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Abstract—In battery-powered embedded systems, the energy
budget management is a critical aspect. For systems using unre-
liable power sources, e.g. solar panels, the continuous system op-
eration is a challenging requirement. In such scenarios, effective
management policies must rely on accurate energy estimations.
In this paper we propose a measurement-based probabilistic
approach to address the worst-case energy consumption (WCEC)
estimation, coupled with a job admission algorithm for energy-
constrained task scheduling. The overall goal is to demonstrate
how the proposed approach can introduce benefits also in
mission-critical systems, where unsafe energy budget estimations
cannot be tolerated.

I. INTRODUCTION

The increasing performance demand in modern embedded
systems, under thermal and power budget constraints, is in-
troducing growing challenges, often addressed with solutions
that increase also the hardware complexity. In critical systems,
where a priori analyses are required, this complexity has a
direct (negative) impact on the accuracy of power and timing
models [2]. Moreover, without a proper characterization of the
workload, such models can easily lead to unrealistic results
[3]. Focusing on energy-constrained systems, the accurate
estimation of the system energy consumption plays a key
role. This is especially true when the main requirement is to
guarantee the system operation in presence of unreliable power
sources, which may also be the case of critical systems [4].

In this context, battery-powered devices are increasing their
pervasiveness, while posing some challenges: what shall we
do when the energy budget is not sufficient to execute all the
tasks? Asyaban et al. [5], for instance, proposed a scheduler
for mixed-criticality tasks, for scenarios in which the energy
budget is subject to uncertainty. Even though the mixed-
criticality concept is frequently intended in a timeliness-sense
[6], in this work we enlarge the scope by considering the
energy as the most critical resource.

Related Works. To the best of our knowledge, the first
work on WCEC analysis has been presented in 2006 [7]. The
estimation was based on static code analysis and energy mod-
els at micro-architectural level. Experimental results showed
WCEC overestimations up to 30%. More recently, the Og tool
[8] presented two approaches to WCEC estimation: a static
code analysis and a measurement-based technique. The former
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is used to characterize the energy consumption of critical tasks.
The latter is used to estimate the consumption in case of non-
critical tasks, without any guarantees on the reliability of the
results. Moreover, the employment of the static code analysis
requires the availability of a platform-specific per-instruction
characterization of the energy consumption. Recently, static
WCEC analyses have been system-wide extended, including
peripherals [9]. The recent work of Pallister et al. [10] is
similar to our approach, because the estimation of the WCEC,
at instruction-level, is performed by fitting a Weibull distri-
bution. However, the selection of this single-class distribution
and the focus on instruction-level limit the applicability to
the full-system WCEC estimation. Finally, [11] presented an
analysis of the limitations of the current WCEC analysis
techniques, demonstrating that it is a NP-hard problem and
no efficient approximation algorithms exist. Furthermore, the
authors suggested the possibility of moving towards statistical
methods, like the ones based on Extreme Value Theory (EVT)
for WCET analyses [12], that is exactly the cornerstone of our
approach.

Contributions. To the best of our knowledge, this is the
first paper that actually applies EVT to WCEC estimation.
Based on the results of the analysis, we propose also an
energy-constrained job admission policy for task scheduling.
To assess the theoretical results, we performed an experimental
validation on a real multi-core based embedded board, running
multi-threaded benchmarks.

II. TASK AND SYSTEM MODEL

This section presents the task and the system model on
which the WCEC analysis and the proposed policy are based.

Mixed-Energy Criticality Task Model. A set of n periodic
tasks is identified as: 7 = {71, 72, ..., T }. Each task activation
is called job and it is represented by the notation J; ;, to
identify the j-th job of the i-th task. In this work, we consider
periodic and/or sporadic tasks but not the aperiodic case,
assuming that the task periodicity is known a priori.

Before defining the considered task model, we recall the
simplest task model used in mixed time-criticality theory:
the tuple 7, = (X;,D;,T;,L;), where X; is the worst-
case execution time!', D, is the task relative deadline, T}

n some mixed-time criticality task models X; is a set of WCETSs, one
for each criticality level. However, this discussion is outside the scope of this
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Fig. 1: Budget function B(t) examples varying the number of
tasks in the survival period 1.

is the period (or the minimal inter-arrival time in case of
sporadic tasks), and L; is the criticality level. The latter can
assume different types of values, such as integer numbers, real
numbers, or categorical values like HI and LO.

In mixed-time criticality systems, the criticality is focused
on the timeliness. In this paper, since we consider the energy
as the critical resource, we deal with mixed-energy criticality
systems without explicitly taking into account time constraints.
This energy-criticality concept is similar to the one proposed
by Volp et al. [13]. The time constraints can be considered by
a state-of-the-art real-time scheduler a posteriori of the results
of this work. To this aim, we adapted the traditional task model
as follows: 7; = (E; ;, T;, L;) where E; ; represents the energy
required to execute the j-th job, T; is the activation period,
and L; is the critical level. However, since the exact value of
E; ; is seldom predictable, it is a common practice to replace
it with the worst-case energy consumption (WCEC). All the
jobs of the same task have the same WCEC value identified
by the symbol E;. It is important to specify that the energy
consumption value of a task E; ; and its worst-case E; do not
include the energy consumption of the system in idle state. In
other words, we consider the task energy consumption as an
additional contribution with respect to the energy consumption
of the system in idle.

For the criticality level, we use the labels HI and LO,
to respectively identify high-criticality tasks, for which jobs
execution must guaranteed, and low-criticality tasks, for which
the jobs execution can be guaranteed only if enough energy
budget is actually available. If a job is not executed due to lack
of energy, we say that this task has been dropped, conversely
we say that the task has been admitted to the scheduling queue.

Energy-Constrained System Model. Following the same
approach proposed by Volp et al. [13], the system model
is characterized by two parameters: the energy budget B*
and the survival period 7. This notation denotes that the
system is allowed to consume a maximum B* of energy in the
continuous period of time 7. In order to make the subsequent
theoretical discussion easier, we define the budget function
B(t) as the total amount of remaining energy budget as a
function of time, with B(0) = B*.

A couple of examples of the budget function are depicted
in Figure 1. This function decreases at least at the rate
of the power consumption in idle state. We use Eiprg
to indicate the energy consumption of the system in idle
for the whole timespan (0,7*). Consequently, it holds that

B(0) — B(T*) > E;prE regardless of any job admission or
scheduling decision.

Possible use cases of the presented energy-constrained
mixed-criticality models include several battery-powered ap-
plications, such as devices powered by unreliable energy
harvesting sources, mobile devices and space applications [14].

A. Scheduling Model

In this paper, the high-level schedule (HLS) identifies the
set § = {S1,,52,j,...,9,,;} where S, ; is a boolean value
indicating if the job J; ; can be scheduled or not. Therefore,
S;,; = 1 means that J; ; is allowed to run, while S; ; = 0
indicates that the job is dropped. The traditional notion of
schedule, including the order in which to run the tasks, is out
of the scope of this work and it can be performed by any
state-of-the-art scheduler having the S set as input.

Definition 1. A HLS S is said to be energy-feasible if the
energy budget is sufficient to run all the jobs, thus B(T*) > 0.

Definition 2. A HLS S is said to be correct if and only if all
the HI-crit tasks are scheduled: Sy j =1 V71, s.t. L, = HI

These definitions are the basis for the first schedulability
requirement, called minimal energy-schedulability condition:

Lemma 1. An energy-feasible and correct HLS exists only if:

Z ZE’GJ < B(0) - Erpre (1)

kst Ly=HI j

where Ey, ; is the energy consumed by the j-th job of the k-th
HlI-crit task. This energy does not include the static energy
consumed by the system in idle Frppg. O

Lemma 1 states that the energy budget must be sufficient to
guarantee at least the execution of the HI-crit tasks, otherwise
no energy-feasible and correct HLS exists. Since the energy
of the single job E; ; is hard to predict, we rely on the upper-
bound represented by the WCEC of the task E;. Unfortunately,
as already discussed in Section 1, estimating F; in modern
architectures running complex workload is either not trivial
or it leads to very over-approximated results. Moreover, the
introduction of the WCEC value in Lemma 1 would mean to
consider an extremely pessimistic scenario, in which all the
jobs consume the worst-case amount of energy, that seldom
occurs on real systems. These reasons motivated our idea
of evaluating the adoption of probabilistic approaches for
estimating the WCEC (F);), as already done, similarly, with
WCET analyses [12].

III. PROBABILISTIC ENERGY ESTIMATION

In this section, we show how to determine a reliable not
underestimated WCEC value (FE;), by exploiting a probabilis-
tic measurement-based approach, while maintaining system
model and requirements unchanged.

Measurement-Based Methodology. The probabilistic
model we propose in this paper is based on the Extreme
Value Theory (EVT). This statistical theory is commonly used
to predict natural disasters, such as earthquakes intensity



or river water levels; it has been also considered in real-
time computing to estimate the Worst-Case Execution Time
(WCET) [12]. The EVT is a measurement-based method used
to infer the WCET by directly sampling the task execution
times. In this work, we apply this methodology to estimate
the WCEC of the jobs of each task.

A measurement-based approach comes with important ad-
vantages: (1) the system is considered as a black-box (accurate
platform models are not required); (2) no need to perform in-
depth static analyses of the task source code; (3) the output
is a worst-case estimation (and not a mean-case estimation)
within a given level of confidence, that represents the prob-
ability of failure to meet the energy budget requirement B*.
While point (2) enables the possibility to estimate the WCEC
for previously unknown tasks, point (3) is a fundamental
requirement for mission-critical systems. However, in order
to obtain a small probability of failure, e.g. 1079, traditional
measurement-based methods would need a huge amount of
samples. This requires to run an extremely high number of
jobs in a Monte Carlo fashion. Unfortunately, this is often
unfeasible, which justifies the use of EVT briefly described in
the next paragraphs.

1) Extreme Value Theory (EVT): This theory has been
developed to overcome the limitations of the well-known
Central Limit Theorem. Although the theorem is widely used
to approximate the mean value of an observed phenomena, it
does not fit when we look at the distribution tail, i.e. worst-case
events. The cornerstone of the overall EVT is the following
theorem formulated in the 1920s-1950s [15]:

Theorem 1 (Fisher-Tippett-Gnedenko
sequence of iid? random variables
random variable representing their
maz (X1, Xs, ..., X,) converges to the
Fréchet distribution for n — oo.

theorem). Given a
)(17 XQ, ey X, the
maxima M, =
Weibull, Gumbel or

It has been later proved [16] that these three forms can
be generalized to a single distribution called Generalized
Extreme Value (GEV) distribution. This distribution represents
the extreme values, i.e. the probability that unseen rare events
happen. It is identified by three parameters GEV (i, 0, ) and
it has the following cumulative distribution function (cdf):

G(x) = {6_6 J

eI+ 7 E
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In order to estimate the GEV parameters, two main techniques
have been developed: the Block-Maxima (BM) and the Peak-
over-Threshold (PoT)?. Both methods apply a filter to the input
data X;, Xo,..., X, to obtain a new sequence of random
variables Y7, Y5, ..., Y, with m < n. In the first case, BM, the
set is divided in blocks of constant size B and the maximum
of each block is kept, while the other values are discarded.

2independent and identically distributed

3To be precise, using the PoT approach the distribution of maxima con-
verges to another distribution called Generalized Pareto Distribution (GPD)
that is, however, asymptotically equivalent to the GEV.

In the latter case, PoT, a threshold u is set, such that all the
under-threshold values are discarded. The resulting sequence
Y1,Ys, ..., Y, is the input of a well-known estimator, e.g. the
Maximum Likelihood Estimator (MLE), from which we obtain
an estimation of the parameters of the GEV distribution [17].

2) Probabilistic Worst-Case Energy: Let us assume we
measured several times the energy consumed for executing
the jobs of a specific task. The energy samples =1, zo, ..., Ty,
represent the realization of the input random variables of The-
orem 1. These values can be fed into the previously described
EVT process, to obtain a GEV distribution representing the
probability of extreme events. Through this distribution, it
is possible to exploit its inverse complementary cumulative
distribution function (iccdf) to obtain an estimation of the
WCEC, given a violation probability level p: iccdf(p) =
F'(1 —p) = {WCEC s.t. p = P(X > WCEC)} where X is
the random variable representing the job energy consumption.

Probabilistic Task Model. By exploiting the EVT method
described in Section III, it is possible to compute the two
random variables & and &;ppp, respectively representing
the worst-case value of E; and E;prgr. Thanks to this
measurement-based approach we can verify the condition of
Lemma 1 without having accurate models of system and
workload. The task model can then be rewritten as: 7, =
(&, T;, L;). However, the application of the schedulability
condition in Lemma 1 is now complicated by the introduc-
tion of random variables. To combine random variables, two
possible approaches can be considered:

1) Set a value for the probability of failure p and use the
iccdf of &; to obtain scalar worst-case values for F;;
2) Perform the actual sum of the random variables.

The first option is the simplest one, but it probably leads to
excessive overestimation, since we always considers the worst-
case value for all the jobs. The second option instead requires
the application of the comvolution operator between random
variables. In this work, we consider the second option, since
it allows us to obtain a tight estimation of the real WCEC.
Given two random variables A and B, the convolution of their
cdfs is cdfo(x) = cdf 4 (x) ®cdfg(x), where ® is the convolu-
tion operator. For the convolution computation, the following
integral has to be solved: cdfc(z) = [ cdfs(z —y) dedfp(y).
This is hard to obtain analytically, especially for GEV distri-
butions, but easy to obtain using one of the several numerical
algorithms available in literature. Regarding the £;p g value,
we simply compute the worst-case value at the predefined
probability failure p, i.e. EY,; » = iccdfe, ,, . (p).

By using the probabilistic model just defined, the previous
Lemma can be rewritten as:

Lemma 2. Given the set {&;'} of random variables defined
as:
nr_jobs

51::®5k

there exists an energy-feasible and correct schedule, with a

Vk st. 1, €T 3)



violation probability p only if:

2

kst Ly=HI

where E,’; is the WCEC value of all the jobs of the k-th task,
with violation probability p, computed by using the convoluted
random variables: EY := iccdfe (p). The term EY,, , repre-
sents instead the WCEC estimation in idle mode. O

E} < B(0) = Efprp )

If the number of tasks is extremely high, the use of another
convolution operator replacing the sum operator in Equation
4 should be considered to reduce the over-approximation. For
convenience, we indicate the left hand term of the Equation
4, i.e. the WCEC of all the HI-crit tasks, with Ey;.

IV. ENERGY-AWARE TASK SCHEDULING

In this section, we focus on the job admission problem, i.e.
to whether a job can enter the scheduling queue or not. In
mixed-criticality systems, the admission of HI-crit jobs must
be guaranteed in any case. Consequently, we need to define a
policy for the admission of LO-crit tasks, on the basis of the
energy required by the tasks and the system energy budget
available. We can derive the energy budget for LO-crit tasks
from Lemma 2, as it follows:

BLO(t) = B(t) — Eg;. (5)

Accordingly, if there exists an energy-feasible and correct
HLS, then it is always BZP(t) > 0. Following the same
probabilistic approach of Hl-crit tasks, we can state the
maximum energy consumption condition for LO-crit tasks as:

Lemma 3. Given a failure probability p and the survival
period T, LO-crit tasks energy consumption upper bound is:

>

k s.t. Lpy=LO

Ek(io) < BLO<O) - E_‘?DLE 6)

We refer to the left-hand part of Equation 6 as E o, deriving
the overall remaining unused energy budget as follows:

B(T*) = B(0) — Eyr — Ero — ErpLE @)

The job admission algorithm assigns the values to the set
Sk,j» in accordance with the previous conditions. Relying
on the previous WCEC estimations, this section aims at
proposing a policy that minimizes B(7T™*), while maintaining
a fair energy distribution among LO-crit tasks. An algorithm
carrying out the minimal positive value of B(T™*), among the
values carried out by all the algorithms, is said to be optimal.

The job admission pseudo-code is shown in Algorithm 1.
The policy considers the scheduling of HI-crit tasks first,
followed by the LO-crit ones. The algorithm sets .S; ; = 1 for
all the jobs of the HI-crit tasks (lines 10-12), so that it complies
with the HLS correctness requirement (Definition 2). The
remaining energy budget B is reduced by the WCEC value
estimated for the scheduled task (with violation probability p)
(line 13). If B < 0, no energy-feasible and correct HLS exists
(line 14).

Algorithm 1 Mixed-Energy Criticality Job Admission

1: Input: 7; task set, Ef WCEC of task k, Ef ; WCEC of idle system, B* energy
budget and T survival period, p violation probability.

2: Output: Sy ; (the HLS).

3: procedure SCHEDULE

4: B+ B*—ER .

5: BY© + ScheduleHITasks(B)
6:  BNULL  ScheduleLOTasks(BZ©)
7: end procedure

8: procedure SCHEDULEHITASKS(B)
9: for all k s.t. Ly, = HI do

10: for all j job of task k do
11: Sk,]‘ — 1
12: end for

13: B+ B — Ei(p)
14: assert(B > 0)

15: end for

16: return B

17: end procedure
18: procedure SCHEDULELOTASKS(B)
19: 7" < sort {7; : Ly = LO} by E7 ascending order

20: n < size(1™)

21: for all 7; € 7* do

22: B;+ &

23: if E? < B; then

24: for all job j in 7; do

25: Sij 1

26: end for

27: else

28: nr_jobs <— max_jobs(t;, B;)
29: EF + @'J'T""bs &;

30: E? + iccdfgx (p

31: Siy{l’gy___,.,n; « selection_policy(7;, nr_jobs)
32: end if

33: B+ B—FE?

34: n<+<n-—1

35: end for

36: return B
37: end procedure

Once all the HI-crit tasks are admitted for scheduling, we
can compute the energy budget for LO-crit tasks as in Equation
5. In this version of the algorithm, we apply a fair policy by
distributing the same budget over all the tasks (line 22). In
case a task 7; does not use the entire budget assigned (lines
23-27), all the jobs are admitted. Conversely, if the budget
is not sufficient to execute all the jobs (lines 27-32), then
the maximum number of allowed jobs must be computed
(line 28). The convolution operator must then be re-applied
to get the new energy consumption estimation (lines 29-30).
In both cases, the overall LO-crit budget is decremented by the
WCEC estimation of the task, E‘f (line 33), thus preserving
the unused energy for other tasks. It is worth mentioning that,
as it requires the exploration of a large number of possible
convolutions to compute the random variable in Equation 3,
the function max_jobs(t;, B;) is computationally intensive. In
particular, since state-of-the-art convolution algorithms have a
complexity of O(nlog(n)) and the exploration is performed at
most for n times, then the overall worst-case complexity of the
Algorithm 1 for n tasks is upper-bounded by O(n-M -log(M)),
where M is the total number of jobs. Once the number of
jobs to scheduled is computed, a proper selection policy must
be applied to get the S; ; assignment (line 31). This policy
depends on the specific scenario and application requirements.
A couple of possible trivial approaches are: (1) to select
only the first nr_jobs tasks or (2) to generate a uniformly
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Fig. 2: The WCEC estimation validation. The solid line
represents our worst-case model, while the dots indicate the
frequency of the energy consumption observed probability.

distributed assignment. In our experimental evaluation we
applied the latter approach. Finally, BNVLE = B(T*) is the
remaining not yet assigned energy. Sorting the tasks by energy
consumption (line 19) guarantees that no dropped job exists
with WCEC lower than B(T™), thus the algorithm is optimal.

V. EXPERIMENTAL VALIDATION

For the experimental validation, we performed two classes
of tests. The first one aimed at verifying (1) the upper-bound of
the energy consumption estimation of the single job execution
of each task, and (2) how the convolution operator helps in
carrying out tight but still safe estimations. In the second one
instead, we evaluated the job admission algorithm, checking
its ability to guarantee the energy budget constraint, while
keeping a tight estimation of the energy consumption.

Experimental setup. The hardware platform selected is an
Odroid XU-3 equipped with a big.LITTLE CPU, featuring
4 Cortex-A7 and 4 Cortex-Al5 cores. The selection of such
a complex architecture has been made to show the validity
and effectiveness of probabilistic approaches in the black-box
estimation of energy consumption. This platform would be
really difficult to be analyzed with traditional model-based
approaches. The tasks under analysis were pinned onto the
big cores, while the scheduler and the energy measuring
task onto the LITTLE ones. The DVFS has been disabled
forcing the frequency of big cores to be 1.8 GHz. This
prevents the unwanted thermal throttling effect that would
also the reproducibility of the experiments. The pWCEC
estimation is theoretically agnostic w.r.t. the presence of a
DVFS mechanism. However, further dedicated studies are
required to assess the validity of the i.i.d. EVT condition when
DVFS is enabled. The energy consumption we refer to in this
Section is measured for the big cores only, where the tasks
under analysis were running, exploiting on-chip power sensors.

The considered workload was made up of 4 multi-threaded
applications from the RODINIA benchmark suite [18]
(lavaMD (la), streamcluster (st), leukocyte
(le), and particlefilter (pa)); characterized by the
same order of magnitude of execution times. This for the
readability of the data plotting. The Linux operating system
was equipped with the PREEMPT_RT [19] patch, in order to

Energy [J]

- -~ Estimated
—Real

0 50 100
Nr. convolutions

Fig. 3: The energy estimated and measured varying the number
of convolutions for the four benchmarks considered.

maximize the software determinism and increase the experi-
ment reproducibility.

Energy estimation upper bounding. The first set of ex-
periments focused on the estimation of the WCEC and on the
verification of the performance of the convolution operation
from Equation 3. First, we ran 500 jobs of each task to get
the X, Xo, ..., X,, measures necessary to perform the EVT
estimation. The number of jobs used in the measurement phase
affects the reliability of the final distribution [20], however,
its characterization has been left as future work. The i.i.d. hy-
pothesis of the samples has been verified by using the Ljung-
Box statistical test. Then, the distribution estimation was
performed. For instance, the pWCEC of the st benchmark
is the distribution GEV (11.596025,0.425034, —1.178425),
with its cumulative distribution function depicted in Figure
2. By setting failure probability value to p = 107°, the
corresponding WCEC' is 11.9567J. In other words, the
probability of observing a job consuming more than 11.9567.J
is 107 or lower. To empirically check the quality of our
estimation, we acquired other 10 000 samples of st job energy
consumption. The observed probability has been computed
from these samples and depicted in Figure 2. The GEV
distribution safely over-estimates the real energy consumption,
as expected by the theory.

Once we estimated the pWCEC for each task, we applied
the convolution operator to the interval j = [1; 100] to estimate
the energy consumption of the sequences of jobs of size
1,2, ...,100, considering a violation probability p = 1077,
In a real scenario, the violation probability depends on the
criticality of the application. This estimation is shown in
Figure 3 (dashed lines) with respect to the number of jobs
7. We verified the results by running 100 jobs of each task
and by measuring the cumulative energy consumption. The
real energy consumption is depicted in Figure 3 with solid
lines. As we can see, the convolution operator produced tight
estimations (the maximum overestimation value is 7%) and
no underestimations. By running the same experiment, while
using the mean energy value instead of the worst-case provided
by EVT, we found that 24% of the cumulative scenarios of
pa were underestimated and thus unsafe.

Job scheduling and energy budget. From the previous
results on the WCEC per-job estimations, we used the pro-
posed job admission/scheduling algorithm in three different



scenarios. The benchmarks 1a and pa have been considered
as HI-crit tasks, while 1e and st represented two LO-crit
tasks. The scheduling periods have been configured as follows:
Tia = 30s, Tpa = 100s, T1. = 100s, Ty = 60s. The four
tasks have been scheduled, considering the following three
scenarios and a high level of confidence (p = 10~):

Scenario | Energy budget B* | Survival period 7™

(1) 100 000 J 10h = 36000 s
2) 50000 J Th=25200s
3) 8000 J 1h =3600s

The proposed algorithm generates HLSs with the following
number and percentage of admitted jobs:

Scenario |  la(H) | pa(HD | 1le(@O) | st (LO)
6] 1200 (100%) | 360 (100%) | 290 (81%) | 600 (100%)
o) 840 (100%) | 252(100%) | 15(6%) | 110(26%)
) 120 (100%) | 36 (100%) | 7(19.4%) | 52(86.7%)

As expected, the Hl-crit jobs are all executed, while some
LO-crit jobs are rejected to meet the energy budget require-
ments. The difference between the percentage of allocated jobs
between le and st is due to the energy-fair scheduling: the
le energy consumption is much higher than st.

These three scenarios have been executed using the com-
puted HLS and the following energy results have been ob-
served:

Scen. | Theoretical Energy | Real Energy | Overestim.

(1) 99982.3 J 96 858.9 J 3.23%
2) 49988.0 J 48206.8 J 3.70%
3) 7996.3 J 7739.6 J 3.32%

In the previous table the theoretical energy is the energy
budget subtracted by the unused energy, i.e. B* — B(T™*),
while real energy is the energy measured during the whole
HLS execution. The proposed approach, as expected by the
theoretical guarantees, has never under-estimated the real
energy in the three considered scenarios. At the same time,
the estimation was maintained very tight, showing an over-
estimation in the 3 — 4% range compared to 20 — 30% of the
previously cited state-of-the-art tools.

VI. CONCLUSIONS

Accurate estimations of tasks energy consumption usually
require detailed information about the target hardware and
the workload. These are not always available, making it hard
to provide any guarantee for energy-constrained systems. In
this work, we proposed a probabilistic measurement-based
approach to address the problem of determine the Worst-Case
Energy Consumption (WCEC), in a platform-agnostic manner.
The theoretical foundations have been presented, together with
a job admission algorithm exploiting the WCEC analysis. The
validation of the proposed approach is based on real energy
measures collected from a real hardware platform running
multi-thread benchmarks. Several possible future works may
arise from this paper, including further exploitation in more
complex resource management algorithms [21], the study of
DVES effects on the estimations reliability and the extension
of the algorithm to multiple criticality scenarios.
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