
“© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works.” 

 



Learning a Fuzzy Decision Tree from Uncertain Data  

 

Hang Yu 

Centre for Artificial Intelligence 

Faculty of Engineering and 

Information Technology 

University of Technology Sydney 

Sydney, Australia 

Hang.Yu@student.uts.edu.au  

Jie Lu 

Centre for Artificial Intelligence 

Faculty of Engineering and 

Information Technology 

University of Technology Sydney 

Sydney, Australia 

Jie.Lu@uts.edu.au 

Guangquan Zhang 

Centre for Artificial Intelligence 

Faculty of Engineering and 

Information Technology 

University of Technology Sydney 

Sydney, Australia 

Guangquan.Zhang@uts.edu.au

 
Abstract—Uncertainty in data exists when the value of a data 

item is not a precise value, but rather by an interval data with a 

probability distribution function, or a probability distribution 

of multiple values. Since there are intrinsic differences between 

uncertain and certain data, it is difficult to deal with uncertain 

data using traditional classification algorithms. Therefore, in 

this paper, we propose a fuzzy decision tree algorithm based on 

a classical ID3 algorithm, it integrates fuzzy set theory and ID3 

to overcome the uncertain data classification problem. Besides, 

we propose a discretization algorithm that enables our proposed 

Fuzzy-ID3 algorithm to handle the interval data. Experimental 

results show that our Fuzzy-ID3 algorithm is a practical and 

robust solution to the problem of uncertain data classification 

and that it performs better than some of the existing algorithms.  

Keywords-uncertain data classification; fuzzy decision tree; 

fuzzy set theory; ID3; discretization method; interval data  

I.  INTRODUCTION  

Classification is one of the key processes in the data 
mining area and has significant application merits in many 
fields. In traditional classification, the value of data is precise 
and definite. However, due to new techniques in data 
acquisition, a large amount of data with imprecise values is 
now generated and collected for use in many real-world 
applications, such as wireless sensor networks [1], moving 
object detection [2], and mobile telecommunications [3,4]. 
Since there are intrinsic differences between uncertain and 
deterministic data, it is difficult to deal with uncertain data 
using traditional classification algorithms.  

Hence, some existing classification methods only consider 
the uncertainty of attributes and assume the class type is 
certain. This assumption is convenient, but not reflective of 
reality, because in many practical situations an object’s class 
labels can also be uncertain. In other words, it can also be 
represented by a probability distribution of multiple values. 
This paper focuses on an uncertain data classification problem 
and represent uncertain attributes and class labels for objects 
using uncertain models. To solve the problem, we firstly 
propose a discretization method that can convert interval data 
into a probability distribution. Then a fuzzy ID3 algorithm is 
presented to solve the uncertain data classification problem. 
Fuzzy ID3 is an extension of the existing ID3 algorithm; it 
integrates fuzzy set theory and ID3 to overcome the effects of 
spurious precision in the data, to treat uncertainties in the data 

and to reduce the decision tree sensitivity to small changes in 
attribute values.  

In the remainder of this paper, some related works are 
briefly described in Section 2. The definition of the uncertain 
data classification problem is given in Section 3. Section 4 
presents our discretization method, and our Fuzzy-ID3 
algorithm is presented in Section 5. The experimental studies 
on performance are presented in Section 6, and we present our 
conclusion in Section 7. 

II. RELATED WORK 

Several data classification algorithms have been used to 
classify uncertain data, such as support vector machines 
(SVM) algorithm [6], extreme learning machines (ELM) 
algorithm [7], Bayesian classification algorithms [8], rule-
based classification algorithms [9], decision tree algorithms 
[10], and so on. Of these algorithms, decision tree algorithms 
are popular because they are practical and easy to understand. 
However, the decision tree sensitivity to small changes in 
attribute values.  

Fuzzy set theory offers a rich spectrum of methods for the 
management of uncertainty [12]. Therefore, some researchers 
integrates fuzzy set theory into the decision tree, such as fuzzy 
extension of ID3 [11] and trees based on fuzzy rules [13]. In 
these models, a node on a decision tree does not use a crisp 
test to deterministically decide which branch to send a training 
or testing object down. Rather, a fuzzy test is administered on 
a point-valued object [15]. Each branch from root to leaf can 
be converted into a rule with a condition. 

However, most of decision tree algorithms only handle 
category attributes, hence the numeric attributes need be 
partitioned into a number of sub-ranges and treat each such 
sub-range as a category. This process of partitioning numeric 
attributes into categories is usually termed discretization [17]. 
However, uncertain numeric attribute’s value is often 
represented by an interval with a probability distribution 
function over the interval. Thus, most of newest discretization 
methods cannot work. Such as based on CIAM [17], 
information entropy [18], interval Similarity [19]. 

III. PROBLEM DEFINITION 

Normally, uncertain models of attributes can be classified 
into two categories [5-14]: categorical and numerical. In 
numerical models, the i-th uncertain numerical attribute 



(UNA) is denoted by 𝐴𝑖
𝜇𝑛. The value of 𝐴𝑖

𝜇𝑛 is represented as 

an interval and a 𝑃𝐷𝐹  over this interval. The j-th object of 

𝐴𝑖
𝜇𝑛 , denoted by 𝐴𝑖𝑗

𝜇𝑛 , is an interval [𝐴𝑖𝑗
𝜇𝑛 . 𝑙 , 𝐴𝑖𝑗

𝜇𝑛 . 𝑟] where 

𝐴𝑖𝑗
𝜇𝑛 . 𝑙 , 𝐴𝑖𝑗

𝜇𝑛 . 𝑟 ∈ 𝑅 , 𝐴𝑖𝑗
𝜇𝑛 . 𝑟 ≥ 𝐴𝑖𝑗

𝜇𝑛 . 𝑙 . The uncertain 𝑃𝐷𝐹  of 

𝐴𝑖𝑗
𝜇𝑛 , denoted by 𝐴𝑖𝑗

𝜇𝑛 . 𝑓(𝑥) , is a probability distribution 

function of 𝐴𝑖𝑗
𝜇𝑛 , such that ∫ 𝐴𝑖𝑗

𝜇𝑛 . 𝑓(𝑥)𝑑𝑥
𝐴𝑖𝑗
𝜇𝑛 .𝑟

𝐴
𝑖𝑗
𝜇𝑛 .𝑙

= 1 . In 

categorical models, the i-th uncertain categorical attribute 

(UCA) is denoted by 𝐴𝑖
𝜇𝑐. The j-th object of 𝐴𝑖

𝜇𝑐, denoted by 

𝐴𝑖𝑗
𝜇𝑐 , takes values from the categorical domain 𝐷𝑜𝑚  with 

cardinality |𝐷𝑜𝑚| = 𝑛  and 𝐷𝑜𝑚 = {𝑑1, . . . , 𝑑𝑘}.  The i-th 

UCA 𝐴𝑖
𝜇𝑐 is characterized by its probability distribution over 

𝐷𝑜𝑚 and can be represented by the probability vector 𝑃 =
{𝑝1, . . . , 𝑝𝑘}  such that 𝑃(𝐴𝑖𝑗

𝜇𝑐 = 𝑑𝑖) = 𝑝𝑖  and ∑ 𝑝𝑖 
𝑘
𝑖=1 =

1 (1 ≤ 𝑖 ≤ 𝑘). 
The class label also can be represented in uncertain 

models. The i-th uncertain class label (UCL) is denoted by 𝐶𝑖
u. 

The j-th object of 𝐶𝑖
u, denoted by 𝐶𝑖𝑗

u , takes values from the 

class domain 𝐷𝑜𝑚  with cardinality |𝐷𝑜𝑚| = 𝑛and 𝐷𝑜𝑚 =
{c1,…,𝑐𝑘}. The UCL of the j-th object is characterized by its 
probability distribution over 𝐷𝑜𝑚 and can be represented by 

the probability vector 𝑃 = {𝑝1, . . . , 𝑝𝑘}  such that 𝑃(𝐴𝑖𝑗
𝜇𝑐 =

𝑐𝑘) = 𝑝𝑖  and ∑ 𝑝𝑖 
𝑘
𝑖=1 = 1 (1 ≤ 𝑖 ≤ 𝑘).    

TABLE I.  A SEQUENCE OF UNCERTAIN SAMPLES 

Case Age Occupation Location Products 

1 20-30 
Singer:0.9

Doctor:0.1 

Online:0.8 

Supermarket:0.2 

Coffee:0.8 

Wine:0.2 

2 22-32 
Singer:0.7

Artist:0.3 

Online:0.1 

Supermarket:0.9 

Book:0.4 

Coffee:0.6 

3 27-37 
Singer:0.3

Doctor:0.7 

Online:0.2 

Supermarket:0.8 

Book:0.9 

Coffee:0.1 

4 23-33 
Doctor:0.1
Artist:0.9 

Online:0.5 
Supermarket:0.5 

Wine:1.0 

5 37-47 
Doctor:0.7

Artist:0.3 

Online:0.7 

Supermarket:0.3 

Book:0.2 

Wine:0.8 

6 40-50 
Doctor:0.3
Artist:0.7 

Online:0.0 
Supermarket:1.0 

Wine: 1.0 

7 38-48 Doctor:1.0 
Online:0.2 

Supermarket:0.8 

Book:0.7 

Wine:0.3 

8 20-30 Singer:1.0 
Online:0.6 

Supermarket:0.4 

Book:0.2 

Coffee:0.8 

9 37-47 
Singer:0.9 
Doctor:0.1 

Supermarket:1.0 
Coffee:0.3 
Wine:0.7 

10 20-30 
Singer:0.7 

Doctor:0.3 
Online:1.0 

Book:0.3 

Coffee:0.7 

Table I shows an example of our proposed uncertain data 
classification problem. “Age” is an UNA, while “Occupation” 
and “Location” are UCAs. The class label, or UCL, represent 
the possibility of purchasing a product. For instance, the class 
label for Case 1 mean that the possibility of purchasing 
“Coffee” is greater than “Wine”. 

IV. A DISCRETIZATION METHOD 

As described earlier, the value of an UNA is an interval-
value data with an associated 𝑃𝐷𝐹. For example, in Table 1, 
“Age” is an UNA, whose precise value is not available. We 
only know the range of the attribute and the 𝑃𝐷𝐹 𝑓(𝑥) over 

that range. However, decision tree algorithms carry out a 
selection process of categorical attributes and cannot handle 
continuous ones directly [16]. Hence, a discretization method 
is needed to convert numerical attributes into categorical 
attributes. But most of newest discretization methods cannot 
handle interval-valued data. Hence in this paper, we propose 
a discretization method for convert UNA to UCA. Such as the 
UNA “Age [23-33]” can be represented by a possibility 
distribution 𝑃 = {0.7(−∞− 30), 0.3(30-40), 0.0(40-+∞)}.  

Hence, there are two key problems to be tackled in our 
discretization method. One is how to get the categorical 
domain 𝐷𝑜𝑚  by an UNA attribute. The other is how to 
calculate the probability distribution over the 𝐷𝑜𝑚. 

A. Get Categorical Domain  

The main idea of our method is presented as follows: Let 

𝐴𝑖𝑗
𝜇𝑛 and 𝐴𝑖𝑗+1

𝜇𝑛  denote two adjacent objects of 𝐴𝑖
𝜇𝑛. If the class 

label of 𝐴𝑖𝑗
𝜇𝑛 and 𝐴𝑖𝑗+1

𝜇𝑛  are not same, at the same time 𝐴𝑖𝑗
𝜇𝑛 and 

𝐴𝑖𝑗+1
𝜇𝑛  are also not similar, a boundary point of the variables 𝑑𝑖 

in the categorical domain 𝐷𝑜𝑚 exist between 𝐴𝑖𝑗
𝜇𝑛 and 𝐴𝑖𝑗+1

𝜇𝑛 . 

However, if only the class label of 𝐴𝑖𝑗
𝜇𝑛  and 𝐴𝑖𝑗+1

𝜇𝑛  are not 

same, whether or not a boundary point exists between 𝐴𝑖𝑗
𝜇𝑛 and 

𝐴𝑖𝑗+1
𝜇𝑛  cannot be determined. Because if 𝐴𝑖𝑗

𝜇𝑛  and 𝐴𝑖𝑗+1
𝜇𝑛  are 

very similar, the different class label between 𝐴𝑖𝑗
𝜇𝑛 and 𝐴𝑖𝑗+1

𝜇𝑛  

may be due to other attributes. 
The definition of the similarity measure of the two 

intervals 𝐴 = [𝑎−, 𝑎+] and 𝐵 = [𝑏−, 𝑏+]  follows. 

Definition 1. The similarity degree is the ratio 𝑆𝑉  (𝐴𝑖𝑗
𝜇𝑛 , 

𝐴𝑖𝑗+1
𝜇𝑛 ) which takes values from the interval [0, 1]. 

𝑆𝑉(𝐴, 𝐵) =
1

2
(
𝜗|𝐴 ∩ 𝐵|

𝜔|𝐴|
+
𝜗|𝐴 ∩ 𝐵|

𝜔|𝐵|
) 

(1) 

where 𝜗[𝐴 ∩ 𝐵]  represents the distance of 𝐴  and 𝐵 , 
defined as: 

𝜗[𝐴 ∩ 𝐵] = 𝑚𝑎𝑥[0, (max [𝑎−, 𝑏−] − 𝑚𝑖𝑛[𝑎+, 𝑏+])] (2) 

and 𝜔[𝑋] represents the length of an interval 𝑋, defined 
as: 

ω[𝑋] = 𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑(𝑥) − 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑(𝑥) (3) 

In our discretization method, due to the class label of one 

objects of 𝐴𝑖
𝜇𝑐  be represented by the probability vector 𝑃 =

{𝑝1, . . . , 𝑝𝑘} such that 𝑃(𝐴𝑖𝑗
𝜇𝑐 = 𝑉𝑘

𝑐) = 𝑝𝑖 , hence If the class 

label of 𝐴𝑖𝑗
𝜇𝑐 and 𝐴𝑖𝑗+1

𝜇𝑐  are same means: 

 𝑃𝑚𝑎𝑥(𝐴𝑖𝑗
𝜇𝑐 = 𝑉𝑘

𝑐) = 𝑃𝑚𝑎𝑥(𝐴𝑖𝑗+1
𝜇𝑐 = 𝑉𝑘

𝑐) (4) 

where 𝑃𝑚𝑎𝑥() represents the max probability among the 
probability vector 𝑃 = {𝑝1, . . . , 𝑝𝑘}. 

 The discrimination process consists of the following 
steps: 



Step1: Because each instance of an UNA has a maximal 
value and a minimal value, called critical points, we can place 
all the instances in ascending of their critical points.  

Step2: Scanning the entire instance set in ascending order, 

let 𝐴𝑖𝑗
𝜇𝑛 and 𝐴𝑖𝑗+1

𝜇𝑛  denote two adjacent instances: 

 If 𝐴𝑖𝑗
𝜇𝑛  and 𝐴𝑖𝑗+1

𝜇𝑛  are same class label, then keep 

scanning. 

 If 𝐴𝑖𝑗
𝜇𝑛  and 𝐴𝑖𝑗+1

𝜇𝑛  are not same class label, but 𝑆𝑉 

(𝐴𝑖𝑗
𝜇𝑛 , 𝐴𝑖𝑗+1

𝜇𝑛 ) > 𝜃, then keep scanning. 

 If  𝐴𝑖𝑗
𝜇𝑛  and 𝐴𝑖𝑗+1

𝜇𝑛  are not same class label, but 𝑆𝑉 

(𝐴𝑖𝑗
𝜇𝑛 , 𝐴𝑖𝑗+1

𝜇𝑛 ) < 𝜃  then set a break stop 𝑇𝑖  = max 

(𝐴𝑖𝑗
𝜇𝑛.r, 𝐴𝑖𝑗+1

𝜇𝑛 .l) and keep scanning. 

Step 3:  𝑇 = { 𝑇1 , 𝑇2 , ..., 𝑇𝑛} is the permutation of the 
break stops, sorted so that 𝑇𝑖  ≤ 𝑇𝑖+1 for i = 1,..., n. Then, a 
Dom D = {(-∞, 𝑇1],…, (𝑇𝑖 , 𝑇𝑖+1],…, (𝑇𝑛, +∞)} and i = 1,..., 
n-1. 

B. Calculating the Probability Distribution  

Once the Dom is constructed, the next thing is to measure 
the probability of a variable 𝑑𝑖. Assume an instance of interval 

attribute 𝐴𝑖𝑗
𝜇𝑛 has an interval value of [𝐴𝑖𝑗

𝜇𝑛.l, 𝐴𝑖𝑗
𝜇𝑛.r] and a PDF 

of f(x) over that range. The possibility 𝑝𝑖(𝑥) of the variable 𝑑𝑖 
= (𝑇𝑖 , 𝑇𝑖+1] can be measured by: 

{
 
 
 
 
 

 
 
 
 
 
 0,                                          𝐴𝑖𝑗

𝜇𝑛 . 𝑟 < 𝑇𝑖  𝑜𝑟 𝑇𝑖+1 ≤ 𝐴𝑖𝑗
𝜇𝑛 . 𝑙

∫ 𝑓(𝑥)𝑑𝑥
𝐴𝑖𝑗
𝜇𝑛 .𝑟

𝑇𝑖

,                 𝐴𝑖𝑗
𝜇𝑛 . 𝑙 < 𝑇𝑖 ≤ 𝐴𝑖𝑗

𝜇𝑛 . 𝑟 < 𝑇𝑖+1

∫ 𝑓(𝑥)𝑑𝑥
𝑇𝑖+1

𝐴
𝑖𝑗
𝜇𝑛 .𝑙

,                    𝑇𝑖 < 𝐴𝑖𝑗
𝜇𝑛 . 𝑙 < 𝑇𝑖+1 ≤ 𝐴𝑖𝑗

𝜇𝑛 . 𝑟

∫ 𝑓(𝑥)𝑑𝑥
𝑇𝑖+1

𝑇𝑖

,                    𝐴𝑖𝑗
𝜇𝑛 . 𝑙 < 𝑇𝑖 < 𝑇𝑖+1 ≤ 𝐴𝑖𝑗+1

𝜇𝑛 . 𝑟

1,                                         𝑇𝑖 < 𝐴𝑖𝑗
𝜇𝑛 . 𝑙 < 𝐴𝑖𝑗

𝜇𝑛 . 𝑟 ≤ 𝑇𝑖+1

(5) 

Therefore, the UNA can be converted into UNC by our 
discretization method. Using the object “[23-33]” of  attribute 
“Age” in Table 1 as an example, the Dom D of object “[23-
33]” is {(−∞, 30], (30, 40], (40, +∞)} by our discretization. 
The probability vector 𝑃 of object “[23-33]” is {0.7, 0.3, 0.0}. 
Hence the UNAs and UNCs can be represented in same terms, 
and our fuzzy decision tree algorithm is able to ignore the 
differences between the two kinds of data. 

V. THE FUZZY ID3 ALGORITHM 

The fuzzy set theory was given by Lotfi Zadeh [22] and is 
a good way to represent uncertainty. In this theory [23], the 
uncertainty can be presented by a membership. Normally, a 
fuzzy set 𝐹 [24] in a universe of discourse 𝑈 is characterized 
by a membership function 𝜇𝐹 , which takes values from the 
interval “[0,1]”. For example, 𝑢 ∈ 𝑈, 𝜇𝐹(𝑢) = 1  means that 
u is definitely a member of 𝐹 , 𝜇𝐹(𝑢) = 0 means that 𝑢  is 
definitely not a member of 𝐹, and 0 < 𝜇𝐹(𝑢) < 1  means that 
𝑢  is partially a member of 𝐹 . Therefore, the possibility of 
taking value 𝑥 for 𝑌  among all elements in 𝑋  can be 

interpreted as a fuzzy membership function  𝜇𝐹  of a fuzzy 
variable 𝑌 defined on 𝑋 [25].  

In this paper, we propose a Fuzzy-ID3 algorithm. Like 
most fuzzy decision tree algorithms, our proposed algorithm 
for constructing decision trees also take a top-down approach, 
by choosing the attributes at each step that best splits the set 
of items. When the stopping condition is reached, the decision 
tree stops growing. 

A. Fuzzy Set Theory 

Definition 1. Let 𝐹1 and 𝐹2 be two fuzzy sets in 𝑈 with 
the respective membership functions    𝜇𝐹1  and 𝜇𝐹2 . The union    

𝐹1 ∪ 𝐹2  is defined for all 𝑢 ∈ 𝑈  by μ𝐹1∪𝐹2(𝜇) =

𝑚𝑎𝑥{𝜇𝐹1(𝑢), 𝜇𝐹2(𝑢)}. The intersection 𝐹1 ∩ 𝐹2 is defined by 

μ𝐹1∩𝐹2(𝜇) = 𝑚𝑖𝑛{𝜇𝐹1(𝑢), 𝜇𝐹2(𝑢)}.  
Definition 2. The cardinality measure (or sigma count) of 

a fuzzy set 𝐹 is defined by 𝑀(𝐹) = ∑ 𝜇𝐹(𝑢)𝑢∈𝑈 , which is the 
measure of the size of 𝐹. 

B. Selection Criteria 

In fuzzy decision tree algorithm, when given a dataset D, 
a high quality selection criteria is to select the attribute that 
most reduces the classification uncertainty [20]. The smaller 
classification uncertainty of a node means the more data’s 
class label are same. In most of fuzzy ID3 algorithms, the 
information entropy is a measure classification uncertainty 
[21]. It reaches its minimum (zero) when all the cases in a 
node fall into a single target category. The smaller the 
information entropy means the smaller classification 
uncertainty. Therefore, in our fuzzy ID3 algorithm, the 
selection criteria is to select the attribute with minimum 
information entropy at each step. 

However, in the decision tree construction process, an 
attribute A could be a root node, or an inner node, that is 
connected to the branch of its parent node. Figure 1 gives an 
example of attribute A is a root node. Figure 2 gives an 
example of attribute A is an inner node. Therefore, the 
classification uncertainty of attribute A can be calculated in 
one of two ways. 

Definition 3. When an attribute 𝐴  is a root node, its 
classification uncertainty is defined with the class label C =
{𝐶1, … , 𝐶𝐽} as follows: 

𝐶𝑢(𝐴, 𝐿) =
1

𝑛
∑ 𝐶𝑢(𝐿𝑖)

𝑛

𝑖=1
 (6) 

where 𝐿𝑖 is i-th linguistic value of attribute 𝐴. For example, in 
a linguistic value 𝐿𝑖  of the attribute “Occupation” could be 
“Doctor”. 𝐶𝑢(𝐿𝑖) is the classification uncertainty of the i-th 
linguistic value, defined as: 

𝐶𝑢(𝐿𝑖) = −∑ π∗(𝐶𝑗|𝐿𝑖) log2 π
∗(𝐶𝑗|𝐿𝑖)

𝐽

𝑗=1

 (7) 

where π∗(𝐶𝑗|𝐿𝑖) is the normalization of the π(𝐶𝑗|𝐿𝑖), defined 

as: 



𝜋𝑖
∗(𝐶𝑗|𝐿𝑖) =

∑ 𝜋(𝐶𝑗|𝐿𝑖)
𝐽
𝑗=1

∑ ∑ 𝜋(𝐶𝑗|𝐿𝑖)
𝐽
𝑗=1

𝑛
𝑖=1

 (8) 

where π(𝐶𝑗|𝐿𝑖) represents the represents the degree of truth 

of the classification rule: “IF Li THEN Cj”, which can be 
defined as: 

𝜋(𝐶𝑗|𝐿𝑖) =
𝑀(𝐿𝑖 ∩ 𝐶𝑖)

𝑀(𝐿𝑖 ∪ 𝐶𝑖)
=
∑ 𝑚𝑖𝑛 (𝜇𝐿𝑖(𝑢), 𝜇𝐶𝑖(𝑢))𝑢∈𝑈

∑ 𝑚𝑎𝑥 (𝜇𝐿𝑖(𝑢), 𝜇𝐶𝑖(𝑢))𝑢∈𝑈

 (9) 

Definition 8. When an attribute 𝐴 is an inner node, the 

classification uncertainty of attribute 𝐴 is defined with the 

class label C = {𝐶1, … , 𝐶𝐿} as follows: 

𝐶𝑢(𝐴, 𝐸) =∑ 𝜔(𝐸𝑖)𝐶𝑢(𝐸𝑖)
𝑛

1
 

(10) 

where 𝐸𝑖  is the intersection of i-th linguistic value 𝐿𝑖  of 
attribute 𝐴 and path 𝑃 from the root to the inner node. When 
𝑃 = ∅, 𝐸 = 𝐿𝑖 . 𝜔(𝐸𝑖) is a weight that represents the relative 
size of the subset 𝐸𝑖 within 𝑃. 

𝜔(𝐸𝑖) = 𝑀(𝐸𝑖)/∑ 𝑀(𝑛
𝑖=1 𝑃) (11) 

C. Stopping Criteria 

A tree is learned by splitting the source set into subsets 
based on an attribute value test. This process is repeated on 
each derived subset in a recursive manner and is called 
recursive partitioning. Recursive partitioning is considered 
complete when a stopping criteria is reached. 

From Definition 4, 𝜋(𝐶𝑗|𝐿𝑖 𝑜𝑟 𝐸𝑖) represents the degree 

of truth for the classification rule “IF 𝐿𝑖  or 𝐸𝑖  THEN 𝐶𝑗 ”. 

Therefore, we set the truth level threshold 𝛽 as a stopping 
criteria to control the growth of the tree. For example, if the 
truth level threshold is set to 𝛽 = 0.7 and the branch “Singer” 
∩ the branch “[20-30]” results in 𝐸, the truth level of 𝐸 for 
class “Coffee” is 0.83 > 𝛽 , so the branch “Singer” 
terminates as a leaf and “Coffee” is selected as its label. A 
lower 𝛽  may lead to a smaller tree but with reduced 
classification accuracy. A higher 𝛽 may lead to a larger tree 
with higher classification accuracy. However, when 𝛽 
increases to certain point, no further gains in accuracy will be 
derived. The settings for α and 𝛽 depend on the particular 
situation. 

 

Figure 1.  an attribute is a root node. 

 

Figure 2.  an attribute is a inner node. 

D. Inducing the Fuzzy Decision Tree 

This section presents the induction process of the fuzzy 
decision tree. The induction process for constructing decision 
trees take a top-down approach, by choosing the attributes 
with minimum classification uncertainty at each step, and set 
a truth level threshold β as stopping criteria. Hence, the 
induction process consists of the following steps: 

Step 1: Measure the classification uncertainty associated 
with each attribute and select the attribute with the smallest 
classification uncertainty as the root decision node.   

Step 2: Delete all empty branches of the decision node. 
For each non-empty branch of the decision node, calculate 
the truth level of all object classifications within the branch 
for each class. If the truth level of the classification into one 
class is above the specified threshold β, terminate the branch 
as a leaf. Otherwise, investigate whether an additional 
attribute would further partition the branch and select the 
attribute with smallest classification ambiguity as a new 
decision node from the branch. If not, terminate this branch 
as a leaf. At a leaf, label all objects as the class with the 
highest truth level. 

Step 3: Repeat Step 2 for all newly generated decision 
nodes until no further growth is possible. This completes the 
decision tree. 

Finally, our algorithm generates a fuzzy decision tree. 
Figure 3 gives an example of a branch of the fuzzy decision 
tree.  

E. Fuzzy decision tree classification 

Each branch from root to leaf can be converted into a fuzzy 
rule with a classification membership. Using the datasets in 
Table 1 as an example, a branch on the fuzzy decision tree is 
shown in Figure 3, the converted fuzzy rules are shown in 
Figure 4, and the values in brackets indicate classification 
membership. We use these fuzzy rules to classify new objects. 

In fuzzy decision tree, many fuzzy rules can be applied at 
the same time, and an object may be classified into different 
class labels with different memberships. Therefore, we firstly 
determine what fuzzy rules are applied according to the 
object's attributes. When two or more rules are applied and 
classify the object into only one class, the class label with the 
highest membership is selected. When two or more rules are 
applied and classify the object into the different classes with 
different memberships, the class label, which has maximum 
classification membership, is taken as the object’s class label. 
When two or more rules are applied and classify the object 
into the different classes with same memberships, the class 
label, which belongs to a leaf node at higher levels of the tree, 
is taken as the object's class label. For example, one object 



applies four fuzzy rules (Figure 4) at the same time, its class 
label is “Coffee”. 

 

Figure 3.  A branch of the fuzzy decision tree. 

Rule 1: IF Age IS [20-30] AND Occupation IS Singer THEN 

Coffee (0.83) 

Rule 2: IF Age IS [20-30] AND Occupation IS Doctor THEN 

Coffee (0.73) 

Rule 3: IF Age IS [20-30] AND Occupation IS Artist AND 

Location IS Online THEN Wine (0.83) 

Rule 4: IF Age IS [20-30] AND Occupation IS Artist AND 

Location IS Supermarket THEN Wine (0.63) 

Figure 4.   Fuzzy rules. 

VI. EXPERIMENTS 

In this section, we present the experimental results for our 
proposed fuzzy decision tree (FDT) algorithm. In a series of 
experiments, we compare our FDT algorithm to other existing 
algorithms by using multiple datasets, and we evaluate FDT’s 
performance when the training data has uncertain classes. Our 
algorithms were implemented in Java, and all the evaluations 
were run on a Windows machine with an Intel 2.66 GHz 
Pentium(R) Dual-Core processor and 4 GB of main memory. 

A. DataSets 

Due to there is no real uncertain datasets available, the 
datasets we used in the experiments are synthesized from real 
datasets. All source datasets were taken from the UCI 
Machine Learning Repository [26] and Table II shows the 
type of dataset and the number of training and testing 
instances. In this paper, we adopt one of the most common 
synthetic method [5] to add uncertainty information.  

TABLE II.  DATASETS 

Datasets Type #Train #Test #Classes 

Iris numerical 150 10-fold 3 

Glass numerical 214 10-fold 7 

Segment numerical 2310 10-fold 7 

Voting categorical 435 10-fold 2 

Datasets Type #Train #Test #Classes 

Mushroom categorical 2124 10-fold 2 

Audiology categorical 226 10-fold 24 

Adult mixed 2645 10-fold 2 

Bridges mixed 108 10-fold 7 

Teaching mixed 151 10-fold 3 

From Table II, nine real-world datasets are used to 
evaluate our algorithm performance. Because some of the 
algorithms only deal with one type of data, we divided the 
datasets into three categories: categorical, numerical, and 
mixed. Mixed type data contains both categorical and 
numerical type data. Furthermore, we used 10-fold cross-
validation to measure accuracy. 

B. Performance Evaluation in certain class label 

This section compares the FDT algorithm to the DTU [5], 
UDT [10], UBayes [8], USVM [6], and UELM [7] algorithms 
on above datasets. Three points are worth noting: (1) Most of 
the above algorithms use a Gaussian distribution as the 
uncertain model for UNAs, so we only used Gaussian 
distribution in our experiments. (2) The uncertainty of data’s 
attribute is set to 20%. (3) Some parameters will affect the 
experimental results, but different values could be used with 
different datasets. Due to space limitations, we are not able to 
show the values of these parameters on different datasets, so 
9/10 of data is used for training and 1/10 for testing. The whole 
procedure is repeated 10 times, and the overall accuracy rate 
is counted as the average of accuracy rates on each partition. 

TABLE III.  COMPARISON OF RESULTS (ONE TYPE) 

Method 
Numerical Categorical 

Iris Glass Segment Voting Mushroom Audiology 

DTU 92.36% 69.70% 90.80% 90.50% 89.48% 80.00% 

UDT 96.00% 70.79% 92.23% N/A 

UBayes 95.40% 47.15% 79.92% N/A 

USVM 91.38% 63.25% N/A N/A 

UELM 92.04% 65.77% N/A N/A 

FID3 96.33% 72.04% 93.79% 91.39% 91.05% 81.98% 

Table III shows that FDT was able to build more accurate 
decision trees than the other algorithms when 𝜔 was equal to 
10%. Comparing the six row with other rows of Table III, the 
difference in accuracy is remarkable. Such as, the accuracy 
increased from 70.79% to 72.04% on the “Glass” dataset. 

Due to UNAs and UNCs can both be represented in same 
terms by our discretization method, we use three real-world 
datasets (see Table II) to evaluate our FDT algorithm. The 
algorithms were evaluated in terms of accuracy and running 
time. Table IV shows FDT’s performance for an uncertainty 
range of 0 to 20% and whether the probability distribution 
function is uniform or Gaussian. 



TABLE IV.  COMPARISON OF RESULTS (MIXED TYPE) 

Datasets 
Gaussian distribution Uniform distribution 

ω = 0% ω = 10% ω = 20% ω = 0% ω = 10% ω = 20% 

Adult 84.31% 82.71% 76.20% 83.92% 79.92% 75.17% 

Bridges 67.47% 66.01% 61.67% 66.57% 65.39% 60.16% 

Teaching 82.26% 81.02% 78.23% 81.87% 79.65% 77.11% 

Overall, the accuracy of the FDT classifier remained 
relatively stable when dealing mixed types of data. Even when 
the extent of the uncertainty reached 20%, the accuracy is still 
quite comparable to that of precise data. These results 
demonstrate that FDT is quite robust against data uncertainty. 
We also observed similar trends for both uniform and 
Gaussian distributions of uncertain data. However, a classifier 
with a Gaussian 𝑃𝐷𝐹  get better performance than with a 
uniform PDF. 

C. Performance Evaluation in uncertain class label 

To evaluate the performance of our FDT algorithm by 
considering class label uncertainty, we conduct an evaluation 
on all nine datasets as listed in Tables II in terms of accuracy 
and running time. The definition of accuracy was taken from 
[11], and we also use synthetic method [5] to add uncertainty 
information for class labels. Such as if 10% uncertainty is 
introduced, the attribute has a 90% probability of taking the 
original value and a 10% probability of taking one of the 
other values. Suppose in the original accurate dataset Aij = v1, 
then we will assign pj1 = 90%, and assign one pjl (2 ≤ l ≤ k) 
= 10%. In these experiments, the uncertainty of the attribute 
data was set to 10%, and in order to show better results, we 
used Gaussian distribution as the uncertain model for the 
UNAs. The running time results for the six datasets is shown 
in Table V. Figure 4 shows the results for average accuracy. 
 

TABLE V.  RUNNING TIME  

Datasets 

Running time (s) 

Training+Classificaiton 

ω = 0% ω = 10% ω = 20% 

Iris 0.068 0.269 0.568 

Glass 0.249 0.452 0.750 

Segment 1.217 1.415 1.720 

Voting 0.084 0.287 0.589 

Mushroom 1.093 1.303 1.694 

Audiology 0.101 0.305 0.621 

Adult  1.247  1.443  1.746  

Bridges  0.087  0.285  0.589  

Teaching  0.073  0.279  0.575  

 
Tables V show that it generally takes longer to construct 

a classifier as the uncertainty in data increases. The reason is 

more candidate splitting points are available and require more 
comparisons for uncertain data. 

   

Figure 5.  Example of a ONE-COLUMN figure caption. 

As shown in Figure 1, when the extent of class uncertainty 
increases, the classifier accuracy declines slowly. For most 
datasets, the performance decrement is within 3%, even when 
class uncertainty reaches 30%. The “Bridges” identification 
dataset shows the worst performance with the classification 
accuracy over 66.01% on certain classes, but reducing to 
around 65.39% when the class uncertainty was 10%, and to 
64.07% when the class uncertainty was 20%. 

VII. CONCLUSION 

In this paper, we address a special data classification 
problem called uncertain data classification problem. In this 
problem, both the attributes and the class label of a data are 
uncertain. To solve the problem, a fuzzy decision tree (FDT) 
algorithm is proposed in this paper. The algorithm use fuzzy 
set to represents data uncertainty and selected attributes with 
minimum classification uncertainty at each step. Our FDT 
algorithm has three advantages. Firstly, it can classify 
uncertain data that traditional data classification algorithms 
tend not to be able to deal with well. Secondly, it considers the 
uncertainty of class label, which is ignored in many existing 
uncertain classification algorithms. Finally, our proposed 
discretization method is able to convert interval data into a 
probability vector  𝑃 , so that our algorithm can omit the 
difference between UNA and UCA. Extensive experiments on 
real-world datasets show that our FDT algorithm can produce 
classifiers with higher accuracy than some existing uncertain 
classification algorithms, regardless of whether an object’s 
class label are uncertain. 
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