, 1.6315) 0.8 28 

0.8333 0.8333 (0.3334, 1.1667) (-2.0, 1.5001) 0.8333 30 

0.9 0.9 (0.1818, 1.0909) (-2.0, 1.2727) 0.9 25 

1.0 1.0 (0, 1.0) (-2.0, 1.0) 1.0 32 

 

VI. CONCLUSIONS AND FURTHER STUDY 

This study developed a compromise-based PSO 
algorithm to solve fuzzy bi-level programming problems. 
First, we proposed the general fuzzy bi-level programming 
problem and discussed related theoretical properties. Second, 
we presented the procedures of the PSO algorithm, based on 
the compromise on the feasible degree for the constraint 
conditions between the leader and the follower, for solving 
the proposed fuzzy bi-level programming problem. Lastly, 
we illustrated how the PSO algorithm works through three 
numerical examples. The computational results show that the 

 



PSO algorithm provides a practical way to solve fuzzy bi-
level programming problems involve the linear and nonlinear 
versions. Moreover, compared with the existing solution 
approaches, the PSO algorithm can provide not only more 
options of solutions due to different decision environments 
but also better solutions under the same decision situation for 
the decision entities. In the future, we will apply the fuzzy 
bi-level programming techniques to handle decentralized 
decision-making problems under an uncertain situation in the 
real world. Also, we will explore the efficiency performance 
of the PSO algorithm for solving large-scale fuzzy bi-level 
programming problems in applications. 
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