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Abstract—Financial trading aims to build profitable strategies
to make wise investment decisions in the financial market. It has
attracted interests in the machine learning community for a long
time. This paper proposes to trade financial assets automatically
using feature preprocessing skills and Recurrent Reinforcement
Learning (RRL) algorithm. The strategy starts from technical
indicators extracted from assets’ market information. Then these
technical indicators are preprocessed by Principal Component
Analysis (PCA) and Discrete Wavelet Transform (DWT) and
eventually inputted to the RRL algorithm to do the trading. The
extensive empirical evidence shows that the proposed strategy
is not only effective and robust in its performance, but also can
mitigate the drawbacks underlying the initial trading using RRL.

Index Terms—financial trading, feature preprocessing, prin-
cipal component analysis, discrete wavelet transform, recurrent
reinforcement learning

I. INTRODUCTION

With the fast development of machine learning in the last
three decades, various machine learning algorithms have been
developed and applied to automated trading in the financial
market. The goal of financial trading is primarily to make
profits while minimizing the risk of loss as much as possible.
The key is, therefore, to make wise decisions based on fast-
changing market conditions, such as taking a long position
before the asset’s price goes up while adopting a short position
before the asset’s price falls. One of the notable financial
trading algorithms, handling this case, is RRL which was
firstly proposed by [1, 2, 3, 4] and has been shown to
be able to gain profit on various markets when tested on
corresponding market data sets. However, it has also been
shown to suffer from its own drawbacks. For instance, [5]
tested RRL and its variants, two layer network RRL, on
currency trading and reported that they can hardly find the
optimal set of hyperparameters, due to there are a large number
of hyperparameters that can only be tuned by trial and error
and the interdependence amongst them. Moverover, [5] also
reported the market dependence of the RRL performance.
Besides, [6, 7] argued that the original RRL lacks flexibility to
trade in a regime-switching market where dramatic economic
behavior could happen and the financial time series exhibits
high non-linearity. They hence put forward the threshold and
Regime-switching versions of the original RRL and tested
them on artificial and real financial data sets. They argued that

the out-of-sample results were generally support the regime-
switching RRL, but there were still some doubts regarding the
instability of the performance of the RRL based methods in
the presence of transaction cost. Furthermore, [8] found that
the basic RRL algorithm could hardly avoid precipitous drops
in the stock price, which led to significant loss of cumulative
profit, especially when stock prices did not exhibit structures.

In this paper, a strategy, combining the PCA and DWT
operations to reduce dimensionality and noise for the feature
set with RRL for financial trading, is presented. we aim to
show how this strategy, named PCA&DWT RRL, can greatly
alleviate the above listed problems. Specifically, instead of
executing the trading algorithm on the lagged return series
which is adopted by most previous methods, PCA&DWT
RRL first extracts various technical indicators from each
asset’s market information, which are then preprocessed by
PCA and DWT and eventually inputted to the RRL trading
algorithm. We notice that other work related to trading using
RRL approach, such as adding risk management layer and
parameter optimization layer on top of the RRL trading layer
[9], optimizing different objective functions [10] and others
[5, 6, 7], primarily focused on designing involved algorithms
to improve the original RRL performance. To the best of
our knowledge, we are among the few work which tries
to mitigate the drawbacks of the original RRL from the
feature preprocessing’s point of view. Feature preprocessing
has been applied to different machine learning algorithms for
handling financial data. For example, [11] presented three
dimensionality reduction methods, principal component anal-
ysis, fuzzy robust principal component analysis, and kernel-
based PCA to reduce the dimension of the features before
artificial neural networks were used to classify the direction
of the stock daily return based on the prepocesed features
data. Also, [12] proposed to use PCA and DWT to preprocess
the input data first, then the cleaned data was fed into the
XG Boost machine to generate trading signals. Their trading
actions are based on predictions of the price movement at the
next period. Additionally, [13] considered the importance of
feature selection in the process of making trading decisions.
They first processed the financial data by K-line theory to
produce candlesticks as an operation of denoising, then the
candlesticks are decomposed into different subparts which
are further clustered before put into the deep reinforcement
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learning model. However, in these cases, feature preprocessing
is mainly used for forecasting securities’ prices. In our case,
accurate forecasting is neither necessary nor sufficient to a
good performance of the RRL algorithm [1].

The main contributions of this paper are: to begin with,
we propose to combine feature preprocessing operations, PCA
and DWT, with basic RRL trading algorithm to trade in the
financial market. Moreover, we solely adopt technical indica-
tors extracted from each asset’s market information as the raw
feature instead of lagged return series of assets as adopted by
many previous methods [5, 7, 9]. Additionally, we optimize
Sharpe ratio directly with traditional batch update instead
of other objectives with online learning [4]. Plus the well-
developed packages for implementation of data processing,
the proposed strategy is technically simpler than most previous
methods based on RRL. Yet, it can attain impressive results.
More importantly, the proposed strategy can greatly mitigate
the issues with the basic RRL trading mentioned before. Last
but not least, we present an overall empirical study of the
proposed strategy and show that it is consistent, robust and
reliable in most cases.

II. DATA PREPROCESSING MODULE

A. Data Configuration

In the financial market, price of stocks is affected by multi-
ple factors which include but not limited to unexpected events,
government policies and company activities. This implies that
there may be a few periods when trading activities are not
available, which results in a couple of NA entries in the price
time series. These NAs are useless for our trading strategy
and can be removed directly or filled with other values such
as the last value ahead subject to specific learning task. In
our case, we discard these NA entries directly for the sake
of simplicity. Additionally, technical analysis in the financial
market has a long history amongst investment practitioners.
As more and more evidence shows that markets are not as
efficient as once believed [14], technical analysis was applied
to algorithmic trading [12, 15]. It is generally believed that
technical analysis indicators can summarize the general pattern
of the time series and mitigate local noise somehow in the
data stream, which can further be utilized by the trading
system to make profitable decisions [15]. There are quite a
few technical indicators developed by financial professionals
[16]. One can choose various technical indicators to use
depending on specific tasks. While without enough number
of indicators, it may be tough to reveal the pattern of the
data stream comprehensively, including too many technical
indicators may also affect the trading decision negatively and
increase the computation burden, since the calculated value
of some technical indicators are not always consistent with
one another. Given this, the indicators used in this paper
can be categorized into four groups, momentum indicators:
Momentum (MOM), Moving Average Convergence Diver-
gence (MACD), Money Flow Index (MFI), Relative Strength
Index (RSI), volatility indicators: Average True Range (ATR),
Normalized Average True Range (NATR), cycle indicators:

Hilbert Transform Dominant Cycle Phase (HTDCP), Hilbert
Transform Sinewave (HTS), Hilbert Transform Trend Market
Mode (HTTMM) and volume indicators: Chaikin Oscillator
(CO), On Balance Volume (OBV). Let TI = {MOM, MACD,
MFI, RSI, ATR, NATR, HTDCP, HTS, HTTMM, CO, OBV}
denote the set of 11 technical indicators used for the following
exposition. The calculation of technical indicators was done
via the python library TA-Lib [17]. Additionally, to make the
value of each feature on the same scale, we normalize each
technical indicator stream with the standard normalization i.e.
z-score which is represented by the following equation.

X =
X − µ(X)

σ(X)
(1)

where X is the time series of each extracted feature, µ(X) and
σ(X) is the mean and standard deviation of X , respectively.

B. Principal Component Analysis

The PCA operation of data preprocessing module receives
the normalized feature set, including 11 technical indicators
data streams, as input. The development of PCA originates
from the curse of dimensionality which claims that data points
in high dimension lie far away from each other, statistically
speaking [18]. The curse of dimensionality not only makes
the training of machine learning algorithm expensive, but also
casts a shadow over the predictions of the trained algorithm,
since data points in-sample and out-of-sample are so far away.
In order to alleviate the effect of curse of dimensionality, a
natural way is to reduce the dimension of data sets. That
is where PCA comes into effect. To be more specific, PCA
firstly fits the input, identifying the main components that
represent the directions of maximum variance of the input.
Then the main components are ordered according to the vari-
ance they explain and one can choose how many components
are preserved. Afterwards, the original input is projected onto
the retained components, resulting in a data set of lower
dimension. In our case, the normalized technical indicators
is a 11 dimensional data set at first. After being decomposed
by PCA, there will be less than 11 indicators, reducing the
probability of correlation and inconsistency amongst them. In
this way, the processed set results in a new TI ′ ⊂ TI . We
use the well developed Scikit-learn [19] library to implement
the PCA operation. Additionally, we set the hyperparameter,
explained variance ratio, to 95% which means that the sum of
the variance explained by all retained principal components
takes up at least 95% of the total variance of the original data
set.

C. Discrete Wavelet Transform

Although the data set returned by the PCA is simplified
by removing less relevant features in the feature domain and
possibly also reducing noise in each feature stream, some
outliers or irrelevant data points, representing local noise, may
still exist in each feature series. They may affect the training
and trading of the RRL algorithm. To remove these local noise
in the time domain of each technical indicator, we apply the



discrete wavelet transform to the feature after being processed
by PCA.

Reference [20] proposed to calculate the DWT coefficients,
including the approximation and the detail coefficients, using
a pair of high pass and low-pass filter. In the algorithm, the
father Φ(t) and mother Ψ(t) basis functions are introduced to
generate their corresponding son Φj,k(t) and daughter Ψj,k(t)
wavelets which are further utilized to approximate the original
signal. The corresponding coefficients of son and daughter
wavelets as a result of decomposing a function f(x) is defined
in the following inner product form [20].

aj,k = 〈f(t),Φj,k(t)〉, dj,k = 〈f(t),Ψj,k(t)〉 (2)

where aj,k and dj,k are approximation and detail coefficients,
respectively, and k = 0, 1, 2, . . . and j = 0, 1, 2, . . .. Though
there are various types of wavelets, in this work, we use
Haar wavelets with periodization padding mode, since Haar
wavelets are useful to capture fluctuations between adjacent
observations, recorded by [21], which would be heuristically
useful to spot evident drawdowns in the financial market.
Additionally, the decomposition can be iterated for multiple
times, subject to the inherent decomposition level of the
wavelets and the length of the signal or data series.

Eventually, the DWT leaves us one set of the approximation
coefficients and a couple of sets of the detail coefficients
depending on the given decomposition level. In this paper,
we set the DWT decomposition level equal to 4, since too
high decomposition level would destroy the general pattern,
while too low would still leave too much noise in the data
[22]. After the decomposition finishes, the general trend of
the original signal is preserved in the approximation set, while
the detail coefficients sets contain the local noise of the signal
[20], which we aim to clean.

At this point, we apply soft thresholding technique with an
empirical threshold value equal to two times standard devia-
tions of coefficients to each detail coefficients set. Eventually,
the inverse DWT method is used to reconstruct the signal
which is the final denoised version of the original signal. By
discarding the irrelevant coefficients, the reconstructed signal
represents the essential characteristics of the original signal,
which is further adopted by the RRL trader in the following
trading module. The DWT process for each technical indicator
series of each asset is implemented with the open source
python package PyWavelets [22].

III. RECURRENT REINFORCEMENT LEARNING FOR
TRADING USING TECHNICAL INDICATORS

A. Hypothesises

In this paper, we make following assumptions which are also
implied by RRL trading in most cases: the trader always takes
either long or short position in the underlying asset, meaning
that the trader is always in the market regardless of the market
situation, although this may expose us to severe risk when the
market volatility is high; the market is liquid enough such
that trading orders can be immediately executed at the each

day’s close price of the underlying asset; the trading is put in
a backtest environment.

B. Structure of RRL
In this work, we make some modifications of the original

RRL structure to make it more fit to our setting. Instead of
optimizing differential Sharpe ratio [1] with online weight
update, we directly optimize Sharpe ratio with the batch
learning to update weights [8]. Moreover, instead of the one
time training and test process adopted by [1, 3, 4], we adopt
a rolling training and test process which will be illustrated
further later. Given a sequence of the value of technical
indicators in TI ′, the remained technical indicators after PCA
and DWT operations, the trading position of RRL at each
period is:

Ft = F (θt;TI
′, Ft−1) ∈ {−1, 1} (3)

where F is the activation function, such as sign or tanh, θt
is the set of internal system parameters, Ft−1 is the state of
the position at the previous period. Here Ft−1 is added to the
preprocessed feature set given the transaction cost incurred in
the real trading process. The goal of the agent is to constantly
optimize Sharpe ratio which for a time window T is defined
as:

ST =
E[R1,...,T ]√

E[R2
1,...,T ]− (E[R1,...,T ])2

=
A√

B −A2
(4)

where A = 1
T

T∑
t=1

Rt and B = 1
T

T∑
t=1

R2
t . Note here we assume

Rt is the excess daily return over the risk free return of the
investment for generality of discussion [4]. The daily profit of
the trading strategy at period t, which is defined as:

Rt = Ft−1 · rt − δ · |Ft − Ft−1| (5)

This is the daily profit for 1 share of the asset and δ is the
transaction cost rate per share traded. The wisdom underlying
(5) is that the trading algorithm rewards the action which is
consistent with the following asset return, i.e. if one takes the
long position (Ft−1 = 1) in advance and then the immediate
asset return due to price movement is positive (rt > 0), then
she gains profits, whereas the trading penalizes the action
which is opposite to the price movement direction. The same
mechanism holds for short positions. Given the nontrivial role
of transaction cost in the process of active trading, especially
high frequency trading, the daily profit of trading Rt is
dependent on the last time’s trading position. If the trading
positions are the same in two consecutive periods, there will
be no transaction cost, while the transaction cost is doubled
if the inverse is true. Moreover, the dependence of Rt on the
trading position at the last period makes the trading algorithm
recurrent, because the last period’s trading position Ft is
recursively dependent on Ft−1 according to (3). This is also
why the algorithm is named RRL. Additionally, the cumulative
profit of the trading system over a time window T is:

Pt =

T∑
t=1

Rt =

T∑
t=1

(Ft−1 · rt − δ · |Ft − Ft−1|) (6)



Since we aim to maximize Sharpe ratio over time, gradient
ascent weight update method is employed, where the gradient
of Sharpe ratio is calculated using the chain rule of derivatives
as [8]:

dST
dθt

=
dST
dA

dA

dθt
+
dST
dB

dB

dθt

=

T∑
t=1

{dST
dA

dA

dRt
+
dST
dB

dB

dRt

}dRt
dθt

=

T∑
t=1

{dST
dA

dA

dRt
+
dST
dB

dB

dRt

}{dRt
dFt

dFt
dθt

+
dRt
dFt−1

dFt−1
dθt

}
(7)

where terms dST

dA , dST

dB , dA
dRt

and dB
dRt

are calculated as:

dST
dA

=
B

(B −A2)3/2
dST
dB

= − A

2(B −A2)3/2
(8)

dA

dRt
=

1

T

dB

dRt
=

2Rt
T

(9)

Other terms are calculated as follows [8]:

dRt
dFt

=
d

dFt
(Ft−1 · rt − δ · |Ft − Ft−1|)

= −δ · sign(Ft − Ft−1)

dRt
dFt−1

=
d

dFt−1
(Ft−1 · rt − δ · |Ft − Ft−1|)

= rt + δ · sign(Ft − Ft−1)

(10)

Note that here we first discuss the sign of term |Ft−Ft−1| to
get rid of | · | which is not differentiable and then calculate the
derivative of Rt with respect to (w.r.t.) Ft. For the term dFt

dθt
,

we notice that if the decision function Ft is in the form of sign
function, it is not differentiable. One option would be to con-
sider differentiable prethresholded output during training and
discretize the output when trading [4]. For example, assuming
Ft = tanh(θTt xt), where xt = [1, T I ′1, . . . , T I

′
m, Ft−1] is the

sequence of final features input to the trading system, and m
is the cardinality of TI ′. Then

dFt
dθt

=
d

θt

{
tanh(θTt xt)

}
= (1− tanh(θTt xt)

2) · d
dθt

{
θTt xt

}
= (1− tanh(θTt xt)

2) ·
{
xt + θM+2

t

dFt−1
dθt−1

}
(11)

where θM+2
t is the is the (M+2)th parameter in the parameter

vector θt, corresponding to the entry Ft−1 in the feature set
xt, since the decision function Ft is recurrently dependent on
all its previous value.

Once we obtain the gradient of Sharpe ratio ST w.r.t.
algorithm parameters θt, a batch gradient ascent technique can
be applied to update the algorithm parameters, i.e.

θt+1 = θt + ρ · (dST
dθt
− λ · θt)

= (1− ρ · λ) · θt + ρ · dST
dθt

(12)

where ρ and λ are the learning rate and l2 regularization
parameter to avoid overfitting during training, respectively.
Besides, we adopt a rolling training and trading techniques
to implement the trading process of the proposed strategy.
Specifically, the RRL trading agent starts from a set of initial
parameters which are generated by a random seed, κ, then
is trained on a training set of length Ntrain, then the system
parameters are fixed to trade in the next Ntrade periods.
Afterwards, the training and trading processes are repeated
forward. The new training set would cover the previous test
set and the new test set is also advanced forward, following the
new training set. This process is repeated until the last batch
of trading periods. During training, the agent is trained for n
epochs and the process is early stopped if the objective value
in two consecutive epochs is less than a threshold, ε. This is
also to avoid overfitting of the RRL algorithm and ensure a
better generalization ability of the algorithm.

IV. EXPERIMENTS

A. Data sets

We test the proposed trading strategy on real data sets from
different financial markets. To be more specific, 3 data sets are
collected and each consists of the daily prices (Open, High,
Low, Close) and Volume over the period of 01/01/2001 to
12/03/2021. Moreover, in order to test the robustness of the
proposed trading strategy in different financial markets, we
allow each data series to exhibit a unique pattern to ensure
the diversity of the data sets. The experiments are carried out
in the following financial markets: NYSE Composite index
(NYSE), Exxon Mobile Corporation stocks (XOM) and Corn
futures contract (ZCF). XOM and ZCF are also selected as
data sets in [12], although in different time frame. Data points
of NYSE, XOM and ZCF are downloaded from Yahoo Finance
1. The close price series of each data set is shown in the first
row in Fig. 1. Clearly, each price path is rough and full of ups
and downs, including precipitous drops.

B. Performance Metrics

The metrics used to measure the performance of different
trading strategies, including PCA&DWT RRL, in the real
financial market are: Net Profit (NP) which is final wealth PT
accumulated by the RRL trading over horizon T in the RRL
setting; Annualized Percentage Yield (APY), representing the
annualized percentage gain; Annualized Sharpe Ratio (ASR),
representing the annualized risk adjusted return and we assume
the risk-free return is 1% per annum which is approximate
to the US 10 year treasury bond yield as of year 2020 and
there are 252 trading days each year; Maximum Drawdown
(MDD) which measures the profit decline percentage from
peak value (PV) before largest drop and lowest value (LV)
before new high established of an investment during a specific
period; Calmar Ratio (CR), indicating the level of risk taken to
achieve a return and a higher CR suggests that the strategy’s
return is not at the risk of large drawdowns and vice verse.

1accessible from https://finance.yahoo.com/.



TABLE I
METRICS USED TO MEASURE THE PERFORMANCE OF DIFFERENT

METHODS

NP APY ASR MDD CR

PT (
PT+MPa

0
MP0

)
252
T − 1

Mean(R1,...,T )−0.01

Std(R1,...,T )
·
√
252 PV−LV

PV
APY
MDD

aMarket close price of the asset at the beginning of trading.

The higher the numerical value of these metrics are, the better
the performance of the trading strategy is except for MDD
for which a lower value is preferred, since most investors are
risk-averse. The definitions for these metrics are summarized
in Table I.

C. Benchmark Strategies

A way to show the effectiveness of the proposed trading
strategy is to compare the performance of the strategy with
other benchmark strategies. In this paper, we compare the
proposed trading method with the baselines: Buy and Hold
(B&H), which means to maintain a long only position for
the whole trading periods; an active trading strategies based
on autoregressive integrated moving average model (ARIMA),
which firstly predicts the price of the asset at the next period
and then takes a long position if the return calculated from pre-
diction is positive or takes a short position if the inverse is true
[23]. In order to evaluate the effect of feature preprocessing
using PCA and DWT techniques, we also present the results
of the proposed method without PCA and DWT operations (TI
RRL). Moreover, to delve deep into the importance of each
feature preprocessing part, performance of method with feature
only processed by PCA (PCA RRL) and method with feature
only processed by DWT (DWT RRL) is tested. Additionally,
since PCA can also remove noise in the data sets, which is
somehow overlapped with the use of DWT, we will show
the performance of the method with feature firstly processed
by PCA and then DWT (the proposed PCA&DWT RRL)
and the method whose feature firstly processed by DWT and
then PCA (DWT&PCA RRL). We want to have an empirical
impression on the effect of feature processing order on trading
performance.

D. Hyperparameters

A common feature of most machine learning models is that
their performance depends on the setting of hyperparameters
which are parameters set before the training process begins. In
our case, besides the hyparameters described before in the data
preprocessing module, we empirically fix Ntrain = 500, ρ =
0.1, λ = 0.01, n = 100, κ = 42, ε = 0, Ntrade = 500 the same
for all 3 data sets except for transaction cost rate, δ, which has
a practical meaning. Refering to [12], we decide to set δ equal
to 1$ per share traded, 0.01$ per share traded and 0.001$ of
the future contract spot price per contract traded for data sets,
NYSE, XOM and ZCF, respectively.

E. Numerical Results

1) General performance of PCA&DWT RRL: In this sec-
tion, we evaluate the performance of the proposed trading

TABLE II
NUMERICAL VALUE OF THE PERFORMANCE OF STRATEGIES B&H,

ARIMA, TI RRL, PCA&DWT RRL ON DIFFERENT DATA SETS

Data sets Metrics B&H ARIMA TI RRL PCA&DWT RRL
NYSE NP($) 10504.62 -10517.95 -4918.31 32286.96

APY 0.07 -2.07 -2.04 0.12
ASR 0.35 -0.35 -0.17 1.07
MDD 1.12 40.41a 10.35 0.12
CR 0.06 -0.05 -0.2 1.05

XOM NP($) 17.15 -100.35 68.78 426.06
APY 0.02 -2.08 0.06 0.16
ASR -0.09 -0.47 0.08 1.23
MDD 1.06 31.30 0.56 0.28
CR 0.02 -0.07 0.11 0.55

ZOF NP($) 114.00 -1971.00 237.25 2158.61
APY 0.03 -2.15 0.04 0.16
ASR 0.03 -0.91 0.09 0.96
MDD 0.89 6.41 5.83 0.15
CR 0.03 -0.34 0.01 1.04

aThe MDD could be greater than 1 or 100%, if the LV is near 0.

strategy on selected data sets. Specifically, the numerical value
of different metrics achieved by execution of strategies, B&H,
ARIMA, TI RRL and PCA&DWT RRL on data sets, NYSE,
XOM and ZOF are summarized in Table II with the best
result regarding each metric stressed in bold face. It takes
us around 26.64 seconds, 26.86 seconds and 23.64 seconds
on a 4 core Intel i5 PC for the propsed strategy to complete
running on NYSE, XOM and ZCF data sets, respectively.
Note that TI RRL is just a simplified version of PCA&DWT
RRL without feature preprocessing operations, PCA and DWT.
Especially, the common hyperparameters of them are the same.
From Table II, it is clear that PCA&DWT RRL significatly
outperforms all baseline strategies, including TI RRL on all
three data sets, i.e. three different markets, in terms of all listed
metrics, meaning that feature preprocessing steps are necessary
in boosting the performance of TI RRL. Moreover, from Fig.
1, it is obvious that the proposed strategy can effectively
avoid large drawdowns and eventually achieve impressive
cumulative sum of net profit on all data sets via making
smart decisions on investment positions, i.e. long or short,
during different trading periods. For instance, on the NYSE
data set, the PCA&DWT RRL strategy successfully avoids
large drawdown of profits at periods around 1500 and 4300
by taking short positions. While the proposed strategy may
not able to make correct decisions at every period for each
data set, we argue that this strategy makes correct decisions in
most cases. Besides, we attain these results with the same set
of hyperparameters, meaning that our strategy does not need
to frequently tune hyperparameters to obtain a good result in
different markets, even under transaction costs. This clearly
mitigates the issues, market-dependent performance, instable
performance of RRL based trading and loss of profits due to
price precipitous drops, raised in [5, 6, 7, 8].

As to the ARIMA strategy, in this work, we first find
a suitable ARIMA model on each data set separately [23],
which leads us to ARIMA(3,1,2) on NYSE, ARIMA(2,1,0)
on XOM and ARIMA(1,1,1) on ZCF, respectively, then we
find the optimal model parameters on a training window of
length 500 periods and predict the future price for another
window of length 30 periods. This fitting and prediction
process are repeated forward until the last batch of prediction.



Fig. 1. The top row shows the close price trends of data sets NYSE, XOM and ZCF. The middle row shows the cumulative sum of the Net Profit (NP)
achieved by strategies B&H, ARIMA, TI RRL, PCA&DWT RRL over the horizon. The bottom row shows the trading signals with frequency 518, 729, 488
times in total from left to right given by the PCA&DWT RRL during trading process.

Fig. 2. Prediction of NYSE price given by ARIMA(3,1,2) model.

The prediction result for NYSE data set, for example, is
presented in Fig. 2, revealing that although ARIMA(3,1,2) can
predict the general price trend, there are inevitable time lags
between the true price value and the prediction one, due to the
model characteristics. We argue that these lagged prediction
prices result in the worst performance of the ARIMA based
trading strategy given in Table II, given its relatively simple
trading logic. On the other hand, although the B&H strategy is
a passive investment strategy which is completely determined
by the price movement of each asset, Table II shows that it
can substantially outperform ARIMA strategy and sometimes
even beat TI RRL on the NYSE data set, meaning following

TABLE III
NUMERICAL VALUE OF THE PERFORMANCE OF STRATEGIES TI RRL, PCA

RRL, DWT RRL AND PCA&DWT RRL ON DIFFERENT DATA SETS

Data sets Metrics TI RRL PCA RRL DWT RRL PCA&DWT RRL
NYSE NP($) -4918.31 -2748.91 24619.60 32286.96

APY -2.04 -2.03 0.11 0.12
ASR -0.17 -0.09 0.82 1.07
MDD 10.35 12.05 0.20 0.12
CR -0.20 -0.17 0.53 1.05

XOM NP($) 68.78 3.38 413.02 426.06
APY 0.06 0.01 0.15 0.16
ASR 0.08 -0.13 1.19 1.23
MDD 0.56 0.96 0.34 0.28
CR 0.11 0.01 0.45 0.55

ZCF NP($) 237.25 -158.77 2084.75 2158.61
APY 0.04 -2.03 0.16 0.16
ASR 0.09 -0.09 0.93 0.96
MDD 5.83 200.19 0.16 0.15
CR 0.01 -0.01 0.99 1.04

the market is normally a viable strategy.
2) Effect of PCA and DWT: The performance of PCA

RRL and DWT RRL together with the basic TI RRL and
the proposed strategy is presented in Table III. By examining
the table, it is easy to find that TI RRL and PCA RRL behave
worse than the other two strategies. By comparing PCA RRL
with PCA&DWT RRL, one could find that DWT technique
can substantially improve the performance of PCA RRL,
meaning that removing noise in the data plays an important
role in the proposed strategy. Comparing PCA RRL with
DWT RRL shows that DWT technique is more important to



TABLE IV
NUMERICAL VALUE OF THE PERFORMANCE OF STRATEGIES DWT&PCA

RRL AND PCA&DWT RRL ON DIFFERENT DATA SETS

Data sets Metrics DWT&PCA RRL PCA&DWT RRL
NYSE NP($) 23848.53 32286.96

APY 0.10 0.12
ASR 0.79 1.07
MDD 0.20 0.12
CR 0.52 1.05

XOM NP($) 276.24 426.06
APY 0.13 0.16
ASR 0.75 1.23
MDD 12.68 0.28
CR 0.01 0.55

ZCF NP($) 2303.39 2158.61
APY 0.16 0.16
ASR 1.03 0.96
MDD 0.07 0.15
CR 2.32 1.04

boost the basic TI RRL’s performance, whereas only execution
PCA technique is not able to improve the basic TI RRL’s
performance effectively. However, PCA technique does play
a positive role in the proposed strategy since PCA&DWT
RRL is slightly outperforms the DWT RRL strategy in all
data sets regarding most metrics. Furthermore, to evaluate the
effect of the order of the feature preprocessing techniques
on trading performance, we further test the performance of
PCA&DWT RRL and DWT&PCA RRL on the three data
sets. The numerical value of their performance is listed in
Table IV, which exhibits that the proposed strategy outper-
forms the DWT&PCA RRL on NYSE and XOM data sets,
while DWT&PCA RRL strategy outperforms the proposed
strategy on ZCF data set. Therefore, although there are some
differences between the performance of these two strategies,
it is tough to conclude which one is definitely better than the
other. The effect of the order of feature preprocessing to the
RRL based trading is market-dependent.

3) Hyperparameter sensitivity: As is well known, in many
machine learning algorithms, hyperparameters directly deter-
mine the performance of the algorithm since they control
the final parameters the algorithm finds, which decides the
generalization ability and robustness of the algorithm. Al-
though the proposed algorithm is able to gain superior results
in different markets as shown in Table II with the same
set of hyperparameters, which has arguably verified its out-
of-sample robustness, we further test the sensitivity of this
algorithm to its hyperparameters for more general settings. The
result is shown in Fig. 3, where in each graph, the respective
hyperparameter is tuned with other hyperparameters fixed.
By Fig. 3, it is clear that the proposed strategy maintains
a stable performance within a reasonable range when the
respective hyperparameter value varies in the given range.
For instance, the Annualized Sharpe Ratio obtained by the
proposed strategy w.r.t. explained variance ratio fluctuates
around 0.75 on different data sets except the 1.00 point at the
x-label. The transaction costs listed at x-label of the last plot
in Fig. 3 are particularly high for ZCF market in comparison

to the normal transaction cost, 0.001 of per traded contract
value. Even so, the proposed strategy achieves positive ASR
value. In summary, the PCA&DWT RRL strategy is able to
maintain a robust performance w.r.t. its hyperparameters.

V. CONCLUSION

This paper proposes to combine feature preprocessing and
RRL to trade in the financial market. The feature prepro-
cessing operations, represented by PCA and DWT, reduce
the dimension and noise in the technical indicator feature
sets. The processed feature is eventually inputted to the RRL
algorithm to make trading decisions in the market, which leads
to promising results. Moreover, the robustness and consistency
in the performance of the proposed strategy clearly mitigate
the drawbacks of the original RRL trading algorithm. Future
work could be directed to analyse in detail which part i.e.
optimized objective, training and trading method or feature
preprocessing leads to the improvement of the performance of
the RRL algorithm.
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