
Addressing Temporal Variations in Qubit Quality Metrics for
Parameterized Quantum Circuits

Mahabubul Alam, Abdullah Ash-Saki, Swaroop Ghosh
Department of Electrical Engineering

Pennsylvania State University, University Park, PA-16802
mxa890@psu.edu, axs1251@psu.edu, szg212@psu.edu

Abstract—The public access to noisy intermediate-scale quantum
(NISQ) computers facilitated by IBM , Rigetti, D − Wave, etc.,
has propelled the development of quantum applications that may offer
quantum supremacy in the future large-scale quantum computers.
Parameterized quantum circuits (PQC) have emerged as a major driver
for the development of quantum routines that potentially improve the
circuit’s resilience to the noise. PQC’s have been applied in both
generative (e.g. generative adversarial network) and discriminative (e.g.
quantum classifier) tasks in the field of quantum machine learning.
PQC’s have been also considered to realize high fidelity quantum gates
with the available imperfect native gates of a target quantum hardware.
Parameters of a PQC are determined through an iterative training pro-
cess for a target noisy quantum hardware. However, temporal variations
in qubit quality metrics affect the performance of a PQC. Therefore, the
circuit that is trained without considering temporal variations exhibits poor
fidelity over time. In this paper, we present training methodologies for
PQC in a completely classical environment that can improve the fidelity
of the trained PQC on a target NISQ hardware by as much as 42.51%.

I. INTRODUCTION

Quantum computing has observed a shift from being a purely
academic exploration to a realistic industrial technology in recent
years. However, the qubits have small coherence time (i.e., the
quantum states are short-lived), the gate operations are imperfect,
and the overall computation is extremely error-prone. Moreover, the
near-term quantum devices offer a limited number of qubits without
the costly feature of error correction. Due to these limitations, it is
impossible to implement and test the target quantum algorithms (e.g.
shor’s factorization, grover’s search, etc.) which have made quantum
computing so attractive on a useful scale on these noisy intermediate-
scale quantum (NISQ) hardware. In recent years, quantum routines
have been developed which are inherently resilient to errors using
variational/parameterized quantum circuits (PQC) [1]–[3]. PQC is
composed of a set of parameterized single and controlled single
qubit gates. The parameters are iteratively optimized by a classical
optimizer to attain a desired input-output relationship. For example,
RZ(θ) gate available in Rigetti 8Q-Agave hardware can be used to
perform an arbitrary amount of rotation of a target qubit along Z-
axis. By employing variational hybrid quantum/classical algorithms,
PQC’s have been applied to accomplish both the generative and
discriminative tasks in the field of quantum machine learning [4]–[9].
For example, Romero et al. proposed a generative variational circuit
that consists of two parts: a quantum circuit employed to encode a
classical random variable into a quantum state, and a PQC whose
parameters are optimized to mimic a target probability distribution
[9]. Schuld et al. [6] proposed a low-depth variational quantum
algorithm for supervised learning where the input classical feature
vectors are encoded into the amplitudes of a quantum system, and a
quantum circuit of parameterized single and two-qubit gates together
with a single-qubit measurement is used to classify the inputs. In [10],
PQC’s are used to develop arbitrary high-fidelity quantum gates with
the imperfect native gates of a target hardware.

Motivation: The trained PQC is supposed to be noise resilient
as the training is generally performed with the noisy hardware in
the loop approach to address the impact of noise as shown in
Figure 5(a) [11]–[13]. However, the quantum computers operate
under extremely controlled environment (i.e. operating temperature
is in millikelvin range [14]) and the qubit performance metrics that

define the qubit quality (e.g. T1 relaxation time, T2 dephasing time,
single-qubit gate error, multi-qubit gate error, readout error, etc.)
experience significant fluctuations over time. Generally, the quantum
computers (e.g., IBMQX4 and IBMQX2 from IBM) are periodically
calibrated through randomized benchmarking [15] and the updated
qubit quality metrics are reported for the users to validate their
quantum experiments on any target hardware. The variations in the
performance metrics of the qubits in IBMQX4 quantum computer is
shown in Figure 2. The data has been collected over a 43 days period.
The significant variations in the qubit quality metrics indicate that
variational circuits that are trained at any particular time using the
hardware in the loop training methodology may not show the desired
behavior all the time.

The temporal variability at the output of a quantum circuit is
expected for any arbitrary quantum circuit. As a motivational ex-
ample, we have executed the workload shown in Figure 1(b) on
5-qubit IBMQX4 quantum computer (the coupling graph of the
device is shown in Figure 1(a)) on 5 different occasions. The qubits
are prepared in the basis state |00〉. Ideally, at the end of the
execution period, the qubits will be in another basis state |10〉. A
projective measurement on the target hardware is expected to generate
a measurement of ’10’ most of the time. However, due to temporal
variations of the qubit quality metrics, we have received significantly
different outcomes at different points of time as shown in Figure
1(c). The y-axis shows the fidelity of the measurements (which is
the % of the correct output for 1024 samples at a time). For circuits
such as circuit-centric binary quantum classifiers based on PQC
(discussed in Section II), the final outcome is decided after analyzing
the measurement distributions in a classical computer which can be
completely wrong due to the temporal variations of the qubit quality
metrics. Moreover, quantum computers are expected to operate in
a client-server mode (for reliable hardware operation, the quantum
computer is kept in extremely controlled environment). Training of
an arbitrary PQC of a client with the target server hardware in
the loop approach becomes impractical as the training requires a
considerable amount of time and the access to any target hardware
through the client-server mode goes through a long wait queue. This
is true for IBM and Rigetti that provide free access to their quantum
computers through a cloud service accessible through qiskit and QCS,
respectively. Hence, fully classical training of PQC to address the
variations in qubit quality metrics of a target hardware can be a
challenging task.

(b) Random Workload

QA

QB X

H

H

H

H X

(a) Coupling Graph of
IBM Q 5 Tenerife

(IBMQX4)

1

0
QA

QB
The qubits (1 and 0) are
prepared in the basis state 𝟎𝟎𝟎𝟎

Terminal state of the qubits
(after executing the workload)
should be another basis state
𝟏𝟏𝟎𝟎

(c) Fidelity of the measured
output at different point of time

10/10/18 26/2/19 27/2/19 28/2/19 1/3/19 2/3/19 10/10/18
0.5

0.6

0.7

0.8

0.9

1

Single-qubit Parameterized
Gates (𝑼𝑼𝑼𝑼,𝑼𝑼𝑼𝑼,𝑼𝑼𝟏𝟏)
are supported for all the qubits.

2-Qubit CNOT
gates allowed
between:
10, 20,
21, 32,
42, 34
(control target)

Fig. 1. (a) Coupling graph of IBMQX4 (Tenerife) hardware from IBM; (b)
Random quantum workload; (c) outcome at different points in time.

Contributions: In this paper, we, (a) present a framework for
simulating any given quantum workload for any target NISQ hard-

ar
X

iv
:1

90
3.

08
68

4v
1

 [
cs

.E
T

]
 2

0
M

ar
 2

01
9

(a) (b) (c) (d)

Fig. 2. Temporal variations in qubit performance metrics for IBMQX4 (a) T1 relaxation; (b) T2 dephasing; (c) single qubit gate error; (d) two-qubit gate
error.

ware; (b) demonstrate training methodologies of PQC and address
their respective pros and cons; (c) present a fully classical heuristic
training methodology for PQC to address the temporal variations in
qubit quality metrics; (d) used PQC based circuit-centric quantum
classifiers to demonstrate our solutions and verified their effectiveness
on real quantum hardware from IBM.

The paper is organized as follows: the design methodologies of
PQC based circuit-centric binary quantum classifier are presented
in Section II. The training methodologies and their pros/cons are
is discussed in Section III. The framework for modeling circuit
behavior on a generic NISQ hardware is discussed in Section IV.
We demonstrate the proposed training methodology for PQC on two
binary quantum classifiers in Section V. We conclude in Section VI.

II. BINARY QUANTUM CLASSIFIERS

A. Quantum Computing Preliminaries

1) Qubit and State Vector: Qubit is the building block of quantum
computers. Besides storing classical bits 0 and 1, a qubit can be in a
superposition of both 0 and 1 simultaneously. Qubit state is expressed
with a ket (|.〉) notation which is represented by a column matrix
known as state vector. A single qubit state |ψ〉 is described as |ψ〉 =
a |0〉+b |1〉. Here, |0〉 and |1〉 are known as computational basis states
represented by [1 0]T and [0 1]T respectively (T stands for matrix
transpose), and a and b are complex numbers s.t. |a|2 + |b|2 = 1.

2) Density Matrix: An alternate approach of representing qubit
state is the density matrix (ρ) formalism which is expressed as ρ =∑
i pi |ψ〉 〈ψ| where pi is the probability of pure state and |ψ〉 is

the density matrix. This representation is beneficial since qubit states
may end up in a mixed state due to noise that can be expressed nicely
using density matrix.

3) Quantum Gates: Quantum gates are the operations that mod-
ulate the state of qubits and thus perform computations. Mathemat-
ically, quantum gates are represented by 2n × 2n unitary matrices
(n = number of qubits). Quantum gates can work on a single qubit
(e.g., Pauli-X (σx) gate) or on multiple qubits (e.g., 2-qubit CNOT
gate). When multiple gates work on different qubits, the overall
unitary matrix can be calculated using tensor product (⊗). For
example, in Fig. 4(a) two U3 (native gate of IBMQX4) gates are
working on qubit-1 and 0. Therefore, the overall gate matrix will be
U = U3⊗ U3. The gate matrices of the quantum gates used in this
work are shown in Figure 3.

4) Expectation Value: Expectation value is the average of the
eigenvalues, weighted by the probabilities that the state is measured to
be in the corresponding eigenstate. In quantum computers, measure-
ment of a qubit is performed in the so-called Z-basis or computational
basis |0〉 and |1〉. These are the eigenvectors (eigenstates) of Pauli-Z
(σz) operator with eigenvalues +1 and -1 respectively. For quantum
computing, (a) a positive expectation value means that the measure-
ments will yield more |0〉 than |1〉 , if a qubit prepared in identical

𝑈3 𝜃, 𝜙, 𝜆 =
𝑒−

𝑖 𝜙+𝜆
2 cos(

𝜃

2
) −𝑒−

𝑖 𝜙−𝜆
2 sin(

𝜃

2
)

𝑒
𝑖 𝜙−𝜆

2 sin(
𝜃

2
) 𝑒

𝑖 𝜙+𝜆
2 cos(

𝜃

2
)

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

𝐶𝑁𝑂𝑇 =
0 1
1 0

1 0
0 1

𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 =

𝑃𝑎𝑢𝑙𝑖 − 𝑋 =

Fig. 3. Gate matrices of the quantum gates used in this article.

setup is measured many times. The measurements will always yield
|0〉 if the expectation value is exactly +1, (b) a negative expectation
value means that the measurement outcomes will have more |1〉s
than |0〉s. If the expectation value is exactly -1, the measurements
will always yield |1〉, and c if the expectation value is 0, it means
the qubit state is in a perfect superposition of both |0〉 and |1〉 (e.g.,
ψ = (|0〉+ |1〉)/

√
2) and large number of measurements will result

in equal probabilities of |0〉 and |1〉.
For more clarity, suppose the state of a qubit after a quantum

computation routine is |ψ〉 = 0.8 |0〉 + 0.6 |1〉 (note the higher
amplitude of |0〉). The expectation value of Pauli-Z operator in this
state |ψ〉 is 〈ψ|σz |ψ〉 = 0.28, a positive expectation value which
validates a in the above discussion. Figure 4(a) shows the variations in
the expectation value of a target qubit with respect to a gate parameter
(θ).

B. Classifier Basics
Binary classification is the task of classifying any input data into

one of two possible groups. In supervised machine learning, this
classification problem is solved by training a mathematical model
(f(x, θ)) with a properly labeled input data-set {(x1,y1), (x2,y2),
, (xM ,yM)} where xi is the feature vector (can be multi-dimensional)
of the i′th input data and yi is the associated label. The mathematical
model predicts the class of any input data based on its features (x)
and the parameters (θ) of the model. The parameters (θ) are updated
iteratively until the model predictions are satisfactory over the input
data-set.

In [6], a binary classification on quantum computers is proposed
for classical data where a PQC serves as the mathematical model.
A state-preparation routine is required to encode the classical data
and feed it to the PQC. The output is captured from a target qubit.
During the training phase of the PQC, the parameters are updated
iteratively based on the given input data-set so that the probability of
getting 1 through a measurement of the target qubit for one class is
maximized (and 0 for the other class).

C. State Preparation
A state preparation circuit (which is applied to the qubits at ground

state) is used to convert any classical input data to a quantum format
so that quantum gates can be applied on the data and/or quantum
speed-up can be exploited. The structure of this circuit depends on the
chosen encoding scheme. A multitude of quantum encoding scheme
of classical data have been proposed [16]. However, in this paper, we
have utilized the basis encoding for parity classification and amplitude
encoding for iris classification. These schemes are described below.

Basis Encoding: In this scheme, binary 0 (1) is encoded as
computational basis state |0〉 (|1〉). For instance, a classical data x =
9 (binary 1001) can be represented by 4-qubits (say, Q3Q2Q1Q0)
where Q3 and Q0 (Q2 and Q1) are prepared in qubit state |1〉 (|0〉).
The effect of the state-preparation routine can be written as - Uφ : x
∈ { 0, 1 }n → |ψx〉.

Here, Uφ is the unitary transformation that prepares the desired
quantum state representative of classical data. For IBM quantum
computers, all qubits start from a |0〉 state. Therefore, quantum NOT
gate (Pauli-X, σx) has to be applied on Q3 and Q0 whereas Identity

2

gates are applied on Q2 and Q1 to prepare x = 9 state. Thus, for
this case Uφ = σx ⊗ I ⊗ I ⊗ σx. Although, the scheme results in a
trivial quantum state-preparation circuit (that only requires NOT and
Identity gates) which is fairly easy to implement on existing quantum
hardware, the required number of qubits may grow linearly with the
number of input features (e.g., two 4-bit classical features will require
8 physical qubits).

Amplitude Encoding: In this scheme, normalized input vectors x
= (x1, x2,, xN)T ∈ R of dimension N = 2n are associated with
the amplitudes of a n qubit state |ψx〉 (Uφ : x ∈ R → |ψx〉 =

∑N
i=1

xi |i〉). Example: The state (ψ) of a 2-qubit quantum system, due to
superposition, is a linear combination of all possible computational
basis state i.e. ψ can be written as a |00〉+ b |01〉+ c |10〉+ d |11〉
such that

√
a2 + b2 + c2 + d2 = 1. Suppose, we have a classical

input vector x = {1, 2, 3, 4}. After normalizing the input vector, we
get xnorm = {0.183, 0.365, 0.547, 0.730}. The amplitude encoding
scheme will encode this normalized classical input vector entries
as the amplitude of the computational basis states of the whole
quantum system such that state ψ becomes 0.183 |00〉+0.365 |01〉+
0.547 |10〉+ 0.730 |11〉.

In this scheme, the number of qubits grows only logarithmically
with the dimension of the classical input vectors (e.g. for the above
example, only log2(4) = 2 qubits are required to encode 4 classical
values). Furthermore, multiple inputs in superposition state can be
processed simultaneously leading to potential speed-up in computa-
tion. Mathematically, quantum algorithms that are only polynomial
in the number n of qubits can perform computations on the 2n

amplitudes leading to a poly-logarithmic processing time. However,
the encoding scheme results in a non-trivial state-preparation circuit
which can be unsuitable for existing resource limited quantum
hardware.

D. Model Circuit
The model circuit is a parameterized unitary transformation Uθ

(where θ is a set of trainable variables) that acts as the mathemati-
cal model for the classification task. The model circuit transforms
encoded state |ψx〉 to another state, say, ψ′ (|ψ′〉 = Uθ |ψx〉).
Generally, the model circuit has a layered architecture. Each layer
can have identical or dissimilar constructs. A single layer consists of
a parametric and an entanglement sub-layer as shown in Figure 4(b).
The parametric sub-layer consists of the parametric single qubit gates
(PG(θ) in Figure 4(b)). These parameters (θ) are updated during
training in an iterative fashion. The entanglement sub-layer consists
of multi-qubit gates (MQ gates shown in Figure 4(b)) which create
a dependency between the target qubit and all other qubits in the
circuit. The state preparation and model circuit is executed, the state
of the target qubit is measured, and these execution and measurement
operations are repeated multiple times. The measured distribution is
analyzed in a classical computer to determine the class of a single
input during inferencing.

E. Design Considerations
The selection of gates for the model circuit depends on the avail-

able native gates of the target NISQ hardware. For instance, Rigetti

8-Q Agave quantum hardware only supports parametric single-qubit
RZ(θ) operation with a single rotational parameter (θ). IBMQX4 and
IBMQX2 supports parametric single-qubit U3(θ, φ, λ) operation with
3 rotational parameters. The entanglement is realized by applying
multi-qubit unitaries on qubits (multi-qubit gates like CNOT or CZ).
IBM quantum computers support two-qubit CNOT gates between
neighbouring qubits and Rigetti 8-Q Agave supports two-qubit CZ
gates. Tree-like structures (TTN) have been proposed for the entan-
glement sub-layer as shown in Figure 4(c) [17]. MERA’s are similar
to TTN ’s, but make use of additional unitary transformations to
effectively capture a broader range of quantum correlations as shown
in Figure 4(c) [18]. A CNOT gate between two neighbouring qubits
in entanglement sub-layer in Rigetti hardware is compiled to 6 unitary
transformations resulting in a manifold increase of the depth of the
model circuit. Moreover, the CNOT’s are allowed in limited directions
in hardware such as, IBMQX4 or IBMQX2 which is known as the
coupling constraint (e.g., the directional coupling graph of IBMQX4,
Figure 1(a)). If the model circuit has a CNOT gate that violates the
coupling constraint, a swap insertion procedure is executed during the
compilation process to ensure that a desired CNOT operation takes
place between two target qubits which also increases the depth of the
circuit significantly [19]. Higher-depth circuits are more susceptible
to decoherence induced errors which is the prominent source of error
for qubits with a short lifetime. Therefore, the entanglement sub-layer
structure should be chosen based on the available native gates and
coupling graph with a goal to minimize the depth of the circuit.

Quantum Circuit

Simulator

(ideal)

Parameters

Update

Expectation value

post-processing

Evaluation

YES
NO

Stop

Criterion Save

(b) Classical simulator training

approach (Ideal)

Quantum Circuit

Simulator

(Noisy)

Parameters

Update

Expectation value

post-processing

Evaluation

YES
NO

Stop

Criterion Save

(c) Training in a classical environment

for target noisy quantum hardware

Single/multi-qubit

gate errors, T1/T2

time of target

quantum hardware

Parameterized

Quantum

Circuit (PQC)

Projective

Measurement

Parameters

Update

Readout post-processing

Evaluation

YES
NO

Stop

Criterion Save

Quantum Hardware Classical Hardware

(a) Quantum hardware in the loop (/hybrid) training approach

0
State

Preparation

0

0

0

Fig. 5. Training of variational circuits (PQC) in, (a) quantum-classical hybrid
setup; (b) fully classical setup considering an ideal target hardware; (c) fully
classical setup for a target noisy hardware.

III. TRAINING OF PQC

Training of a model circuit (PQC, Figure 4(b)) for binary classi-
fication can follow three disparate strategies as described below.

0 MQPG(Ɵ2)

PG(Ɵ1)

PG(Ɵ3)

PG(Ɵ4)

MQ

MQ

MQ

MQPG(Ɵ6)

PG(Ɵ5)

PG(Ɵ7)

PG(Ɵ8)

MQ

MQ

MQ

Parametric

Sub-layer

Parametric

Sub-layer

Entanglement

Sub-layer

Entanglement

Sub-layer

Layer 1 Layer 2

(b) Structure of a multi-layer circuit-centric quantum classifier (4-qubits)

Measurement

(c) Generic Structures for the

entanglement sub-layers (8-qubits)

Tree Tensor

Network (TTN)

Multi-scale Entanglement

Renormalization

Ansatz (MERA)

State

Prepar-

ation

Circuit

0

0

0

Two-qubit Unitaries

𝑄𝑇

(a) Variations in the expectation value of a

target qubit with respect to a gate parameter

Additional Unitaries

Fig. 4. (a) Variations in the expectation value of a target qubit in a variational circuit with respect to the tunable parameter; (b) generic structure of a
multi-layer PQC for binary classification task; (b) generic structures for the entanglement sub-layers.

3

A. Existing Approaches
Two classes of PQC training proposals exist in the literature:
i) Train the PQC in a hardware-in-the-loop fashion. Hereafter,

we term this approach as app01. In this approach, the PQC is
executed on a real quantum computer. For a certain input, the output
is measured and then the measured output is post-processed in a
classical computer. Statistical techniques such as, Kullback-Leibler
(KL) divergence method is used to calculate the disparity between
the target distribution and the measured distribution (hence the cost)
to update the parameters with any classical optimization techniques
such as stochastic gradient descent or particle swarm optimization
etc. [11]–[13]. Then, the PQC is executed again with updated
parameters and process iterates until measured output matches target
output up to a certain threshold. While it may seem to be an ideal
approach, the technique is plagued with certain impediments. First,
qubits quality changes over time (Fig. 2) which means that a trained
PQC on a certain day may not show optimal behavior over time
due to qubit specification drift. Second, the quantum computers
are expected to operate in a client-server fashion. Iterative training
scheme may get prohibitively lengthy. Moreover, unlike classical bit
states, intermediate quantum-mechanical states cannot be saved in a
memory for computation at a later stage since the saved states will
be lost due to decoherence.

ii) Simulation based training of the PQC where a model quantum
computer is simulated (we name it app02). The simulation results in
the expectation value of the result qubit which is then compared with
target expectation value to calculate the cost. Now, we can define
the following cost-function to iteratively update the parameters of
the PQC (Figure 5(b)) to solve the binary classification problem
(described for the hybrid approach) [6]:

J(θ) =
1

m

m∑
i=1

(yi − expectation(PQC(xi, θ) : QT))
2 (1)

where m is the batch-size, yi is the label of the i′th data in
the batch (data are labeled as -1 and +1 for class A and class B
respectively), xi is the i′th input, and ’expectation(PQC(xi,θ):QT)’
is the expectation value of the target qubit (QT) for the i′th input and
current values of the θ. The target is to minimize the cost. Gradient
descent technique is applied to achieve the optimization goal where
the partial derivatives of the cost function (Equation 1) with respect to
the circuit parameters are calculated using numerical differentiation
[20].

In this approach, the client need not wait for the server (quantum
hardware) to train and get the parameters of PQC. However, the
simulation models an ideal (i.e., without noise) quantum computer
whereas quantum computers are noisy (and noise behavior shows
temporal variation) as pointed out in Section I. Therefore, the pa-
rameter optimization without considering noise may not give optimal
result during inferencing phase in the real noisy quantum computer.

B. Proposed Approach: Classical Training with Noise Effects
To deal with the noisy hardware related dependency of the trained

PQC, we propose to update the parameters where the expecta-
tion values are calculated with modeled noise behavior of a target
hardware with our noisy quantum hardware simulation framework
(described in Section IV). The cost function remains same as in
Equation 1. To address the stochastic behavior of the noise sources
as evident from Figure 2, we use the average value of the qubit
quality metrics collected over a significant amount of time (43 days)
to optimize the PQC parameters. Before averaging, outliers are
removed from the data-set using an interquartile range rule [21]. We
term this approach as app03. It is expected that circuits optimized
with app03 will perform better than circuits optimized with app01
but executed on a different day and app02. In Section V will provide
sufficient evidence behind this claim, both from simulation and real
quantum computer.

Kraus Operators

𝐸0 = 1 − 𝑝 𝐼

𝐸2 =
𝑝

3
𝜎𝑦 𝐸3 =

𝑝

3
𝜎𝑧

𝐸1 =
𝑝

3
𝜎𝑥

Depolarizing Channel

Amplitude Damping

𝐸0 =
1 0
0 𝑝 𝐸1 =

0 1 − 𝑝

0 0

Phase Damping

𝐸0 = 𝑝𝐼 𝐸1 = 1 − 𝑝𝜎𝑧

I is 2 × 2 identity matrix, and 𝜎𝑥 , 𝜎𝑦 and 𝜎𝑧 are

Pauli X, Y and Z matrices.

The operators are defined such that:

p = Error probability (for depolarizing channel)

but 1 - p = Damping (error) probability (other)

Q0

Q1

Q2

E0,Q1,E1,Q1,E2,Q1, and E3,Q1

E0,Q0 = I

E0,Q2 = I

𝜌 ↦ ℰ 𝜌

=

𝑘=0

𝑗=0

3

𝑖=0

൫

൯

𝐸𝑖,𝑄0 ⊗𝐸𝑗,𝑄1

⊗𝐸𝑘,𝑄2 𝜌 𝐸𝑖,𝑄0⊗𝐸𝑗,𝑄1 ⊗𝐸𝑘,𝑄2
†

ℰ

Extending Kraus operators for

multi-qubit case

Considering a test-case with:

(a) three qubits,

(b) Q1 is undergoing depolarizing channel

(maybe, due to a preceding gate

operation on that.),

(c) no-operation is done on Q0 and Q2, and

(d) ℰ() is the Kraus map that translate

𝜌 without noise to ℰ(𝜌) with noise.

Kraus operators can be extended using tensor

operation among single qubit Kraus ops.

Fig. 6. Kraus operators for different noise channels and extending Kraus
operators for multi-qubit case.

IV. MODELING AND SIMULATION SETUP

A. Modeling of Noisy Quantum System

1) Gate Error: To simulate 1-qubit and 2-qubit gate errors,
depolarizing noise channel is applied. Under depolarizing noise, the
qubit retains its state with a probability of (1−p) (p = probability of
error) and undergoes X (bit-flip), Z (phase-flip) and Z (bit-phase-flip)
errors with a probability of (p/3) each.

2) T1 Relaxation: T1 relaxation is simulated with amplitude
damping channel. Note that the T1 relaxation affects only the
state |1〉 (i.e., |1〉 → |0〉) leaving state |0〉 invariant. Reported T1
times are converted to probability (of no error) using the formula
p = exp(−t/T1) where t is the time of operation that depends
on the gate-time of a particular quantum computing hardware. For
example, for IBMQX4 quantum computer 1-qubit U2 gate-time is
about 60ns [22].

3) T2 Dephasing: T2 dephasing is simulated with phase damping
channel. Phase damping is a quantum-mechanical phenomenon and
therefore difficult to comprehend intuitively. Mathematically, the off-
diagonal elements of a density matrix (representing the qubit state)
decay to 0 due to T2 dephasing or phase damping. For example, Bell
state ((|00〉+|11〉)/

√
2) is an example of entangled state. If the qubits

in Bell state undergo dephasing then eventually the off-diagonal terms
in the density matrix become zero and entangled qubits end up in a
mixed state. Entanglement is believed to be one of the key properties
that fuel quantum computers’ computing ability and dephasing is
detrimental to that. Reported T2 times are converted to probability
(of no error) using the formula p = exp(−t/T2) where t is the time
of operation.

4) Operator-sum Representation: To simulate the effect of noise
on the quantum computation, we adopt the operator-sum representa-
tion using the appropriate Kraus operators [23]. In this representation,
a quantum operation E(), that maps the input state ρin (in density
matrix format) to output state ρout such that ρin 7→ E(ρin) = ρout =∑
k EkρinE

†
k. Ek is called the operation element. By choosing

appropriate operation elements the operator-sum representation can
be used to compute the output after applying a gate on a qubit.

Likewise, if appropriate Kraus operators are chosen as operation
elements, the operator-sum representation can be used to simulate the
effect of different errors on a qubit state. In this paper, we emulate
the noisy quantum-processing-units behavior with gate-error and T1
relaxation and T2 dephasing with suitable Kraus operators (listed in
Figure 6).

5) Simulation Flow: Figure 7(a) shows the schematic of the
Python-based simulation platform. We use modules from Qutip
[24] package to execute matrix operations pertinent to quantum
computation. To simulate the behavior of a real quantum device, the
simulator takes: (i) the input states of the qubits in density matrix
format, (ii) 1-qubit gate error probabilities for each qubit, (iii) 2-qubit

4

Ideal

gate

𝜌𝑖𝑛 1q and 2q

gate error

probabilities

T1, T2 and

gate times

Quantum

program in

native

gate-set

Gate

Error

(d.c.)

T1

error

(a.d.)

T2

error

(p.d.)

𝜌𝑜𝑢𝑡
(w/noise)

Eigen-

Decomposition

Python-based simulator

Repeat until end of

quantum program

d.c. = depolarizing channel, a.d. = amplitude damping, p.d. = phase damping

Expectation

value

calculator

(⟨𝜓 𝜎𝑧 𝜓⟩)

Fig. 7. (a) Diagram of the simulation platform and the program flow; (b) 8Q
and modeled 9Q-square architecture.

Fig. 8. Comparison between fidelities from the simulation model and
IBMQX4 real device.

gate error probabilities for each allowed qubit pair, (iv) T1 relaxation
times, (v) T2 dephasing times, (vi) 1-qubit and 2-qubit gate times
and, (vii) a quantum program compiled with native gate-sets of a
specific hardware. We primarily used IBMQX4 quantum processing
units reported specifications [22]. However, it can simulate another
quantum processor (e.g., Rigetti ASPEN) if appropriate items (ii) -
(vii) are fed.

The simulator reads the quantum program and executes each gate
instruction. First, an ideal gate is applied to the qubit states followed
by the errors in the sequence gate error, T1 and T2 error. The
real quantum device (e.g., IBMQX4) reports amplitudes of pure
states as the output. However, the simulator outputs a density matrix
(ρout) which contains the result in a possible mixed state. Therefore,
the output density matrix is then eigen-decomposed with pure state
vectors as eigenvectors. The resulting eigenvalues are the amplitudes
of each pure state. For example, if you consider a 2-qubit system,
it has 4 possible pure state vectors (ψ) i.e. |00〉, |01〉, |10〉 and
|11〉 (each vector is 4 × 1). If λ is the eigenvalue, then solving
ρout. |ψ〉 = λ. |ψ〉 will give λ and this operation is the eigen-
decomposition. The operation has to be repeated for all the pure state
vectors (4 in this case) to get all the corresponding eigenvalues (pure
state amplitudes). Finally, decomposed state vectors are fed into the
expectation value calculator to calculate the expectation value of a
qubit (〈E〉 = 〈ψ|σz |ψ〉).

To validate the model, we simulated the 4-layer IRIS classifier
(Fig. 13) as the test circuit using our model with IBMQX4 [22] specs
and the program compiled in IBM native gate-set. The same circuit
was executed on IBMQX4 on the same day to get real device results.
The comparison between model data and real-device data is shown in
Figure 8 (IBMQX4 probability of correct output = correct trials/total
trials) for 12 different inputs. The model exhibits an average error of
about ≈ 7.2%.

B. Validation Setup
1) Data Sources: In order to validate the effectiveness of our

proposed training methodology, we have picked, i) 4-bit parity
classification problem (which can be also thought of as a high-fidelity
4-qubit parity gate realization problem using PQC [10]) with 16
known inputs/outputs combinations with two output classes (even
and odd parity), and, ii) iris classification which is probably the best-

known database in pattern recognition literature. The iris data-set
contains three different classes (Setosa, Versicolour, and Virginica)
of 50 samples per class. Each sample has four distinct features. To
convert the iris classification problem into a binary classification task,
we have selected 100 samples from Setosa and Versicolour classes.

2) Evaluation Method: Although parameterized quantum circuits
can minimize the effects of noise, it cannot suppress it altogether.
Therefore, the expectation values cannot be optimized to exactly
-1/+1 values for all the inputs during the PQC training period
which indicates that a measurement is not guaranteed to result in
the desired class output (0/1) for a certain input. Thus, the same
circuit is executed multiple times (known as shots in IBMQX) and
the target qubit is measured in each trial to get a distribution or
ratio of 1s to 0s in the output. For binary classification, a large ratio
e.g., >1 (<1) indicates the input belongs to the class represented
by logic ’1’ (’0’). Example: A trained parity classifier is executed
1024 times on 4-qubits (Q3Q2Q1Q0) of IBMQX4 with input state
Q3Q2Q1Q0 = 0100 (note the input has odd number of 1s i.e. odd-
parity) with Q0 being the result/target qubit. The execution resulted
in a distribution of ‘0000’: 762 times and ‘0001’ 262 times. The
ratio of 1s to 0s of the target qubit is 0.34 (< 1) which indicates
class belongs to logic ’0’ or odd parity (alternately, correct output
‘0’/incorrect output ‘1’ = 2.9 > 1). In an ideal noise-less quantum
computer, this ratio of 1s to 0s would have been 0. However, a class
decision cannot be taken with confidence when the ratio is close
to 1. In a series of measurements, the goal is to get a high ratio
value between the correct and the incorrect outputs from a noisy
device. The ratio between the correct and incorrect outputs is also a
representation of the fidelity of the circuit.

It is to be noted, all the circuit examples presented in this paper
has two phases: (i) parameter optimization phase or the training
phase and (ii) execution phase or the result phase. We propose a
heuristic approach for parameter optimization or training and show
the effectiveness of our method by getting more optimal results
compared to existing approaches (Section III-A) in the execution
phase.

V. RESULTS AND DISCUSSIONS

A. Test-circuit: Parity Classifier
The 4-bit binary inputs for the parity classification is encoded to

four qubits using the basis encoding scheme (Section II). Parametric
U3(θ, φ, λ) gates of IBMQX4 have been used as the parametric
gates of the model circuits. The ‘0’ outcomes (odd parity), and ‘1’
outcomes (even parity) have been labeled as +1 and -1 respectively
for training based on Equation 1 using stochastic gradient descent
(SGD) technique.

We have performed the parameter optimization of the model
circuits using three different strategies, app01, app02 and app03
described in Section III and tested the performance of the optimized
circuits in both real quantum computer, IBMQX4 and in simulation.
The cost (m = 16 in Equation 1) over the entire input data-set
during the training period (app02 and app03) is shown in Figure
10(a)&(b). TTNP2L and TTNN2L stand for the cost of two-layer
TTN architectures during training for target ideal(pure) and noisy
hardware respectively. However, it is to be noted that we adopted
a simulated hardware-in-the-loop approach to mimic app01 due to

0

QB

1

QA

2

QC

3

QD

0

QB

1

QA

2

QC

4

QD

1

QA

2

QB

4

QC

3

QD

0

QA

1

QB

2

QC

3

QD

0

QA

1

QB

2

QC

4

QD

0

QA

2

QB

4

QC

3

QD

TTN Direct Mappings on IBMQX4 ALT Direct Mappings on IBMQX4

Ψ0

Ψ1

Ψ2

Ψ3

U3(𝜽𝟏, 𝝓𝟏, 𝝀𝟏)

U3(𝜽𝟐, 𝝓𝟐, 𝝀𝟐)

U3(𝜽𝟑, 𝝓𝟑, 𝝀𝟑)

U3(𝜽𝟒, 𝝓𝟒, 𝝀𝟒)

Parametric

Sub-layer

Entanglement

Sub-layer

Layer 1

Ψ0

Ψ1

Ψ2

Ψ3

U3(𝜽𝟏, 𝝓𝟏, 𝝀𝟏)

U3(𝜽𝟐, 𝝓𝟐, 𝝀𝟐)

U3(𝜽𝟑, 𝝓𝟑, 𝝀𝟑)

U3(𝜽𝟒, 𝝓𝟒, 𝝀𝟒)

Parametric

Sub-layer

Entanglement

Sub-layer

Layer 1

TTN Layer Architecture Alternate Layer Architecture (ALT)

𝑄𝑇

𝑄𝑇

(b) (c)

QB

QA

QD

QC

0 Ψ0

Ψ1

Ψ2

Ψ3

0

0

0

Pauli-X/

Identity

Gates

State

Preparation

Circuit

(a)

(e) (f)(d)

Coupling Graph of IBMQX4

Fig. 9. Parity classifier: (a) state preparation circuit, (b) single-layer TTN
structure, (c) single-layer ALT structure.

5

interrupted and limited access to the real quantum computer. In this
simulated approach, we substitute the NISQ computer with our
noisy quantum computer simulation framework (described in Section
IV) and use the error specifications of a respective day to optimize
the PQC parameters.

Note that we have used only 100 iterations of SGD for all the
circuits over all the training approaches. The terminal cost, in the
parameter optimization or training phase, after 100 iterations are
smaller for app02 (as evident from Figure 10). However, it does
not indicate that the trained PQC’s would perform better than the
ones from app03 in the execution phase as the noise characteristics
of the real hardware has not been taken into consideration during the
optimization procedure for app02. In following paragraphs, we show
that on a real device app03 will always outperform app02 which is
substantiated with experiments on a real quantum computer.

(a) (b)

Fig. 10. Training cost curves over entire parity classifier input
data-set for (a) app02 (TTNP1L,TTNP2L,ALTP1L,ALTP2L), (b) app03
(TTNN1L,TTNN2L,ALTN1L,ALTN2L),.

Fig. 11 reports the performance (ratio of correct to incorrect
outputs) of a binary classifier circuit with 1-layer TTN topology
(Fig. 9) on IBMQX4. The PQC generated from the app01 approach
performed best in terms of the ratio of the correct and incorrect
outcome over 1024 repeated measurements on the given day (the
day on which the parameters were optimized) as evident from Figure
11 (TTN Noisy). The average of the ratios (TTN Noisy) was found
4.92. However, when the same circuit is executed on a different
day ((TTN NoisyDD in Figure 11)), it shows random behavior with
substantially degraded performance in some cases (average of the
ratios: 4.02). This trend validates one of our argument against app01
stated in Section III i.e. parameters optimized at one time may not
be optimal at a different time.

The optimized circuit for the app02 approach performed poorly
(average of the ratios: 3.45) over the entire input data-set (TTN Pure
in Figure 11). From the figure, it is evident that the circuit optimized
with app03 consistently gives better performance than TTN Pure and
TTN NoisyDD corroborating our claim in Section III. The ratio of
the correct and incorrect outcome for all possible inputs are signifi-
cantly higher (average of the ratios: 4.31) for the app03 approach. It
is to be noted TTN Pure, TTN NoisyDD and TTN NoisyAvg data
are collected on the same day from IBMQX4.

We further substantiate our claim through simulation with the real
hardware being substituted with our NISQ computer simulator in
Section IV. Two topologies of the parity classifier model circuits
(TTN and ALT) have been chosen as shown in Figure 9(b)&(c) both
of which satisfies the coupling graph of the IBMQX4 hardware shown
in Figure 1(a). For each topology, both single-layer and double-layer
flavor is simulated i.e. a total of 4 test circuits are simulated. The
circuits are optimized with app02 (TTNP1L, TTNP2L, ALTP1L, and
ALTP2L) and app03 (TTNN1L, TTNN2L, ALTN1L, and ALTN2L)
to show the superiority of the proposed approach app03.

Figure 12 shows the aggregate actual cost over the entire in-
put data-set for the trained PQC’s (app02 - TTNP1L, TTNP2L,
ALTP1L, ALTP2L and app03 - TTNN1L, TTNN2L, ALTN1L,
ALTN2L) for a set of qubit quality metrics data (error specification)
of IBMQX4 collected over a 43 days period. The cost here can
be interpreted as a measure of the difference between the ideal
(expected) result and the result with noise. The lesser the cost the
closer the result is to expected. The actual cost for the app03 is

0 U3(𝜽𝜽𝟏𝟏,𝝓𝝓𝟏𝟏,𝝀𝝀𝟏𝟏)

U3(𝜽𝜽𝟐𝟐,𝝓𝝓𝟐𝟐,𝝀𝝀𝟐𝟐)

State
Preparation
Circuit

I

0

𝑈

0
Z

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0

1

2

3

4

5

6

7

8

9

TTN_Pure

TTN_Noisy

TTN_NoisyDD

TTN_NoisyAVG

Fig. 11. Ratio of correct and incorrect outputs from 1024 samples for differ-
ent inputs for different training approaches collected from IBMQX4 hard-
ware (app01→TTN Noisy, app02→TTN Pure, app03→TTN NoisyAVG,
TTN NoisyDD is the optimized PQC in app01 executed on the target
hardware in a different day).

consistently smaller than the app02. For instance, the average cost
over the entire input data-set for the 43 days period for TTNP1L
(app02) is 0.042 which is 23.53% larger than the average cost (0.034)
for TTNN1L(app03).

Thus, both real computer experiments and simulations support our
proposed PQC parameter optimization technique considering the
noise in real NISQ devices. We later executed the optimized PQC’s
for app02 (TTNP1L,TTNP2L) and app03 (TTNN1L,TTNN2L) on
IBMQX4 for 100 different times with randomly chosen inputs (1024
shots per time) and the cumulative probability (CP) distribution of
the ratio’s of the correct/incorrect outputs (r) are shown in Figure
15. The higher ratio values for any given cumulative probability for
app03 (e.g. TTNN1L → r = 5.24 for CP = 0.6) than app02 (e.g.
TTNP1L → r = 4.36 for CP = 0.6) in Figure 15 substantiate our
previous claim that the app03 optimized PQC′s would outperform
app02 on a target quantum hardware. The average value of r for all
the app03 PQC’s were found to be 21.91% higher than app02 for
the TTN parity classifiers.

(a) (b)

Fig. 12. Cost over the entire parity classification data-set over 43 different
set of values of the qubit quality metrics of IBMQX4 for, (a) TTN structures;
(b) ALT structures.

B. Test-circuit: Iris Classifier

We prove our proposal with few more test circuits from IRIS
classifier category (Fig. 13). The state preparation circuit has been
coded according to the amplitude encoding scheme presented in [25].
We have decomposed the controlled Y-axis rotations to native gates
available on IBMQX4 [26]. The four classical features in a single iris
sample are normalized (x[0:3]) as in Section II-C and then used to
compute the angles (A1,...,A5) of the state preparation circuit shown
in Figure 13(a).

6

1

0
QA

QB

2

0
QA

QB

2

1
QA

QB

3

2
QA

QB

4

2
QA

QB

3

4
QA

QB

Ψ0

Ψ1

(a) State Preparation Circuit

U3(A𝟏, 𝟎, 𝟎)

U3(𝑨𝟐, 𝟎, 𝟎) U3(A𝟑, 𝟎, 𝟎)

U3(𝝅, 𝟎, 𝝅)

U3(𝑨𝟒, 𝟎, 𝟎) U3(𝑨𝟓, 𝟎, 𝟎)

U3(𝝅, 𝟎, 𝝅)

0

0

(b) Model Circuit (PQC)

QB

QA

U3(𝜽𝟏, 𝝓𝟏, 𝝀𝟏)

U3(𝜽𝟐, 𝝓𝟐, 𝝀𝟐)

U3(𝜽𝟏𝟏, 𝝓𝟏𝟏, 𝝀𝟏𝟏)

U3(𝜽𝟏𝟐, 𝝓𝟏𝟐, 𝝀𝟏𝟐)

Layer 1 Layer 6

Ψ0

Ψ1

Measurement

𝑄𝑇

(c) Available Direct

Mappings on IBMQX4

Entanglement

Sub-layer
Parametric

Sub-layer

Entanglement

Sub-layer
Parametric

Sub-layer

Fig. 13. Iris classifier: (a) state preparation circuit, (b) the model circuit
(PQC), (c) available direct mappings on the target IBMQX4 hardware.

(a) (b)

Fig. 14. Iris classifier: (a) cost curve over the entire dataset during training
in app02 (IRISP4L,IRISP6L) and app03 (IRISN4L,IRISN6L), (b) cost over
43 set of values of the qubit quality metrics of IBMQX4.

β0 = 2arcsin
x[1]2√

x[0]2 + x[1]2
, β1 = 2arcsin

x[3]2√
x[2]2 + x[3]2

β2 = 2arcsin

√
x[2]2 + x[3]2√

x[0]2 + x[1]2 + x[2]2 + x[3]2

A1 = β2, A2 = −A3 = −β1/2, A4 = −A5 = −β0/2

(2)

The model circuit is composed of multiple layers of parametric
U3(θ, φ, λ) gates and CNOT gates shown in Figure 13(b). We have
used two different flavors of the model circuit (4 layers and 6
layers) for validation. The circuit has 6 direct mappings available
on IBMQX4 which is shown in Figure 13(c). The samples in the
Setosa and Versicolour classes are labeled +1 and -1 respectively for
training the model circuit.

The training is done based on the app02 (IRISP4L, IRISP6L) and
the app03 (IRISN4L, IRISN6L) approach with mini-batch gradient
descent optimization scheme (batch size = 5 in Equation 1). The cost
curves during the training (100 iterations) are shown in Figure 14(a).
In Figure 14(b), we have shown the actual cost (calculated using
our noisy hardware simulation framework) over the entire data-set
for 43 days of data of the qubit quality metrics of IBMQX4. The
actual cost has been consistently smaller for the app03 approach as
evident from Figure 14(b). The average cost over the 43 sets of data
for IRISP6L (app02) has been found to be 0.56 which is 21.7%
larger than the average cost (0.46) for IRISN6L (app03). We have
executed the trained PQC’s on IBMQX4 hardware for the entire iris
dataset and the resulting cumulative probability of the ratio’s of the
correct and incorrect outputs are shown in Figure 15. The ratio values
for app03 (IRISN4L,IRISN6L) are considerably higher than app02
(IRISP4L,IRISP6L) for similar values of the cumulative probability.
The average value of r for all the app03 PQC’s was found to be
42.5% higher than app02 for the iris classifiers.

VI. CONCLUSIONS

We presented the shortcomings of current training approaches for
parameterized quantum circuits (PQC) and proposed a fully classical
training methodology for target NISQ hardware to address the
impact of temporal variations in qubit quality metrics. We present
a simulation framework to model the circuit behavior on a target
noisy quantum hardware. We validate our proposed solutions through
comprehensive simulations and experiments on a real quantum device

Fig. 15. Cumulative density function of the observed ratio’s between the
correct and incorrect outputs for trained PQC’s (app02 and app03) on
IBMQX4 (100 observations per PQC with randomly chosen inputs and 1024
shots per observation).

(IBMQX4) of two quantum classifiers built with PQC. The proposed
methodology can improve the performance of any PQC based
quantum application on a target NISQ hardware.

REFERENCES

[1] E. Farhi et al., “A quantum approximate optimization algorithm,” arXiv
preprint arXiv:1411.4028, 2014.

[2] A. Kandala et al., “Hardware-efficient variational quantum eigensolver
for small molecules and quantum magnets,” Nature, 2017.

[3] J. Romero et al., “Quantum autoencoders for efficient compression of
quantum data,” Quantum Science and Technology, 2017.

[4] P.-L. Dallaire-Demers et al., “Quantum generative adversarial networks,”
Physical Review A, vol. 98, no. 1, p. 012324, 2018.

[5] Y. Du et al., “The expressive power of parameterized quantum circuits,”
arXiv preprint arXiv:1810.11922, 2018.

[6] M. Schuld et al., “Circuit-centric quantum classifiers,” arXiv preprint
arXiv:1804.00633, 2018.

[7] E. Farhi et al., “Classification with quantum neural networks on near
term processors,” arXiv preprint arXiv:1802.06002, 2018.

[8] N. Killoran et al., “Continuous-variable quantum neural networks,” arXiv
preprint arXiv:1806.06871, 2018.

[9] J. Romero et al., “Variational quantum generators,” arXiv:1901.00848,
2019.

[10] K. Heya et al., “Variational quantum gate optimization,” arXiv preprint
arXiv:1810.12745, 2018.

[11] D. Zhu et al., “Training of quantum circuits on a hybrid quantum
computer,” arXiv preprint arXiv:1812.08862, 2018.

[12] V. Leyton-O. et al., “Robust implementation of generative modeling with
parametrized quantum circuits,” arXiv preprint arXiv:1901.08047, 2019.

[13] M. Benedetti et al., “A generative modeling approach for benchmarking
and training shallow quantum circuits,” arXiv:1801.07686, 2018.

[14] J. Otterbach et al., “Unsupervised machine learning on a hybrid quantum
computer,” arXiv preprint arXiv:1712.05771, 2017.

[15] E. Knill et al., “Randomized benchmarking of quantum gates,” Physical
Review A, vol. 77, no. 1, p. 012307, 2008.

[16] M. Schuld et al., “Quantum machine learning in feature hilbert spaces,”
Physical Review Letters, vol. 122, no. 4, p. 040504, 2019.

[17] W. Huggins et al., “Towards quantum machine learning with tensor
networks,” arXiv preprint arXiv:1803.11537, 2018.

[18] L. Cincio et al., “Multiscale entanglement renormalization ansatz in two
dimensions: quantum ising model,” Physical review letters, 2008.

[19] A. Zulehner et al., “An efficient methodology for mapping quantum
circuits to the ibm qx architectures,” IEEE TCAD, 2018.

[20] M. Schuld et al., “Evaluating analytic gradients on quantum hardware,”
arXiv preprint arXiv:1811.11184, 2018.

[21] G. Barbato et al., “Features and performance of some outlier detection
methods,” Journal of Applied Statistics, 2011.

[22] I. B. M. Corporation. Ibm q experience. [Online]. Available:
https://quantumexperience.ng.bluemix.net/qx/editor

[23] K. Kraus, “States, effects, and operations: Fundamental notions of
quantum theory,” Springer-Verlag Berlin Heidelberg, 1983.

[24] J. J. et al., “Qutip 2: A python framework for the dynamics of open
quantum systems,” Computer Physics Communications, 2013.

[25] M. Mottonen et al., “Transformation of quantum states using uniformly
controlled rotations,” arXiv preprint quant-ph/0407010, 2004.

[26] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

7

http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1810.11922
http://arxiv.org/abs/1804.00633
http://arxiv.org/abs/1802.06002
http://arxiv.org/abs/1806.06871
http://arxiv.org/abs/1810.12745
http://arxiv.org/abs/1812.08862
http://arxiv.org/abs/1901.08047
http://arxiv.org/abs/1712.05771
http://arxiv.org/abs/1803.11537
http://arxiv.org/abs/1811.11184
https://quantumexperience.ng.bluemix.net/qx/editor
http://arxiv.org/abs/quant-ph/0407010

	I Introduction
	II Binary Quantum Classifiers
	II-A Quantum Computing Preliminaries
	II-A1 Qubit and State Vector
	II-A2 Density Matrix
	II-A3 Quantum Gates
	II-A4 Expectation Value

	II-B Classifier Basics
	II-C State Preparation
	II-D Model Circuit
	II-E Design Considerations

	III Training of PQC
	III-A Existing Approaches
	III-B Proposed Approach: Classical Training with Noise Effects

	IV Modeling and Simulation Setup
	IV-A Modeling of Noisy Quantum System
	IV-A1 Gate Error
	IV-A2 T1 Relaxation
	IV-A3 T2 Dephasing
	IV-A4 Operator-sum Representation
	IV-A5 Simulation Flow

	IV-B Validation Setup
	IV-B1 Data Sources
	IV-B2 Evaluation Method

	V Results and Discussions
	V-A Test-circuit: Parity Classifier
	V-B Test-circuit: Iris Classifier

	VI Conclusions
	References

