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Abstract—Transfer learning techniques try to transfer 

knowledge from previous tasks to a new target task with either 

fewer training data or less training than traditional machine 

learning techniques. Since transfer learning cares more about 

relatedness between tasks and their domains, it is useful for 

handling massive data, which are not labeled, to overcome 

distribution and feature space gaps, respectively. In this paper, 

we propose a new task selection algorithm in an unsupervised 

transfer learning domain, called as Task Selection Machine 

(TSM). It goes with a key technical problem, i.e., feature 

mapping for heterogeneous feature spaces. An extended 

feature method is applied to feature mapping algorithm. Also, 

TSM training algorithm, which is main contribution for this 

paper, relies on feature mapping. Meanwhile, the proposed 

TSM finally meets the unsupervised transfer learning 

requirements and solves the unsupervised multi-task transfer 

learning issues conversely.  
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I.  INTRODUCTION 

The key problem of transfer learning [1] is task 

relatedness [2]. Determining whether the tasks are related or 

not which the information will be transferred among is very 

important or how they are correlated. And decide transfer or 

not information between two tasks, how many information to 

transfer and how the information will be transferred. 

Machine learning methods that enable any kind of 

communication between different tasks are performing 

transfer. The task from which the knowledge is extracted is 

called the source task and the novel task to which it is 

applied is the target task [3]. Literature in the field reports 

methods for performing transfer in two distinct types, 

functional and representational. In functional transfer, 

learning in the source and target happens simultaneously and 

it exploits implicit pressures from additional training 

patterns, via shared or common internal representations. In 

representational transfer, source and target learning occurs 

separately in time and an explicit representation is 

transferred from the source to the target. It cares most about 

learning the target task only. 

Moreover, most methods of transfer learning implicitly 

assume that the source and target tasks are somehow related 

to each other. When, for example, the source task concerns 

training on female-only speech whilst the target task is to 

recognize speech from males only. In addition, most existing 

transfer learning algorithms assume that the feature spaces 

between the source and target domains are the same. 

However, in practice, it is useful to transfer knowledge 

across domains or tasks that have different feature spaces 

that is the so-called heterogeneous transfer learning. 

The main objective for multi-task learning is to 

successfully learn all tasks with efficiency, e.g. via feature 

selection learning or instance learning [4], whose 

disadvantage is learner re-builds when new task comes. 

Transfer learning helps speeding up learning. However, it’s 

not easy to tell target task from source tasks if we expect 

reducing computational complexity and when data are all 

unlabeled, i.e., to achieve unsupervised learning. 

Traditional SVM methods [5] and Domain Transfer 

SVM (DTSVM) [6] are under a common supervised or semi-

supervised training framework. In this paper, we are 

motivated by Domain Selection Machine (DSM) proposed 

for semi-supervised transfer learning [7] to try SVM based 

technique on multi-task learning, especially in unsupervised 

transfer learning research. 

Therefore, the main contribution of this paper is we 

proposed a Task Selection Machine (TSM) for unsupervised 

multi-task transfer learning. While classical SVM is a 

supervised learning method for solving classification and 

regression problems, feature spaces in unsupervised transfer 

learning always differ. In order to make SVM based TSM for 

unsupervised transfer learning adaptive, a special process for 

feature mapping is defined in this paper too. 

The rest of the paper is organized as follows. In section 

II, related works are reviewed. In section III, we detailed 

propose a novel unsupervised multi-task selection algorithm 

called Task Selection Machine (TSM) and explain the 

related properties. In Section IV concludes the paper and 

outlines some directions for future study. 



II. RELATED WORK 

Multi-task learning aims at learning jointly over   

available sets, leading to a symmetric share of information 

[8]. This is particularly useful when each task has few data. 

The multi-task framework supposes that all the sets share the 

same feature space but present slightly different domains. 

Traditionally, one either assume that the set of labels for all 

the tasks are the same or that it is possible to access to an 

oracle mapping function that aligns the classes. Many 

techniques for multi-task learning have been published in 

machine learning domains especially based on some 

applications such as nature language processing, computer 

vision and image processing. Most of the works suppose 

multiple binary tasks and only few attempts have been done 

in the multiclass case without label correspondences [9]. 

One of the proposed algorithms considered multiclass 

cases and focused on multiple sources and a single target 

with domain shift and partially overlapping label sets, 

        for all (   )  *     + [8]. The difference in 

the domains can be caused by both different distributions 

  ( )    ( ) and different feature spaces      . This 

algorithm was designed for extracting general information 

from all the sources, i.e., in multi-task fashion, and to use it 

when learning on a new target with a general advantage both 

on the known categories and on new ones, which is in 

domain adaptation and in transfer learning, respectively. 

Different from the classical multi-task learning, it broke the 

symmetry adding a transfer part to a target problem. 

Meanwhile, it overcame the transfer learning problem of 

evaluating the task relatedness leveraging on the possibility 

to extract a common useful knowledge from multiple 

sources. Therefore, when we set multi-task learning in a 

transfer learning domain, we can go beyond domain 

adaptation which does not cover the case of completely new 

classes in the target task.  

However, because of multiple sources with eventually 

different features, previous hypothesis of relying on a flat 

average knowledge is not helpful in the case of tasks with 

partially overlapping label sets. 

So far, the most common criterion to measure the 

distribution similarity is a nonparametric distances metric 

named maximum mean discrepancy (MMD) [10]. 
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where  ( ) is the feature space mapping function. In worst 

case, even when you don’t have similar tasks to transfer 

individuals from, genetic algorithm can be used to have 

performance improvement in a genetic algorithm task. In 

such case target task can be used as source task [2]. 
Feature selection helps in understanding data, reducing 

computation requirement, reducing the effect of curse of 
dimensionality and improving the predictor performance 

[11]. Feature selection techniques can be classified as 
wrapper methods and filter methods. Different assessment 
functions result in different feature selection criteria. Filter 
and wrapper techniques can be supervised as well as 
unsupervised. How to evaluate the significance of features 
becomes a key issue in feature selection. For example, 
ranking methods [12] are one of filter methods since they are 
applied before classification and clustering to filter out the 
less relevant variables. It is used due to their simplicity and 
good success is reported for practical applications. In filter 
method, the feature that has no influence on the cluster can 
be discarded. Ranking based filter method is proven to be 
computationally light, help avoid overfitting, and work well 
for certain datasets. To deal with to high dimensional data 
sets with structured input and structured output (SISO), 
where the SI means the input features are structured and the 
SO means the tasks are structured, a structured feature 
selection method in task relationship inference for multi-task 
learning was proposed in [13]. This work investigated a 
completely ignored problem in multi-task learning with 
SISO data: the interplay of structured feature selection and 
task relationship modeling. 

Unlike supervised feature selection, in unsupervised 
feature selection the cluster label information is unavailable 
to guide the selection of minimal feature subset. Early 
unsupervised feature selection methods mainly use some 
evaluation indices to evaluate each individual feature or 
feature subset, and then select the top   features or the best 
feature subset. These indices evaluate the clustering 
performance, redundancy, information loss, sample 
similarity or manifold structure. These methods, however, 
are computationally expensive in searching. To reduce the 
computational cost, a feature clustering method is proposed 
in [14] to find the representative features based on feature 
similarity without searching. Motivated by the success of 
low-rank representation in subspace clustering, Zhu et. al. 
(2015) proposed a regularized self-representation (RSR) 
model for unsupervised feature selection [15], which is a 
simple yet very effective unsupervised feature selection 
method by exploiting the self-representation ability of 
features.  

There are still few studies about feature selection focus 
on unsupervised transfer learning domain. Tran et al. (2013) 
introduced an efficient algorithm for ranking and selecting 
representation knowledge from a Restricted Boltzmann 
Machine (RBM) trained on a source domain to be transferred 
onto a target domain [16]. Self-taught learning [17], on the 
other hand, applies sparse coding to transfer the 
representations learned from source domain onto the target 
domain. Like self-taught, we are interested in unsupervised 
transfer learning using cross-task features. 

Different from the other applications, in unsupervised 
feature based task selection, our goal is to identify a 
representative feature sets so that all the features can be well 
reconstructed to present tasks. Therefore, the crucial 
problems for this kind of research lie on unsupervised feature 
mapping, so that we can present heterogeneous tasks by 
corresponding feature spaces. In this paper, we try to do 
unsupervised feature mapping in an unsupervised transfer 



learning framework to achieve computational complexity, 
efficiency, costs and adaptations.  

III. AN UNSUPERVISED TRANSFER LEARNING 

ALGORITHM FOR MULTI-TASK SELECTION MACHINE 

A. Preliminary Concepts 

In this section, we describe some fundamental 

information and measurements. 

We denote the transpose of vector/matrix by using the 

superscript  . We also define          as the column 

vectors of all zero and all ones, respectively. Moreover, we 

denote   as an operator between two vectors, for example  
    (           )

 . 

Let        be a data matrix,   be the number of tasks 

and define   *     + ,   be the maximum number of 

feature space   *     + and feature space for each 

sample differs. For each task     , we give the   samples 

(     )   (     )        , where    is the label of 

  . Each sample,       *       

  +, is denoted by a set of 

detectable features   , where each feature space is defined by 

  ,      . Based on this data structure, we wish to 

estimate       ,  which is hard in classical machine 

learning domain for the difficulty on feature selection. 

B. Problem Definition 

To deal with this unlabeled multiple tasks with different 

feature spaces problem, we introduce unsupervised transfer 

learning framework by denoting    *(  
    

 )    
  +be the 

target task and    *(  
    

 )    
  + be the source tasks, 

where    is the number of    ,     is the number of   . 
  and    contain the knowledge of    and    
separately. In this issue, unsupervised transfer learning 
aims to help improve the learning of the target predictive 
function   ( ) in    using the knowledge in    and   , 
where    is different from    and labels   

   and   
  are 

not observable. 

The underlying assumptions in this paper are: 

 In transfer learning framework,       ; and 

 The functions   ( )  for feature selection are related 

so that they all share a small set of features. 

For the  -th sample   , feature mapping (see Figure 1 

and Algorithm 1) based sample clustering for each task is 

represented as  

  (  )  ∑    (  )
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             ( ) 

where   ( )  
    are the features and       are the 

regression parameters. For simplicity, we focus on non-
linear features, that is,   (  )  〈 ( )  (  )〉 , where 

  {  }      . In addition, we assume that the vectors 

   are orthonormal. The function   ( ) are non-linear as 

well, that is   (  )  〈 ( )  (  )〉 , where  ( )  
∑    ( ) ,   {  }      . 

Algorithm 1  Multi-Task Feature Mapping 

Input: 

    Unlabeled task samples *      
 +. 

Output:  

    Feature spaces    for samples   ; 

    A feature vector   *      

  +. 

1: Initialization: Feature space       ,      and  

                                    . 

2: While      do 

3:             (  )   map    from   . 

4:            ( )   (   )    . 

5:                . 

6: End While 

7: Return *      
 + and    ( ). 

We then present the unsupervised mutli-task selection 

algorithm (Algorithm 3). An objective TSM is proposed as 

follows and is described in Figure 2 as well, 
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where   ( ) is the  -insensitive loss function, 

  ( )  {
                     
                          

                  ( ) 

   (  (  
 )      (   

 ))  is a vector of decision values 

of unlabeled target task samples from the target cluster 
  ( ), and         are the regularization parameters. 

C. Problem Solution 

Solving Eq. (3) and Eq. (4), we present the feasible set of 

  as   *    
       *   + + . We define  ̃  

(   √   )  and  ̃(  
 )  (  (  

 ) 
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 ))  is a vector of decision values  



  

Figure 1. Feature Mapping. 

of unlabeled source task samples from the source clusters 

  ( ) . Since  -insensitive loss    is non-smooth, we 
transform the loss on the unlabeled target samples   

  in 

Eq. (3) into constraints in which the slake variables    and 
  

  are introduced. Then, we rewrite the optimization 
problem in Eq. (3) with condition Eq. (4) as follows, 
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Figure 2. Task Selection Machine (TSM). 
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We now switch the problem in Eq. (6) to a primal 

Lagrangian formulation, by introducing the dual variables 
  (        

)  and    (  
       

 )  for the 

constrains in Eq. (7) and (8), respectively. 
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Algorithm 2  Source Cluster Ranking 

Input: 

    Source task feature clusters   . 

Output: 

    The rank-cluster vector  ̂  
 for  . 

1:    
  Rank    as numbers from    (best) to 1 (worst). 

2: for all    in    
 do 

3:           If           then 

4:                          ̂    

5:           Else  

6:                           ̂    

7:           End If 

8: End for 

9: Return    ̂  
 * ̂ +. 

Then, requiring that the gradient of    with respect to 
 ̃,  ,   and    vanish, we obtain the Karush-Kuhn-Tucker 
(KKT) conditions for the primal Lagrangian as, 
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Meanwhile, we have a relationship between   (  
 ) and 

    in this optimization problem, 

∑(     
 )  (  
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Since these are equality constraints in the dual 

formulation, we can substitute them into Eq. (9) to give a 

dual problem, 
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From Eq. (6) to Eq. (14), an optimization problem is 

converted as 
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where  ̂  
 * ̂     

   ∑  ̂     + is a 0/1 vector valued 

by   ’s ranking, that is, mark the         –th best    as 1 
and 0 otherwise,   consists of the bias from each target 
cluster    and source cluster   , and   is denoted as a 
kernel matrix with each entry as 

 (  
    

 )    (  
 )  ̃(  

 )  ̃(  
 )  (  

 )      (  ) 

Algorithm 3  Task Selection Machine (TSM) 

Input:  

    Unlabeled target task samples *  
     

  +; 
    Source clusters    ; 

    Maximum Evolution Generation       . 

Output:  

    The target task clusters   *      
  +. 

1: Initialization:    ,       
 and       . 

2: While      do 

3:              Via Eq. (18). 

4:            ̂  Calculate from Algorithm 2. 

5:              Bias between     and   . 

6:           While          do 

7:                              

8:                           ( )( )   Calculate using  ( ),   ( )
. 

9:                          If 
   
     in Eq. (15) decreases then break 

10:          End While   

11:              Sort out the best target cluster who 

                          minimise Eq. (15). 

12:             Add    . 

13:          Update  ,   ,    and  ̃ by transfer the    ’s target 

task as a source task. 

14:               . 

15: End While 

16: Return  . 

 



In Algorithm 3, when   fixed in Eq. (15) for each 

evolution, we solve the optimization problem for   and    

until 
   
     

 

 
(    )  (    )      

 (    ) 

decreases. Observing that 
   
    

 

 
 ̂  

      is general 

optimization problem which also related to Algorithm 1, we 

directly using evolution algorithm to get 
   
    .  

With the learned dual variables   and   , we use the 

target decision function in Eq. (19) to predict new target 

tasks. 
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where ∑      
 (  

 )  
    is a weighted combination of 

source clusters based on multiple features selection,  ( ) 
is a feature mapping function that map   ’s features into 
 (  ),   is a weight vector, and   is a bias term.  

IV. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a novel algorithm on Task 

Selection Machine (TSM) and solved the feature mapping 

problem by extending feature selection methods and also be 

trained in TSM. The scenario for this algorithm is general in 

real world situations that the disordered knowledge chosen 

by feature mapping will be finally transferred to acquirable 

knowledge. Currently, our work is set in unsupervised 

multiple tasks transfer learning. Through distribute clusters 

for each task, we make detection on relatedness between 

target tasks and source tasks, so that target tasks who first be 

trained are selected. The advantage for distinguishing 

clusters is avoiding sample distribution differences.  

We can therefore claim that the proposed TSM can solve 

the problems of feature mapping for TSM in heterogeneous 

feature space which is mainly based on an unsupervised 

transfer learning framework. In future work, we are 

interested in learning and transferring high-level features for 

a specific domain, and considering some mutli-distribution 

situations.  
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