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Abstract 

 
In this paper, a novel method is presented to detect 

video copies for a given video query. These copies and 
the query have identical or near-duplicate content, 
which might differ in their spatiotemporal structures 
slightly. To address both the efficient and effective 
issues, we conduct the bag-of-words model for video 
feature representation, and apply a coarse-to-fine 
matching scheme to analyze the video spatiotemporal 
structure. The proposed method can deal with various 
kinds of video transformations, such as cropping, 
zooming, speed change, and subsequence inser-
tion/deletion, which are not well addressed in existing 
methods. Besides, two indexing methods are employed 
to speed up the matching process. Experimental results 
show that the proposed method can behave in an effi-
cient and effective manner. 
 
1. Introduction 
 

Digital videos, which have become ubiquitous over 
the Internet, can be easily duplicated, edited, and redis-
tributed. From the view of content management, it 
would be helpful to devise some tools to detect video 
copies that share the same video source. Example ap-
plications include information tracking, document 
clustering, copy identifying, etc. In this study, we pro-
pose a content-based technique to detect coderivative 
videos by matching their video contents, where no 
watermark is embedded for identification [4]. 

The problem of video copy detection is defined as 
follows. Given a database video D and a query video Q, 
we have to determine if there exist subsequences d = 
{di | i = 1, 2, ...} and q = {qj | j = 1, 2, ...} so that d and 
q have identical or near-duplicate content, where di and 
qj are frames in D and Q, respectively. Figure 1 gives 
an example for illustration. Suppose that s is the video 
source shared by d and q. That is, some video trans-
formations are applied on s to produce d and q. Even 

the video transformations (e.g., brightness enhance-
ment, frame cropping, and speed change) may slightly 
modify the spatiotemporal structures of videos, the 
content of s, d and q is perceptually similar. Hence, we 
can simply measure the content similarity between d 
and q for copy detection. For simplicity, we assume 
that d is a copy of q in this study. However, to evaluate 
the content similarity is still a challenging issue in 
terms of efficiency and effectiveness. In practice, the 
video copy detection method may have to process 
giga- or tera-size data to search for variant video cop-
ies. Existing detection methods are either time consum-
ing or capability limited. 
 

 
Figure 1. The relation between the source video s and 
the copy videos d and q. 
 

To address the efficiency and effectiveness issues, 
in this paper, a novel method for video copy detection 
is proposed. The major contribution of the proposed 
method is threefold. First, we conduct the bag-of-
words model as the feature representation. The SIFT 
descriptors, which are robust under minor geometric 
and local changes, are extracted from video frames as 
"words" and modeled into a histogram form. Second, 
we apply a coarse-to-fine matching scheme to analyze 
the spatiotemporal structures of videos. Our matching 
scheme can detect videos modified by some transfor-
mations such as cropping, zooming, speed change, and 
subsequence insertion/deletion, which are not well 
addressed in existing methods. Third, we incorporate 
two indexing techniques to the coarse and fine match-
ing stages respectively. The detection process can be 
speeded up substantially. 
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This paper is organized in the following. Section 2 
reviews the related work. Section 3 describes the bag-
of-words model, and Section 4 details the spatiotempo-
ral analysis. We provide some experimental results in 
Section 5. Conclusions and future directions are given 
in Section 6. 
 
2. Related work 
 

The related work in video copy detection is dis-
cussed from two aspects: the feature representation and 
the matching scheme. 
 
2.1. Feature representation 
 

The ordinal measure [1] is widely used in video 
copy detection [3][6][7][9][12][20]. For each video 
frame, it is partitioned into Nx×Ny non-overlapping 
blocks and the average intensity of each block is com-
puted. We then rank the blocks according to their av-
erage intensities. Consequently, the rank order of the 
blocks is denoted as the ordinal measure of the video 
frame. The merit of the ordinal signature is the robust-
ness and simple computation. It is more insensitive to 
several spatial transformations (e.g., brightness ad-
justment, histogram equalization, and frame resizing) 
than general low-level image features (e.g., color his-
tograms and texture descriptors). Besides, the repre-
sentation of ordinal signature is very compact. Only a 
9-dimension vector is used for a 3×3-block frame. 

In addition to the ordinal measure, Hoad and Zobel 
[8] proposed a compact video representation composed 
of color-shift and centroid-based signatures. The color-
shift method uses the temporal change of color distri-
butions, while the centroid-based signature computes 
the spatial movement of the lightest and darkest pixels. 
Subsequently, each frame is represented as a 2-
dimension vector, which is more compact than that of 
the ordinal signature. Experimental results show the 
strong robustness of the constituent signatures. 

Both the above-mentioned features are extracted 
based on the whole frame. That is, they take the whole 
region of a frame to compute a global descriptor as the 
feature representation. However, if we apply cropping 
or zooming to the frame, only a part of region is modi-
fied and the discriminative power of the local descrip-
tor is degraded. Local descriptors, such as the Harris 
descriptor [17] or SIFT [15], have shown the robust-
ness under minor geometric and local changes. Joly et 
al. [10] and Law-To et al. [13] used the Harris detector 
to detect points of interest as local descriptors. Law-To 
et al. further connected those local descriptors similar 
in consecutive frames as a trajectory. Such a represen-

tation is feasible to match partial region of the image 
content. 
 
2.2. Matching scheme 
 

Shot-based video retrieval (SBVR) is a well-known 
technique for content-based video search. In SBVR, 
video shot boundaries are automatically detected by 
finding both abrupt transitions (e.g., cut) and gradual 
transitions (e.g., fade-in/out, dissolve, wipe). Key 
frames are extracted from shots as the shot representa-
tions. When a query clip is given, the system searches 
for shots in the database whose key frames are similar 
(perceptually or semantically) to the query. Cheung 
and Zakhor [2] described an alternative approach to 
extract key frames based on the model of Voronoi 
video similarity. However, the above methods are not 
suitable for video copy detection; they are limited to 
the comparisons of whole clips, and can not detect 
similar subsequences. 

Searching by a fixed-length sliding window 
[6][7][9][11][12] is a very popular method due to its 
simple and fast computation. Further, Kashino et al. 
[11] proposed the histogram pruning method to scan 
videos. It is similar to quick string-matching to avoid 
many of the unnecessary matches according to the dif-
ference between the sliding window similarity and the 
predefined threshold. However, the fixed-length slid-
ing window can not handle temporal transformations 
like speed change and cut insertion/deletion. Hoad and 
Zobel [8] and Chiu et al. [3] used approximated string 
matching and dynamic time warping, respectively, to 
deal with some temporal transformations. However, 
their methods still can not deal with cut inser-
tion/deletion. 

Some index techniques are proposed to speed up the 
detection process. Yuan et al. [20] constructed a multi-
resolution kd-tree to complete exact k-NN query and 
range query for searching short video segments. Joly et 
al. [10] proposed an approximate search paradigm 
called statistical similarity search. A probability model 
is generated based on the transformation distortion to 
process the statistical queries, rather than the classical 
range queries. Law-To et al. [13] proposed a voting 
function to evaluate similarities between the query 
frames and database trajectories. They used the local 
descriptor information for candidate selection, and 
then employed the trajectory information for spatio-
temporal registration. The major problem of these 
methods is the same to the SBVR: they can not detect 
similar subsequences. Besides, their matching schemes 
do not take the temporal transformations into consid-
eration. 
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3. Bag-of-words modeling 
 

The bag-of-words model is widely used in text 
document analysis. This model simply uses all words 
in a document as the features. The feature dimension is 
equal to the number of distinct words in the document 
database. Since the dimensionality is very high, we 
usually group words into categories by some pre-
processes like stop word removal, stemming, case fold-
ing, etc. For multimedia documents, we can extract 
low-level features from images/videos as "words," and 
apply vector quantization to cluster these low-level 
features. In this study, we use the SIFT descriptors as 
video words and the LBG algorithm for vector quanti-
zation. 

The SIFT descriptor [15] can provide robust match-
ing across affine distortion, noise addition, and illumi-
nation change. It is widely applied for object recogni-
tion [5][14][18], and shows the best evaluation per-
formance compared with other local descriptors [16]. 
However, the SIFT descriptor involves a high dimen-
sional feature set (128 dimensions for a point of inter-
est). It will generate a tremendous size of feature data 
for videos of several hours, if each frame contains doz-
ens of SIFT descriptors. In this paper, we model SIFT 
descriptors into a bag-of-words representation to not 
only reduce the data size of the video representation, 
but preserve the robustness of the SIFT descriptor. 

Let D be the video database and di be the i-th frame 
in D. For each frame di, we extract the SIFT descrip-
tors by finding local extrema of the DOG scale space 
that are above a given threshold θSD. The use of θSD is 
to control the number of SIFT descriptors extracted 
from a frame. A higher θSD decreases the number of 
SIFT descriptors. Since these SIFT descriptors are not 
uniformly distributed in the feature space, the feature 
vector density should be considered in the classifica-
tion process for better discrimination. In this study, we 
use the Linde-Buzo-Gray (LBG) algorithm to create a 
quantization codebook. The LBG algorithm enables 
the number of codes assigned in the feature space to 
reflect the density of feature vectors. Then, in the 
quantization stage, every descriptor is classified into 
the nearest code in the codebook. 

We generate a SIFT histogram for each database 
frame. The histogram is a frequency distribution of the 
SIFT descriptors extracted in that frame. Denote dhi as 
the SIFT histogram of the frame sequence di: 
 

dhi = {dhi,1, dhi,2, ... , dhi,l, ... , dhi,L}.           (1) 
 
L is the number of histogram bins, i.e., the codebook 
size, and dhi,l is the number of SIFT descriptors classi-

fied into the l-th quantization code observed in frame 
di. Then we normalize dhi so that the summarization of 
all histogram bins is 1: 
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Now dhi,l ∈ [0, 1] is served as the weight of the l-th bin 
of frame di. 
 
4. Spatiotemporal analysis 
 

Given a query video Q, we want to find its video 
copies from the database D. The matching between Q 
and D is performed through a coarse-to-fine scheme. 
First, at the coarse matching stage, we employ a sliding 
window to evaluate the similarity between Q and the 
windowed sequence in D. The histogram pruning algo-
rithm is applied to ignore unnecessary sequence match-
ing from D. Those windowed sequences with high 
similarities are selected as the candidate sequences. At 
the fine matching stage, we analyze the similarity be-
tween each frame in the candidate sequence and Q. An 
invert indexing method is used to quickly build up a 
frame-pair similarity matrix. Our method is based on 
the coarse-to-fine scale analysis considering the spatial 
and temporal dimensions. It addresses both the effi-
ciency and effectiveness issues well. 
 
4.1. Coarse matching: window similarity 
 

Let Q = {qk | k = 1, 2, ... , n} be an n-frame se-
quence. For each query frame qk, we extract its SIFT 
descriptors and generate the corresponding SIFT his-
togram qhk, as we depicted in Section 3. We employ a 
window of length n to slide over database D. Inside the 
window the similarity between the two video se-
quences Cj = {dj , dj+1, ... , dj+n-1} and Q is defined as 
follows: 
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The summation term inside the minimum function is to 
count the total weight of the l-th histogram bins from 
all frames. Then WS(Ci, Q) ∈ [0, 1] serves as the win-
dow similarity at the coarse matching stage. 
 
Speed-up 

Even though the calculation of the window similar-
ity is simple, searching by the window sliding over the 
database frame-by-frame is impractical in terms of 
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computing time. We employ a histogram pruning 
method proposed by Kashino et al. [11] to accelerate 
the sliding window search. The basic idea is to skip 
unnecessary database frames for matching according to 
the difference between the window similarity and the 
predefined threshold. As the window shifting forward 
to the next frame, the maximum increment from 
WS(Ci, Q) to WS(Ci+1, Q) is 1/n for all index i. There-
fore, we can derive the number of frames to be skipped 
for the window, denoted as w: 
 

⎣ ⎦
⎩
⎨
⎧ <+−

=
otherwise,                                ,1

,  if    ,1)( WSWS WSWS θθn
w          (4) 

 
where ⎣x⎦ rounds x to the nearest integers greater than 
or equal to x and θWS is the detection threshold for the 
window similarity matching. It is guaranteed that no 
sequence whose window similarity is greater than θWS 
is missed, even if we skip w frames given by Eq. (4). 

The determination of θWS becomes the tradeoff be-
tween the matching efficiency and effectiveness. A 
higher value of θWS can skip more number of frames 
according to Eq. (4), but degrade the accuracy for 
identifying video copies. In case to detect video copies 
with partial content modified, we have to consider the 
ratio of the partial content to its original source. For 
example, to detect the video copy whose frames are 
cropped a half of the original region, θWS should be set 
to less than 0.5. 

Figure 2 plots a part of the window similarities for 
some coderivative query videos: enhance 20% bright-
ness (Figure 2a), crop a half of frame region (Figure 
2b), and speed 0.5× (Figure 2c). The X-axis is the 
frame index in the database, and the Y-axis is the win-
dow similarity. The similar distributions of these win-
dow similarities manifest the robustness of the bag-of-
words model under these spatial and temporal trans-
formations. A sequence Ci is denoted as the candidate 
for further fine matching, if its window similarities WS 
are local maxima and greater than θWS. 
 
4.2. Fine matching: pairwise similarity 
 

Since the coarse matching is based on the histogram 
representation of feature vectors over the window, it 
does not reflect the time relationship of feature vectors. 
This will increase false positives at the coarse match-
ing stage. That is, some candidates found in Section 
4.1 may not be the copies of the query. Therefore, we 
propose a novel method to determine the similarity 
between the query and the candidate by fine matching. 
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Figure 2. The window similarity for coderivative query 
videos: (a) enhance 20% brightness; (b) crop a half of 
frame region; (c) speed 0.5×. 
 

For easy exposition, the candidate C is denoted as C 
= {d'1 , d'2, ... d'j, ... , d'n} and dh'j is the SIFT histo-
gram of d'j. Given the candidate C and query Q, we 
define the pairwise similarity, which is an n×n matrix 
representing all-pairs frame similarities: 
 

PS(C, Q) =  

}, ) , 'min(| {
1

,,∑
=

=
L

l
lkljjkjk qhdhmm          (5) 

 
for j and k = 1, 2, ... , n. The (j, k)-th element mjk ∈ [0, 
1] stores the frame similarity between the j-th candi-
date frame and the k-th query frame. The frame simi-
larity is calculated by the SIFT histogram intersection 
of the two frames. 

The pairwise similarity PS can be visualized by 
plotting the similarity values stored in the matrix. Let 
us take the example in Figure 3 for illustration. Figure 
3 shows four pairwise similarities, where the X-axis 
and the Y-axis indicate the query frame index and the 
database frame index, respectively. From the intensity 
distribution of the pairwise similarity, we can investi-
gate the time relationship between the candidate and 
the query. For example, given a query Q, we find two 
candidates C1 and C2 from the database. We plot the 
pairwise similarities PS(C1, Q) and PS(C2, Q) in Fig-
ures 3a and 3b, respectively. Actually, C2 is a copy of 
Q, but C1 is not. It is clear to see a high intensity distri-
bution along the main diagonal of the matrix in Figure 
3b, while the intensity distribution is much scattered in 
Figure 3a. Such the slant line-wise distribution shows 
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the continuity of high frame similarities in a certain 
time period. Another two examples shown in Figures 
3c and 3d are the matrices of PS(C3, Q) and PS(C4, Q), 
respectively. Here C3 is a slow motion version of C2 by 
speeding 0.5×, and C4 is a cut editing version of C2 by 
swapping the first-half part and the second-half part. 
Both two matrices also manifest the slant line-wise 
distributions. 
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Figure 3. The pairwise similarity matrices. (a) PS(C1, 
Q); (b) PS(C2, Q); (c) PS(C3, Q); (d) PS(C4, Q). Except 
for C1, all other sequences are copies of Q. 
 

Based on the above observation, we deal with the 
fine matching process for C and Q by detecting slant 
line-wise distributions on PS. Note that there may be 
multiple slant line-wise distributions with various di-
rections and positions on PS. The detection should be 
able to find all of these distributions. Therefore, we 
accomplish the detection by the use of the Hough 
transform [19]. The Hough transform can detect multi-
ple objects in an image, even these objects are frac-
tional. Basically, the Hough transform is a voting algo-
rithm for an analytic equation of an object contour. In 
this study, the objects to be detected on PS are slanted 
lines. 

First, we apply an edge detection method on PS. 
The Sobel edge detection method is employed in our 
work. The Canny method is not used because its noise 
suppression and hysteresis thresholding will impede 
the analysis of intensity distributions. At each point on 
PS, we calculate its edge magnitude and direction. 

Next, we build a two-dimension accumulator matrix 
M to detect the existence of a line s = xcosρ + ysinρ, 
where the parameters s and ρ are the two coefficients 
of M. Points in PS can be considered as potential line 

points if they satisfy the following two conditions: (1) 
the edge magnitudes exceed a given threshold θEM, and 
(2) the edge directions are within a certain range ΘED. 
These potential line points are counted to accumulate 
the numbers in their corresponding elements in M. 
While θEM is usually decided empirically, ΘED can be 
determined by the video speed range [ρL, ρH], where ρL 
and ρH are the lowest and highest video speed bounda-
ries to be detected, respectively: 
 

ΘED = [ arctan(ρL), arctan(ρH) ].                (6) 
 
This is because the speed range will bound the slant 
line-wise distributions in PS (see the query video with 
0.5× speed in Figure 3c). For example, to detect video 
copies with the speed range from 0.5× to 2×, we can 
use ΘED = [26.57° - ε , 63.43° + ε], where ε is a small 
tolerance value. 

Finally, we smooth M by a Gaussian filter, and find 
the local maxima in M. The local maxima greater than 
a given threshold θLM are regarded as the detected 
lines, corresponding to the diagonal-wise distributions 
on PS. θLM can be determined by a proportion to the 
number of query frames. Figures 4 and 5 give two ex-
amples in association with Figure 3c and 3d for the 
slant line-wise detection, respectively: Part (a) are the 
pairwise similarities; Part (b) are the edges satisfying 
the threshold conditions of θEM and ΘED; Part (c) are 
the Hough spaces of the accumulator matrix M, where 
the rectangles label the local maxima on M; Part (d) 
show the detection results as the dash lines. The two 
examples show the proposed detection method is able 
to deal with multiple diagonal-wise distributions with 
various directions and positions. 
 
Speed-up 

To construct the pairwise similarity PS, a naïve way 
is computing all-pairs frame similarities according to 
Eq. (5), and the time complexity is L⋅n2. Actually, PS 
is a sparse matrix that can be constructed by counting 
only a few frame pairs. Here we introduce an invert 
indexing method to reduce the computation cost for the 
construction of PS. 

Let T be the invert table containing L cells, in which 
the frame indices will be stored. For each candidate 
frame d'j, if the l-th bin (l ∈ [1, L]) of its SIFT histo-
gram dh'j,l > 0, d'j is inserted to the l-th cell of T, de-
noted as T(l). We do the same step to insert each query 
frame qk into the associated cells of T. For each frame 
pair (d'j, qk) found in the l-th cell of T, we increment 
the (j, k)-th element mjk in PS by min(dh'j,l , qhk,l). 

206



 
(a) (b) 

 

(c) (d) 
Figure 4. The slant line-wise detection for PS(C3, Q). (a) 
the pairwise similarity matrix; (b) the edge map; (c) the 
Hough space; (d) the detected line. 
 

 
(a) (b) 

 

(c) (d) 
Figure 5. The slant line-wise detection for PS(C4, Q). (a) 
the pairwise similarity matrix; (b) the edge map; (c) the 
Hough space; (d) the detected lines. 

 
While there are few frame pairs intersecting with 

some histogram bins, the use of the invert table can 
reduce a lot of computation cost. The computation cost 
is 2⋅L⋅n + NFP, where NFP is the total number of 
frame pairs found in T. The former cost is the time for 

inserting the candidate and query frames in T, and the 
latter cost is the time for counting all frame pairs. More 
discussion about the computation cost are given in the 
experiment section. 
 
5. Experimental results 
 

A video database containing 6.1 hours is collected 
from the Open Video Project and the MPEG-7 collec-
tion. Its contents include sports, news, documentaries, 
landscapes, and so on. We transform these video data 
to the following format: MPEG-1, 320×240 pixels, and 
30 frames per second (fps). With the database, we de-
sign several experiments to evaluate the efficiency and 
effectiveness of the proposed method. 
 
5.1. Environment configuration 
 

Since a continuous video sequence contains many 
identical or near-duplicate frames, it is not necessary to 
use every frame in the sequence for matching, in terms 
of the efficiency. Here we select every 15 frames in the 
database as the key frames. The key frame sequence in 
association with 2 fps is used for matching. 

We take the brightness value (i.e., the Y component 
of the YCbCr color space) of every frame pixel for 
image processing. To extract the SIFT descriptors, we 
set the threshold θSD = 0.05, and the average number of 
SIFT descriptors in a frame is 18.14. In the LBG algo-
rithm, a quantization codebook is created with the size 
1024. Therefore, the number of bins of the SIFT histo-
gram L = 1024. The other threshold parameters are 
configured as follows. At the coarse matching stage, 
θWS = 0.4. At the fine matching stage, θEM = G/5 (G is 
the maximum of the edge magnitudes), ΘED = [20°, 
70°], and θLM = n/4 (recall that n is the number of the 
query frames). 

From the database, we randomly select 31 segments, 
each of which is of thirty seconds long. Then every 
segment is used to generate eleven video copies by the 
following modifications: (1) brightness enhancement 
20%, (2) histogram equalization, (3) random noise 
addition 10%, (4) compression with quality 50% (by 
IndeoR 5.10 compressor), (5) frame rate change to 15 
fps, (6) frame resolution change to 240×180 pixels, (7) 
cropping a half of frame region (replaced with black 
regions), (8) zoom in 1.33×, (9) speed 0.5×, (10) speed 
2×, and (11) subsequence reordering (by swapping the 
first-half part and the second-half part). These videos 
serve as the queries, each of which is submitted to de-
tect the corresponding segments in the database. Note 
that before the detection process, we have to determine 
the frame rate of the query, which is available in the 
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video file header. Then the query video is re-sampled 
so that its frame rate is synchronized with that of the 
database video. 
 
5.2. Detection effectiveness 
 

We consider a detection result as correct if there is 
any overlap with the region from which the query was 
extracted. The metrics of precision, recall and F1-
measure are used for the accuracy evaluation: 
 
Precision = TP / (TP + FP), 
Recall = TP / (TP + FN), 
F1 = (2 × Recall × Precison) / (Recall + Precision).   (8) 
 
Positives (TP) are positive examples correctly labeled 
as positives. False Positives (FP) refer to negative ex-
amples incorrectly labeled as positive. False Negatives 
(FN) refer to positive examples incorrectly labeled as 
negative. 

For the sake of comparison, we choose the ordinal-
based method as the baseline, and implement it in a 
common sense manner. A 9-dimension ordinal signa-
ture is used as a frame feature, and a fixed-length slid-
ing window is applied to scan frames one-by-one over 
the database. The similarity judgment is to measure the 
Euclidean distances of ordinal signatures of frames. 
Here we consider a sequence a copy if its average 
Euclidean distance to the source is less than 7. 

Table 1 shows the detection accuracy of the base-
line and proposed methods, with respect to eleven spa-
tial and temporal transformations. The baseline method 
performs very well for the whole-region spatial trans-
formations (case (1)-(6)), while degrades severely for 
the partial-region spatial and temporal transformations 
(case (7)-(11)). This inefficiency mainly comes from 
two factors. One is the ordinal signature representation, 
which is a global descriptor for a video frame, will 
cause a great discrepancy if only parts of the frame 
region are modified. The other factor is only applying 
the sliding window is not enough to deal with the tem-
poral transformations. A further analysis is required 
after scanning over the database. 

Compared with the baseline method, the proposed 
method obtains the better performance for the partial-
region spatial and temporal transformations. However, 
we find the proposed method behaves much worse in 
case (2) histogram equalization. This is because histo-
gram equalization tries to equalize the intensity distri-
bution by adjusting each pixel individually. Therefore, 
the gradient distribution of a SIFT descriptor at the 
same location may alter a lot. We also note in cases 
(6)-(8), the modifications of the frame scale usually 

influences the number of SIFT descriptors to be ex-
tracted, and thus impairs the similarity computation in 
our matching scheme. This might be improved by 
amending the normalization of the SIFT histogram in 
Eq. (2). 
 
5.3. Detection efficiency 
 

Due to the space limitation, we only discuss the ef-
ficiency of online matching. Given a thirty-second 
query to search over the 6.1 hours video database, the 
proposed method has to proceed through the coarse-to-
fine matching. At the coarse matching stage, the use of 
the histogram pruning algorithm reduces the matching 
calculations to 2.51% averagely, compared with scan-
ning frames one-by-one. At the fine matching stage, 
the use of the invert indexing method reduces the 
matching calculations to 0.11% averagely, compared 
with all-pairs frame similarity computation. The pro-
posed method takes 781 ms to complete the matching, 
while the baseline method takes 62 ms, measured in a 
computer with 2.6GHz CPU and 4GB ram. Note the 
feature dimensions of a frame are 1024 and 9 for the 
proposed and baseline methods, respectively. Although 
the feature dimension of our method is 114 times lar-
ger than that of the baseline method, the time spent in 
our method is only 13 times greater than that in the 
baseline method. This observation reveals the pro-
posed speedup method actually improve the detection 
efficiency of our method, which is much superior to 
the baseline method in detecting partial-region spatial 
and temporal transformations. 
 
6. Conclusions and future work 
 

In this paper, a novel video copy detection method 
is presented. We conduct the bag-of-words model as 
the feature representation, and a coarse-to-fine match-
ing scheme for spatiotemporal analysis. The proposed 
method can detect video copies modified by partial-
region spatial and temporal transformations, which are 
not well addressed in existing methods. Besides, we 
incorporated the histogram pruning and invert index-
ing methods to speed up the matching process. The 
future work will focus on the improvement of the de-
tection accuracy, especially the recall rate. 
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Table 1. Detection effectiveness. 
 

Baseline method Proposed method  
Precision Recall F1 Precision Recall F1 

(1) Brightness enhancement 0.9688 0.9688 0.9688 1.0000 0.9375 0.9677 

(2) Histogram equalization 1.0000 0.8750 0.9333 1.0000 0.2813 0.4391 

(3) Random noise 0.9688 0.9688 0.9688 1.0000 0.8438 0.9153 

(4) Compression 0.9688 0.9688 0.9688 1.0000 0.8750 0.9333 

(5) 15 fps 0.9394 0.9688 0.9539 1.0000 0.9375 0.9677 

(6) Frame resizing 0.9688 0.9688 0.9688 1.0000 0.5938 0.7451 

(7) Cropping 0.0000 0.0000 0.0000 1.0000 0.5000 0.6667 

(8) Zooming in 0.2500 0.1563 0.1923 1.0000 0.3750 0.5455 

(9) 0.5× speed 1.0000 0.0938 0.1715 1.0000 0.7813 0.8772 

(10) 2× speed 0.2340 0.3438 0.2785 1.0000 0.7813 0.8772 

(11) Cut editing 1.0000 0.4688 0.6383 1.0000 0.8438 0.9153 
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