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Abstract—Data stream mining is widely used in online ap-
plications such as sensor networks, financial transactions, etc.
Such systems generate data at high velocity and their underlying
distributions may change over time. This is referred to as concept
drift problem and it is considered to be the root cause of
performance degradation of online machine learning models. To
tackle this problem, a reliable and fast drift detection method is
required to achieve real time responsiveness to the drifts. This
paper presents a fast and accurate drift detection method, namely
KS-SVD test — KSSVD, to monitor the distribution changes of
the data stream. Our method employs the SVD technique to first
check the direction change of the data, followed by a KS test
on each direction to detect the univariate distribution changes.
Experiments show that our method is efficient and accurate,
especially in high dimension situation.
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I. INTRODUCTION

Data stream mining has become an important research field
in machine learning. Data stream mining is widely used in
online applications such as sensor networks, financial trans-
actions, telecommunication, mobile applications, etc. Such
systems generate data constantly and often at a high velocity,
for example, tweets, transaction flows and network activities.
Among others, one prominent characteristic of stream data
is that their underlying distribution may change arbitrarily
over time [1], [2]. This is considered to be an important
root cause of performance degradation of online data mining
systems as the machine learning prediction models, based on
the distribution of previous training data, are no longer fit for
the distribution of newly arrived data. This problem is known
as the concept drift problem.

Formally, given an infinite sequence of stream data (x, y, t),
with input data x, output class y, and time stamp ¢, concept
drift is defined as such that the joint probability p(z,y) of
the stream data distribution, with density function ¢, have
changed at time 7' [3]. From a Bayesian point of view, the
change of joint probability p(x,y) may have three underlying
sources: the change of prior density p(z), the change of
prior probability p(y) and the change of posterior probability

p(ylz) [4].

plyle) = p(ﬂ%(y) M

However, detecting changes in prior probability p(y) and
posterior probability p(y|z) relies on immediate availability
of data with true labels (manually classified by users), which
is a demanding prerequisite and may not be feasible in most
real world scenarios. So in this paper, we only consider the
case of prior density p(z) changes.

Further, concept drifts can be categorized into different
types according to the extent of the drifts: sudden or abrupt
drift; gradual or slow drift; recurrent drift [S]. Our method
aims to handle the first two types of drifts by leveraging a
specific window strategy [6].

Existing concept drift detection methods can be loosely
grouped into three strategies. Early methods monitor distri-
bution changes by calculating simple statistics from the data,
such as cumulative sum in [7] or classifier error rate [8].
However, the detection accuracy of these methods are often
limited because the chosen statistics are not always able
to reflect all possible distribution changes. Other researches
resolved to existing multivariate two sample tests or developed
new ones to detect differences between the distributions of
existing data and newly arrived data [9]. Although these tests
are statistical guaranteed to be able to detect distribution differ-
ence, computing the statistics on high dimensional data can be
costly. In data mining community, researches also use machine
learning algorithms to develop methods as alternatives to two
sample tests, such as competence model method in case base
reasoning [10] and k-dimensional tree based methods [11].
These methods aim to achieve a balance between statistical
rigor and computational cost, but are still not able to meet the
requirements of real time online systems.

Motivated by these issues, this work aims to develop a
fast concept detect method with statistically guaranteed ac-
curacy as well as low computational complexity to achieve
real time responsiveness, by combining the commonly used
Kolmogorov-Smirnov(KS) test [12] and Singular Vector De-
composition(SVD) technique, which, as we will show in
later chapters, will compensate each others weakness and
result in an effect and distribution-free concept drift detection
algorithm.

Our main contributions are:

o Analysis of the effectiveness of combining KS test and

SVD as a multivariate two sample test.
« A fast and distribution-free concept drift detection method
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Fig. 1. KolmogoovSmirnov statistic D for two sample test.

with statistically guaranteed accuracy.

This rest of this paper is organised as follows. Section II
first introduces KS test, SVD and their characteristics, then
analyze how they can compensate each other as a two sample
test method. Section III presents the concept drift detection
method based on the combination of KS and SVD model,
integrated with the a windowing scheme. Section IV presents
our experiment results, with an analysis for both the effective-
ness of our model and the performance of our concept drift
detection method. Finally, Section V concludes our study and
presents the future work.

II. COMBINING KS TEST AND SVD

In this section, we will first review the commonly used KS
test and SVD technique and their characteristics. Then we will
demonstrate how combining the two can be used as a two
sample test method for multidimensional data.

A. Kolmogorov-Smirnov test

Kolmogorov-Smirnov(KS) is a well known statistical test
that can be used as one sample test or two sample test.
Here we are only interested in the two sample test case
which is to test whether two sets of data have same distri-
bution [13]. Given two samples X = x¢,2x1,...,2,—1 and
X' = zy, 2, ..., x,_1, x,2’ € R, with size n and m, and
empirical distribution function F'(x) and F’(x) respectively,
the KolmogorovSmirnov statistic is

Dy n = sup |[Fy(z) — F, ()] (2)

The null hypothesis, that the two samples have the same
distribution, is rejected at level « (usually 0.05) when D, ,,, >
() /™ where ¢(a) = 1/ —3 In(%), as shown in Figure 1.

Kolmogorov-Smirnov test is initially designed for one di-
mensional data. Since it relies on the ordering of the data
points, it cannot be easily generalized to multidimensional
data. Although several extensions of the Kolmogorov-Smirnov
test to multivariate data have been introduced [14], [15],
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Fig. 2. Two data sets with same distribution on each dimension but different
correlation.

their computational complexity are often very high because
they need to traverse the data in all possible orders of every
dimension.

A simple way to extend Kolmogorov-Smirnov test is to
separately apply the test on each dimension. This strategy
is computationally efficient. However, an obvious problem is
that this approach cannot detect the correlation changes of
the data when distribution of each dimension remains the
same. To see this problem, we now take an example in two
dimensional space for convenience. The following analysis
still holds in the higher dimensional situations. As shown in
Figure 2, the joint distribution of the red colored data set
is a 2D normal distribution N(0.5,0.5,1,1,0.8). The blue
colored data set follows a similar 2D normal distribution
N(0.5,0.5,1,1,—0.8). The two data sets are only different
that the correlation coefficients between of x; and zo are
opposite. However, the two data sets have same marginal dis-
tribution, which are both 21 ~ N(0.5,1) and 2o ~ N(0.5,1).
In such case, if we apply KS test directly on each coordinate
(z1 or z3), the null hypothesis will not be rejected. The
coordinates x;, xo can be seen as the projection on the
standard basis vectors of (1,0), (0,1). But these standard basis
vectors cannot present the direction information of the two
data sets. So we use SVD of the covariance matrix to find the
eigenvectors in order to discover this direction information.
We will see, in the next subsection, how this issue can be
handled by SVD technique.

B. Singular Vector Decomposition

In scenarios with high dimensional data streams, it is still
difficult to model the multidimensional distribution accurately,
and the computational cost is usually high. As we have already
discussed in the last section, correlation information will be
lost when analyzing each dimension separately. The covariance
matrix is commonly used to analyze the correlation of each
feature of the data. In order to compensate the univariate KS
test, we include the SVD of the covariance matrix in our
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Fig. 3. Two data sets with same mean and variance but different distributions.

method. Suppose ¥y and Y; are the covariance matrices of
the data sets Dy and D,.The SVD of X is

N =VAVT (3)
(i)

The columns vy’ and vy) are eigenvectors. The elements
Ai and A} of the principal diagonals of Ay and A; are the
eigenvalues. It can be seen as the variance of the data on
the corresponding eigenvector direction. Compared with basic
vectors, these eigenvectors are generated from the data sets.
Also, because eigenvector of the largest eigenvalue is the
direction that the data has the largest variance, eigenvectors
can be used to represent direction information of the data. We
could calculate the angle 6(*) between the eigenvectors v((;')
and vlz). If the directions are significantly different (") £ 0
or ), then the data distributions must be different.

However, the opposite does not hold, which means that if the
directions are same, we cannot come to the conclusion that two
data sets have the same distribution. For example, in Figure 3
there are two data sets, both having the same size of 200. The
red colored data set Dy is generated from one dimensional
uniform distribution within the range of (—1,1). The mean
of Dy is zero. We could calculate its variance as 07 = (1 —
(—1)2/12 = 1/3. The blue colored data set D; has the same
mean and variance as Dg. But D, is generated from a normal
distribution N (0, 1/3). Clearly, their distributions are different.
The SVD technique cannot detect this kind of difference. In
such case, a mechanism to differentiate the distributions is
required. We choose the commonly used univariate two sample
test KS test. However, since KS test is only suitable for one
dimensional data, we need to project the high dimensional data
on each eigenvectors separately, and treat each projection as
a one dimensional data set. Then we can perform the KS test
on each projection respectively.

III. CHANGE DETECTION METHOD

From the previous section, we see that KS test can be used
to detect single dimension differences while SVD can be used
to test changes of correlation between dimensions. In this

section, we will explain in detail how to combine the two
test as a general multivariate two sample test and use it as a
novel drift detection method.

A. Combine KS and SVD as two sample test

Given two input data samples X = x1,22,...,%n, X' =
zh,ah, .., 2, X, X' € R, with equal size n, First, we com-
pute the covariance matrices of X, X', denoted as X, /. After
applying SVD to the covariance matrices we get eigenvalues
of each sample, denoted as A1,...,Aq, A7,...,\; and their
eigenvectors, denoted as v1,...,vq4, V1,..., V), respectively.
It should be noticed that the eigenvectors of each sample
is sorted in descending order according to the eigenvalues,
which represents the variances of the data on the eigenvector
direction. Next, for each pair of v;, v, we compute the angle
of the two vectors, denoted as ;. If 0; exceeds a predefined
threshold £, a drift alert is triggered. If 6; < 3, we then need
to perform KS test on the two samples after being projected
on the direction defined by the current eigenvector v;. The p-
value of the KS test is compared with predefined threshold «,
if p < «, a drift alert is triggered. If all the v; are checked
without drift alert, then the two samples are considered to have
the same distribution. We denote this process as KSSVD test.

B. Window strategy

Our approach is to compare the data distribution of two
windows. First, the reference window Wy, is set to be the first
n samples z1,s...,T,. The test window W; is the next n
samples Ty 41, ..., T2,. Then, we perform the KSSVD test on
the windows Wy and W7. If no drift is detected. W stay at the
same location while W; slide forward. If a drift is detected,
the reference window Wy will be updated to be the following
n samples after the drift point z;. Hence, the window W)
can present the current distribution. This fix-sliding windows
method [12] is suitable for abrupt and gradual drifts. The
window size n can be adjusted according to the extent of
drifts to be detected.

C. Pseudo-code

Algorithm 1 lists the pseudo-code of our method.

IV. EMPIRICAL EVALUATION

In this section, we evaluate the effectiveness of the proposed
KSSVD method. The data we are using is generated under the
similar process described in [11]. We also compare our method
with the method introduced in [11], which we refer to as
KL for KL-divergence. We choose this method as comparison
because it is a popular method and aims to achieve the same
goals as our method — fast, distribution-free, high dimension
robust.

A. Accuracy

In the following experiments, we show the accuracy of
our method. The method uses fix-sliding window strategy
explained in Section III-B, that is, keeping the reference
window fixed while moving the sliding window as new data



Algorithm 1 KSSVD algorithm
I: a < KS test threshold
2: B < SVD angle threshold
3: n < window size
4: wq,wq ¢ initial window
5: vg < SVD(’LUO)
6: for all 1)07') in vy do > project wy to eigenvectors
7
8
9

p((f) — PROJECTION(UJOvU(()i))

: end for

: while z < newly arrived data do
10: SLIDE(w1, ) > slide test window only
11: v1 < SVD(wq)
12: if ANGLE(vg,v1) > (5 then
13: ALERT(True) > drift alert
14: UPDATE(wq, w1y, n) > update fixed window
15: end if
16: for all v((f) in vy do > project w; to eigenvectors
17: pﬁ” — PROJECTION(wl,vé”)
18: 5 KS(p(()Z)7 p(ll)) > KS test on each direction
19: if s < o then
20: ALERT(True)
21: UPDATE(wg, w1, n)
22: end if
23: end for

24: end while

TABLE I
PARAMETERS OF COMPARISON METHODS USED IN THE EXPERIMENTS.

Method Parameter Symbol | Value

KSSVD SVD angle threshold «a 0.057
KS test threshold B 0.05

KL Minimum side length of a cell 6 2-10
Maximum number of points in a cell T 100

arrives. The reference window is only updated after a drift is
detected.

We measure the accuracy with the following four rules. If
the window is moving across the drift point and the change
is detected, then the result is called detected. If result is a
change being detected and the window is not moving over a
change point, we call this situation is false. If the window has
passed a drift point and has not arrived the next change point,
we call this situation is late. If the change is happening and
the algorithm give a stationary result, we call this situation is
missing.

The parameters used in the experiments are listed in Table I

1) Different data distributions: For different types of drift,
We choose four data sets. The first three are generated from the
2 dimensional normal distribution. The first group M fix the
standard deviation o1 = 02 = 0.2, and the correlation p = 0.5.
The mean begin with p1qy = s = 0.5, and vary within [0.2, 0.8]
randomly. The step size is 0.1 and 0.05. The second group D
fix the mean as p; = po = 0.5 and the correlation p = 0.5,
but the standard deviation change within [0,0.4] randomly.
The step size is 0.06 and 0.04. The third group C fix the

TABLE I
DRIFT DETECTION RESULT ON DIFFERENT DATA TYPES WITH WINDOW

SIZE 1000.
Data Method | Detected | Late | False | Missed
M(0.1) KSSVD 99 0 6 0
KL 85 10 5 4
M(0.05) | KSSVD 86 11 3 2
KL 24 24 2 51
D(0.06) | KSSVD 81 12 8 6
KL 80 8 7 11
D(0.04) | KSSVD 76 10 9 13
KL 72 12 1 15
C(0.6) KSSVD 91 3 11 5
KL 95 3 2 1
C(0.4) KSSVD 79 14 10 6
KL 69 20 6 10
P(0.6) KSSVD 93 5 10 1
KL 92 5 4 2
P(0.4) KSSVD 82 5 3 12
KL 78 13 3 8

mean 1 = pe = 0.5, and 0; = 02 = 0.2. We change the
correlation within [—1, 1] and the step size is 0.6 and 0.4. The
last data set P is generated using the method described in [16].
The data follows multivariate Poisson distribution (X,Y") ~
Poisson(500(1 — p),500(1 — p),500p). Drift is introduced
as such that p starts at 0.5 and then performs a random walk
between 0 and 1 with step size A = 0.6,0.4.

The experiment result is shown in Table II. It shows that
our method outperforms KL in most types of distributions.
‘We notice that when drift is small, our method still maintains
relatively high accuracy, which means that our method is more
sensitive to small drifts.

2) Different window sizes: In this experiment, we reduce
the window size and test if the performance of our method
is stable under different window sizes. The test data sets
and parameters used are all same as previous experiment,
except the window size is reduce to 500. The result is shown
in Table III. We can see that, as expected, as window size
reduces, the methods’ accuracy both decrease. However, our
method still outperforms KL in most categories. This means
that our method is robust to small window size and the
performance of our method is stable.

3) Higher dimensions: To test the effectiveness of our
method in higher dimension scenarios, we increase the dimen-
sion of one of the previously used data set and perform similar
tests again. The data set D(i) (i = 4,6,10,15,20 presents
the dimension of the data) we will use is the normal data
stream C(0.6). Additional dimensions are added to the data set,
while the first two dimensions, where the drift happens, remain
same. The result is shown in Table IV. We can see that our
method still outperforms KL in most of categories. Moreover,
the accuracy of KL drops greatly as dimension increases, but
the accuracy of KSSVD remains relatively stable. This means
that our method is more robust for high dimensional data.

B. Efficiency

In this last experiment, we measure the efficiency of our
method. We compare our method to KL on data sets with



TABLE III
DRIFT DETECTION RESULT ON DIFFERENT DATA TYPES WITH WINDOW

SIZE 500.
Data Method | Detected | Late | False | Missed
M(0.1) KSSVD 97 2 6 0
KL 61 24 3 14
M(0.05) | KSSVD 55 24 3 20
KL 12 26 1 61
D(0.06) | KSSVD 51 13 8 35
KL 42 15 2 42
D(0.04) | KSSVD 49 19 6 31
KL 49 12 3 38
C(0.6) KSSVD 81 10 7 8
KL 78 15 0 6
C(0.4) KSSVD 58 13 7 28
KL 56 16 2 27
P(0.6) KSSVD 75 15 9 9
KL 83 14 4 2
P(0.4) KSSVD 66 11 9 22
KL 64 13 6 22
TABLE IV
DRIFT DETECTION RESULT ON HIGH-DIMENSIONAL DATA WITH WINDOW
SIZE 1000.
Data Method | Detected | Late | False | Missed
D4) KSSVD 72 17 10 10
KL 85 3 7 11
D(6) KSSVD 65 10 8 24
KL 75 13 7 11
D(10) | KSSVD 62 13 10 24
KL 39 18 2 42
D(15) | KSSVD 52 16 7 31
KL 47 22 2 30
D(20) | KSSVD 35 22 5 42
KL 25 23 1 51
TABLE V
RUNNING TIME WITH DIFFERENT DIMENSIONS AND WINDOW SIZES.
Dimension(d) | Window size(n) | Method | Construct(s)
2 1000 KSSVD 0.0194
KL 0.597
2 2000 KSSVD 0.0758
KL 1.134
4 2000 KSSVD 0.1137
KL 1.1644
4 5000 KSSVD 0.489
KL 3.3046

different window sizes and dimensions. The experiment envi-
ronment is a PC with one 3.6GHz Intel i7 processor and 16GB
memory. The test program is written in Python 2.7. Each test
is conducted 100 times and the average time is measured. The
result is shown in Table V. We can get a nearly ten times
speed up compared with the KL method.

V. CONCLUSIONS AND FURTHER STUDIES

In this work, we proposed a fast concept drift detection
method based on the combination of KS test and SVD tech-
nique, which compensate each other’s weaknesses as a multi-
variate two sample test. Experiments have shown the efficiency
of our method, especially in high dimensional situations. Our
method does not require permutation or bootstrap procedure,
thus is able to achieve up to ten times speed compared to other
distribution tests that relies on them.

As for future studies, we aim to develop an machine learning
model adaptation method which utilizes the output of our
detection method. Another direction is developing a non-
parametric framework, in which the threshold parameters can
be automatically trained from the data, so that our method
could have larger application scale and higher significance.
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