

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 08, 2024

Indexing Motion Detection Data for Surveillance Video

Vind, Søren Juhl; Bille, Philip; Gørtz, Inge Li

Published in:
Proceedings of the IEEE International Symposium on Multimedia (ISM2014)

Link to article, DOI:
10.1109/ISM.2014.36

Publication date:
2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Vind, S. J., Bille, P., & Gørtz, I. L. (2014). Indexing Motion Detection Data for Surveillance Video. In Proceedings
of the IEEE International Symposium on Multimedia (ISM2014) (pp. 24-27). IEEE Press.
https://doi.org/10.1109/ISM.2014.36

https://doi.org/10.1109/ISM.2014.36
https://orbit.dtu.dk/en/publications/ea629f38-b32e-4eaf-adca-5bbdf9694c9f
https://doi.org/10.1109/ISM.2014.36

Indexing Motion Detection Data for Surveillance Video ?

Søren Vind, Philip Bille †, and Inge Li Gørtz †

Department of Applied Mathematics and Computer Science
Technical University of Denmark

Copenhagen, Denmark
sovi@dtu.dk, phbi@dtu.dk, inge@dtu.dk

Abstract—We show how to compactly index video data to
support fast motion detection queries. A query specifies a time
interval T , a area A in the video and two thresholds v and
p. The answer to a query is a list of timestamps in T where
≥ p% of A has changed by ≥ v values.

Our results show that by building a small index, we can
support queries with a speedup of two to three orders of
magnitude compared to motion detection without an index.
For high resolution video, the index size is about 20% of the
compressed video size.

Keywords-motion detection index; motion detection data
structure; surveillance video; video analysis; data structure;

I. INTRODUCTION

Video data require massive amounts of storage space and
substantial computational resources to subsequently analyse.
For motion detection in video surveillance systems, this
is particularly true, as the video data typically have to
be stored (in compressed form) for extended periods for
legal reasons and motion detection requires time-consuming
decompressing and processing of the data. In this paper,
we design a simple and compact index for video data that
supports efficient motion detection queries. This enables fast
motion detection queries on a selected time interval and area
of the video frame without the need for decompression and
processing of the video file.

A. Problem & Goal

A motion detection query MD(T, A, v, p) specifies a time
range T , an area A, and two thresholds v ∈ [0, 255] and
p ∈ [0, 100]. The answer to the query is a list of timestamps
in T where the amount of motion in A exceeds thresholds v
and p, meaning that ≥ p% of the pixels in A changed by ≥ v
pixel values. Our goal is build an index for video data that
supports motion detection queries. Ideally, the index should
be small compared to the compressed size of the video data
and should support queries significantly faster than motion
detection without an index.

? Supported by a grant from the Danish National Advanced Technology
Foundation.

† Supported by a grant from the Danish Council for Independent
Research | Natural Sciences.

B. Related Work

Several papers have considered the problem of online
motion detection, where the goal is to efficiently identify
movement in the video in real time, see e.g. [1], [2],
[3], [4], [5]. Previous papers [6], [7] mentions indexing
movement of objects based on motion trajectories embedded
in video encoding. However, to the best of our knowledge,
our solution is the first to show a highly efficient index for
motion detection queries on the raw video.

C. Our Results

We design a simple index for surveillance video files,
which support motion detection queries efficiently. The per-
formance of the index is tested by running experiments on a
number of surveillance videos that we make freely available
for use. These test videos capture typical surveillance camera
scenarios, with varying amounts of movement in the video.

Our index reduces the supported time- and area-resolution
of queries by building summary histograms for the number
of changed pixels in a number of regions of frames suc-
ceeding each other. Histograms for a frame are compressed
and stored using an off-the-shelf compressor. Queries are
answered by decompressing the appropriate histograms and
looking up the answer to the query in the histograms.

The space required by the index varies with the amount
of motion in the video and the region resolution supported.
The query time only varies slightly. Compared to motion
detection without an index we obtain:

• A query time speedup of several orders of magnitude,
depending on the resolution of the original video. The
choice of compressor has little influence on the time
required to answer a query by the index.

• A space requirement which is 10 − 90% of the com-
pressed video. The smallest relative space requirement
occur for high resolution video. Quadrupling the region
resolution roughly doubles the space use.

Furthermore, as the resolution of the video increases, the
time advantage of having an index grows while the ad-
ditional space required by the index decreases compared
to the compressed video data. That is, the index performs
increasingly better for higher resolution video.

II. THE INDEX

A MD(T, A, v, p) query spans several dimensions in the
video file: The time dimension given by T and two spatial
dimensions given by A. However, as high-dimensional data
structures for range queries typically incur high space cost,
we have decided to not implement our index using such
data structures. Instead, we create a large number of two-
dimensional data structures for the pixel value difference
for each successive pair of frames, called a difference frame.
Answering a query then involves querying the data structures
for all difference frames in T .

We restrict the query area A to always be a collection
of regions, r1, . . . , rk. The height and width of a region
is determined by the video resolution and the number of
regions in each dimension of the video (if other query areas
are needed, the index can be used as a filter). For simplicity,
we assume that the pixel values are grey-scale.

The index stores the following. For each region r and
difference frame F , we store a histogram HF,r, counting for
each value 0 ≤ c ≤ 255 the number of pixels in the region
changed by at least c pixel values. Clearly a histogram can
be stored using 256 values only. While this may exceed the
number of pixels in a region when storing many regions per
frame, it generally does not. However, because modern video
encoding is extremely efficient, the raw histograms may take
more space than the compressed video (especially for low
video resolutions). Thus, we compress the histograms using
an off-the-shelf compressor before storing them to disk.

To answer a MD(T, A, v, p) query, we decompress and
query the histograms for each region in A across all dif-
ference frames in T . Let |r| denote the number of pixels
in region r. For a specific difference frame F , we calculate
p′ =

∑
r∈A HF,r[v]/

∑
r∈A |r|, which is exactly the per-

centage of pixels in A changed by ≥ v pixel values. Thus,
if p′ ≥ p, frame F is a matching timestamp.

III. EXPERIMENTS

A. Experimental setup

All experiments ran on an Apple Macbook Pro with
an Intel Core i7-2720QM CPU, 8GB ram and a 128GB
Apple TS128C SSD disk, plugged into the mains power.
All reported results (both time and space) were obtained as
the average over three executions (we note that the variance
across these runs was extremely low).

B. Data sets

We tested our index on the following three typical video
surveillance scenarios, encoded at 29.97fps using H264/MP4
(reference [8]). We use different video resolutions (1920 ×
1080, 1280× 720 and 852× 480 pixels). See Table I.

1) Office: Recording of typical workday activities in a
small well-lit office with three people moving. The image
is almost static, only containing small movements by the
people. There is very little local motion in the video.

Table I
SURVEILLANCE VIDEO RECORDING SAMPLES USED FOR TESTING.

VIDEOS WERE ENCODED AT 29.97FPS USING H264/MP4.

Size (MB)
Scenario Length (s) Motion amount 1080p 720p 480p

Office 60 Low 9.0 3.0 1.2
Students 60 Medium 27.3 7.8 3.3

Rain 60 High 67.6 18.1 4.6

2) Students: Recording of a group of students working
in small groups, with trees visible through large windows
that give a lot of reflection. People move about, which gives
a medium amount of motion across most of the frame.

3) Rain: A camera mounted on the outside of a building,
recording activities occurring along the building and looking
towards another building. It is windy and raining, which
combined with many trees in the frame creates a high
amount of motion across the entire frame.

C. Implementation

The system was implemented in Python using bindings
to efficient C/C++ libraries where possible. In particular,
OpenCV and NumPy were used extensively, and we used
official python bindings to the underlying C/C++ imple-
mentations of the compressors. The implementation uses a
number of tunable parameters, see Table II. The source code
can be found at [8].

IV. MAIN RESULTS

We now show the most significant experimental results
for our index compared to the trivial method. We show
results on both query time and index space when applicable.
Unless otherwise noted, the index was created for a video
size of 1080p, storing 1024 regions/frame, 3 frames/second,
1 frame/file, using linear packing and zlib-6 compression.
We will only give detailed results for the students scenario,
as the index performs relatively worst in this case.

A. Regions Queried

The first set of experiments show the influence of the
number of regions queried in the image on the total query
time and also check if one scenario diverts significantly from

Table II
TUNABLE PARAMETERS FOR USE IN EXPERIMENTS.

Name Description

Frames/Second The frame rate of the difference frames to index.
Regions/Frame The number of regions to divide a frame into.

Compressor The compressor used to compress the histograms.
Frames/File The number of frames for which the histograms should

be stored in the same file on disk
Packing Which strategy should be used when storing histograms

for more than one frame in same file on disk

Table III
INDEX QUERY TIME VERSUS VIDEO QUERY TIME FOR 1 AND 1024

REGIONS QUERIED. SIZE OF INDEX COMPARED TO THE VIDEO SIZE.

Time (s)
Scenario Query Reg. Index Video Speedup Size

Office 1 0.17 463.51 2726× 24.4%
1024 0.81 467.17 576× 2.2 MB

Students 1 0.20 249.76 1248× 20.1%
1024 0.83 253.86 305× 5.5 MB

Rain 1 0.20 351.40 1757× 8.0%
1024 0.83 355.98 428× 5.4 MB

Table IV
SPEEDUP FOR INDEX QUERY TIME COMPARED TO VIDEO QUERY TIME

FOR STUDENTS SCENARIO, WITH VARYING INPUT VIDEO RESOLUTIONS
AND NUMBER OF REGIONS QUERIED.

Speedup / Query Reg.
Resolution 1 64 1024 Size

480p 454× 368× 102× 75.8%
720p 903× 745× 219× 47.4%

1080p 1248× 1060× 305× 20.1%

the others in query time performance. The number of regions
queried was both extremes (1 and 1024).

Table III summarises the results, with the index size
shown relative to the video size. The query time of the index
does not vary with the video input, while that is the case for
the video compression approach. Observe that though the
total time spent answering a query using the index scales
with the number of regions queried, it never exceeds 1
s, while the video approach spends at least 250 s in all
cases. Thus, the index answers queries at least two orders
of magnitude faster than the video compression approach.

The very small difference in query time for both extremes
is surprising, since it directly influences the number of pixels
to analyse in each difference frame. The relative increase is
much larger for the index query than the video, meaning
that the time spent performing the actual query is a larger
fraction of the total query time for the index (as shown in
Section V-B). We believe that the reason the office scenario
has the worst performance is that the video compression is
most efficient here (and thus harder to decompress).

Table IV shows that the relative index query time in-
creases when fewer regions are queried. However, even when
querying all regions the index has a performance which is
at least two orders of magnitude quicker than the video.

B. Resolution Comparison

Table IV show the influence of the video resolution on the
speedup obtained for the students scenario. The difference
in space required for the index with varying resolutions is
shown in Table V. Note that the index times are almost

Table V
SIZE OF INDEXES FOR VARYING INPUT VIDEO RESOLUTIONS.

Index Size (MB) Index Size (%)
Scenario 1080p 720p 480p 1080p 720p 480p

Office 2.2 1.5 1.1 24.4% 50.0% 91.7%
Students 5.5 3.7 2.5 20.1% 47.4% 75.8%

Rain 5.4 3.7 2.2 8.0% 20.4% 47.8%

Table VI
INDEX SIZE FOR VARYING NUMBER OF STORED REGIONS AND

RESOLUTIONS IN THE STUDENTS SCENARIO.

Index Size (MB) Index Size (%)
Store Reg. 1080p 720p 480p 1080p 720p 480p

64 1.1 0.8 0.6 4.0% 10.2% 18.2%
256 2.3 1.7 1.2 8.4% 21.8% 36.4%

1024 5.5 3.7 2.5 20.1% 47.4% 75.8%

always the same (varies between 0.2s and 1s), while the
video query times decrease from around 250s at 1080p to
75s at 480p, and we thus only report the relative speedup
for different numbers of regions queried. The relative index
performance compared to the video approach improves in
both space and time with larger video resolution. The index
query time varies very little with the resolution (which is
as expected, since the number of histogram values to check
does not change).

C. Regions Stored

Clearly, the number of regions stored by the index has
an influence on the index size (as this directly corresponds
to the number of histograms to store). However, from Table
VI, it is clear that the influence is smaller than would be
expected. In fact, due to the more efficient compression that
is achieved, quadrupling (4×) the number of regions only
causes the index to about double (2×) in size. That is, it is
relatively cheap to increase the resolution of regions.

V. OTHER RESULTS

In this section, we review the index performance when
varying the different parameters listed in Table II. Changing
the index parameters had insignificant influence on query
times, so we only show results for the index space when
varying the parameters. The largest contributor to the index
advantage over the video decompression method is the idea
of storing an index, and thus we only briefly review the
results when varying the parameters.

A. Compressor

Table VII shows the size of the index when the histograms
are compressed using a number of different compressors,
and Table VIII shows the time spent compressing the index
in total (remember the input is a 60s video file). In all of
the tests in the previous section, we have used the zlib-6

Table VII
INDEX SIZE COMPARISON FOR DIFFERENT COMPRESSORS.

Index Size (MB) / Compressor
Scenario lz4 snappy zlib lzma bzip2

Office 2.9 6.6 2.2 1.7 1.5
Students 7.5 10.9 5.5 4.1 3.5

Rain 7.4 10.6 5.4 4.2 3.4

Table VIII
INDEX COMPRESSION TIME FOR DIFFERENT COMPRESSORS.

Compression Time (s) / Compressor
Scenario lz4 snappy zlib lzma bzip2

Office 0.04 0.07 1.01 29.67 30.67
Students 0.07 0.11 1.29 32.69 31.80

Rain 0.07 0.11 1.41 31.89 31.92

compressor, as it gives a good tradeoff between compres-
sion time and space use. If one can spare the computing
resources, there is hope for almost halving the index space
if switching to bzip2 compression. Note, however, that the
query time increases with a slower decompressor (especially
when querying few regions, as shown in Section V-B).

B. Query Time Components

To see the influence of the compressor used, we deter-
mined how much of the total query time is spent checking
the decompressed values, compared to the amount of time
spent decompressing the video frames or histograms. The
results are in Table IX. It is evident that the video resolution
and our chosen index compressor only has a small influence
on the total query time when the number of regions queried
is large: Around 75% of the time is spent on the actual query.
As for the video query time, > 95% of the total time is spent
decompressing the video, with the actual query time being
very insignificant in all cases. In absolute terms, the query
times for the index and the decompressed video approach are
comparable (difference around 10×) after decompression.

C. Frames/File & Histogram Packing Strategies

We tested the influence on the index size if storing
more than one difference frame per file on disk. We tested
four different value packing strategies: linear, binned, reg-
linear, reg-binned. Consider a frame F with two region
histograms r1, r2. In the linear strategy, we just write all
values from r1 followed by all values from r2. In the
binned strategy, we interleave the value for the same his-
togram index from all regions in a frame, i.e. we wite
r1[0]r2[0]r1[1]r2[1] . . . r1[255]r2[255] on disk. When storing
multiple frames F1, F2 in a file, assume r1, r2 has the
same spatial coordinate in both frames. Then the reg-linear
strategy writes r1 followed by r2, while the reg-binned
strategy interleaves the values as before.

Table IX
FRACTION OF TIME SPENT ANALYSING REGIONS OF TOTAL QUERY TIME

FOR STUDENTS SCENARIO (REMAINDER IS DECOMPRESSION).

Index Query Time Video Query Time
Resolution 1 1024 1 1024 Size

480p 2.63% 76.73% 0.01% 1.48% 75.8%
720p 3.27% 76.84% 0.01% 1.84% 47.4%

1080p 3.08% 73.79% 0.02% 3.84% 20.1%

The hope is that this would result in more efficient
compression, since the histogram for the same region may
be assumed to be very similar across neighbouring frames.
However, our results show that storing more frames per file
and changing the packing strategy had very little effect on
the index efficiency for storing many regions. One exception
is when storing few regions (less than 64), increasing the
number of frames per file decreases the index size due to
the added redundancy available for the compressor.

VI. CONCLUSION

We have shown an index for motion detection data from
surveillance video cameras that provides a speedup of at
least two orders of magnitude when answering motion
detection queries in surveillance video. The size of the index
is small compared to the video files, especially for high
resolution video.

REFERENCES

[1] T. S. Sachs, C. H. Meyer, B. S. Hu, J. Kohli, D. G. Nishimura,
and A. Macovski, “Real-time motion detection in spiral mri
using navigators,” Magnetic resonance in medicine, vol. 32,
no. 5, pp. 639–645, 1994.

[2] Y.-L. Tian and A. Hampapur, “Robust salient motion detection
with complex background for real-time video surveillance,” in
WACV 2005.

[3] W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual
surveillance of object motion and behaviors,” IEEE Trans.
SMC, vol. 34, no. 3, pp. 334–352, 2004.

[4] R. Cutler and L. S. Davis, “Robust real-time periodic motion
detection, analysis, and applications,” IEEE Trans. PAMI,
vol. 22, no. 8, pp. 781–796, 2000.

[5] S.-C. Huang, “An advanced motion detection algorithm with
video quality analysis for video surveillance systems,” IEEE
Trans. CSVT, vol. 21, no. 1, pp. 1–14, 2011.

[6] S. Du, C. A. Rahman, S. Sharmeen, and W. Badawy, “Event
detection by spatio-temporal indexing of video clips.” IJCTE,
vol. 6, no. 1, 2014.

[7] W. C. Kao, S. H. Chiu, and C. Y. Wen, “An effective surveil-
lance video retrieval method based upon motion detection,”
IEEE ISI 2008, pp. 261–262.

[8] https://github.com/sorenvind/phd-motiondetectionindex.

