

School of Electrical Engineering and Computer Science

Dynamic Alpha Congestion Controller for WebRTC

By

Rasha Jamal M. Atwah

Submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the

requirements for the degree of

Master of Science in Systems Science

Supervisor: Dr. Shervin Shirmohammadi

University of Ottawa

Ottawa, Ontario

18𝑡ℎDecember 2015

 © Rasha Jamal M. Atwah, Ottawa, Canada, 2016

I

Abstract

Video conferencing applications have significantly changed the way in which people

communicate over the Internet. Web real-time communication (WebRTC), drafted by the World

Wide Web Consortium (W3C) and the Internet Engineering Task Force (IETF), has added new

functionality to web browsers, allowing audio/video calls between browsers without the need to

install any video telephony applications.

 The Google Congestion Control (GCC) algorithm has been proposed as WebRTC’s receiver

congestion control mechanism, but its performance is limited due to using a fixed incoming rate

decrease factor, known as an alpha (α). In this thesis, we have proposed a dynamic alpha model

to reduce the receiving bandwidth estimate during overuse, as indicated by the overuse detector.

 Experiments using our specific testbed show that our proposed model achieves a higher

incoming rate and a lower Round-Trip Time while slightly increasing the packet loss rate in

some cases compared to fixed alpha model.

 Our mathematical model proves that it is necessary to use an adaptive alpha α as the receiver-

side controller. The experimental results show improvement in the term of incoming rate,

Round-Trip Time, and packet fraction loss rate in some cases. Our model increases the amount

of incoming rate and decreases Round-Trip Time and fraction loss.

II

Acknowledgments

On the eve of this succession, I express my gratitude to the Almighty Allah, who has bestowed

upon me the strength and patience to complete my research successfully.

 I am highly indebted to my supervisor, Dr. Shervin Shirmohammadi, for allowing me to pursue

my graduate research with his team at the DISCOVER lab. I sincerely appreciate his support and

guidance throughout this undertaking. I will always remain grateful to him for his patience,

kindness, and encouragement.

 Appreciation also goes to Dr. Razib Iqbal, now an assistant professor at Missouri State

University, for taking the time to clarify my understanding of the concepts and for providing me

relevant suggestions during the research and development phase of this thesis. Without his

support, guidance, and motivation, this project would not have come to fruition at any point

throughout my degree.

 Last but not least, I must thank my parents, my kids Ajwan and Amjad, my brothers, and my

sisters. Especial thanks to my brother, Abdulrahman, he left his life and stayed with me to help

and support my study. These are the people who have poured me a bounty of affection, and I

have no words to express my gratitude towards them.

Thank you,

Rasha Jamal M. Atwah

Ottawa, Canada

III

Table of Contents

Abstract ... I

Acknowledgments .. II

Table of Contents .. III

List of Figures .. V

List of Algorithms .. V

List of Tables .. VI

Abbreviations .. VII

Chapter 1: Introduction ... 1

1.1 Motivation and Research Problem .. 3

1.2 Thesis Methodology .. 4

1.3 Challenges ... 6

1.4 Thesis Structure .. 6

1.5 Contributions in this Thesis .. 7

1.6 Research Publication ... 7

Chapter 2: Background ... 8

2.1 Congestion Control and Flow Control .. 8

2.2 Transmission Control Protocol (TCP) Congestion Control .. 9

2.2.1 Slow start and Congestion Avoidance ... 13

2.2.2 Fast Retransmit and Fast Recovery .. 13

2.2.3 Various TCP Congestion Control methods .. 14

2.3 TCP-Friendly Rate Control (TFRC) ... 15

Chapter 3: The Google Congestion Control (GCC) .. 17

3.1 Introduction to Google Congestion Control for Real-Time Commination (WebRTC) 17

3.2 Google Congestion Control Algorithm ... 19

3.2.1 Sender-side controller .. 20

IV

3.2.2 Receiver-side controller ... 20

3.3 Summary of Recent WebRTC Real-Time Video Rate Adaption ... 23

Chapter 4: Proposed Design and Implementation ... 26

4.1 The Proposed Design .. 24

4.2 Building WebRTC for Windows .. 27

4.3 Implementation of our proposed changes ... 27

4.4 Network Setup .. 28

4.5 Video Call Setup ... 29

4.6 Test Cases ... 29

4.6.1 Unconstrained Network ... 30

4.6.2 Constrained Network ... 30

4.7 WebRTC Performance Metrics ... 33

Chapter 5: Results and Analysis ... 34

 5.1 Case 1: Unconstrained Network ... 34

5.2 Constrained Network .. 38

5.2.1 Case 2: WebRTC with varying bandwidth constraints .. 38

5.2.2 Case 3: WebRTC with varying packet loss rate constraints .. 41

5.2.3 Case 4: WebRTC with two-way propagation delay constraints .. 44

5.2.4 Case 5: WebRTC with varying Bandwidth, Packet Loss Rate, and Delay constraints 47

Chapter 6: Conclusion and Future Work .. 52

6.1 Conclusion .. 52

6.2 Discussions and Future Work ... 53

References ... 54

V

List of Figures

Figure 1: CU-SeeMe video call (1993). .. 2

Figure 2: Thesis Methodology. ... 4

Figure 3: Internet layers with TCP/UDP protocol architecture. ... 9

Figure 4: TCP specification (standard track). ... 11

Figure 5: The TCP header. .. 12

Figure 6: GCC Receiver-side and Sender-side components. .. 18

Figure 7: Overuse status for three different sessions. ... 29

Figure 8: Testbed Architecture (unconstrained network). .. 30

Figure 9: Testbed Architecture (constrained network). .. 31

Figure 10: Average incoming rate (kbps) for 12 sessions. .. 35

Figure 11: Average of Round-Trip Time (ms) for 12 sessions. .. 35

Figure 12: Average of Packet Loss Fraction (packets) for 12 sessions. ... 36

Figure 13: Incoming rate increase amount (kbps) under different bandwidth constraints. 39

Figure 14: RTT decrease amount by percentage under different bandwidth constraints. 40

Figure 15: Packet Loss Fraction under different bandwidth constraints. .. 41

Figure 16: Incoming rate (kbps) under different packet loss rate constraints. .. 42

Figure 17: Packet Loss Fraction (number of packets) under different packet loss rate constraints 43

Figure 18: Round-Trip Time (ms) under different packet loss rate constraints .. 44

Figure 19: Incoming rate (kbps) under different two-way delay constraints. ... 45

Figure 20: Packet loss fraction (packets) under different two-way delay constraints 46

Figure 21: Round-trip time decrease amount (ms) under different two-way delay constraints. 47

Figure 22: The incoming rate under different Network constraints. ... 48

Figure 23: Packet loss fraction under different Network constraints. ... 49

Figure 24: RTT over different Network constraints. .. 50

List of Algorithms

Algorithm 1: Overuse detector pseudo-code. ... 22

Algorithm 2: Rate control region algorithm. .. 23

VI

List of Tables

Table 1: Receiver-side controller’s main components. .. 19

Table 2: Different assumed T values and the expected dynamic alpha. 26

Table 3: Test cases with network attributes. ... 32

Table 4: WebRTC results for the original model and the proposed model. 37

Table 5: Incoming rate increase amount by percentage. .. 39

Table 6: RTT decrease by percentage. .. 40

Table 7: Packet Loss Fraction under different Bandwidth Capacity. ... 41

Table 8: The incoming rate increase percentage. ... 42

Table 9: The percentage of Packet Loss Fraction decrease. ... 43

Table 10: The percentage of RTT decrease. ... 44

Table 11: The percentage of the incoming rate increase. ... 45

Table 12: The percentage of Packet Loss Fraction decrease. ... 46

Table 13: The percentage of RTT decrease. ... 47

Table 14: The percentage of incoming rate increase for Case 5. .. 48

Table 15: The percentage of packet loss fraction difference for Test Case 5. 49

Table 16: The percentage of RTT difference for Test Case 5. ... 50

VII

Abbreviations

 DCCP Datagram Congestion Control Protocol

 DSACK Duplicate Selective Acknowledge

ECN Explicit Congestion Notification

ERD Early Random Drop

FTP File Transfer Protocol

HTML5 Hyper Text Markup Language

IETF Internet Engineering Task Force

 LEDBT Low Extra Delay Background Transport

NAT Network Address Translation

PSNR Peak Signal-to-Noise Ratio

RED Random Early Detection

RTC Real-Time Commination

 RTCP Real-Time Control Protocol

 RTCWeb Real-Time Communication for Web

RTO Retransmission Timeout

RTT Round-Trip Time

SACK Selective Acknowledgment

SSIM Structure Similarity

SWS Silly Window Syndrome

TCP Transmission Control Protocol

W3C World Wide Web Consortium

WebRTC Web Real-Time Communication

1

Chapter 1

Introduction

In this chapter, we define the problem and demonstrate our goal. We started with a brief

introduction to the research area; we explain the motivation behind our work; we present the used

methodology, and the challenges we face while working on our thesis, and we outline the general

structure of the thesis. Finally, we present our work’s contributions.

 The enormous popularity of mobile technologies such as smartphones and tablets has

encouraged competition amongst video conferencing system developers to implement Real-Time

Communication (RTC) applications and to enhance further the RTC technology. Video

conferencing systems have had a paradigm shift in our lives due to how much cheaper, faster, and

more efficient. Skype and iChat are two of the most popular examples of video conferencing

systems that allow RTC.

 The Internet and RTC applications have made our world smaller. We have nearly instant

communication with anybody in the world by using any real-time application software. People in

any location can communicate via the Internet in various ways, including through social networks

(like Facebook, Twitter, etc.), video/audio applications, and gaming. The business industry has

also benefitted from real-time communication technology. Real-time communication applications

have increased the efficiency of business communication, regardless of the company’s size, the

number of employees, or even where the employees are located.

 Video conferencing technology became readily available to the public with affordable costs and

acceptable video compression technology during the 1990s [31]. In 1992, CU-SeeMe was

introduced. Figure 1 shows Global Schoolhouse students communicating via CU-SeeMe with a

video frame rate of 3-9 frames per second [31]. In the 2000s, Skype was getting popularity as a

free video conferencing application that worked via the Internet with low cost and low video

quality. However, the current version of the Skype application is more efficient and much higher

quality compared to the original version. In 2010, video conferencing developers extended the

capabilities of video conferencing applications for use on mobile systems.

2

Figure 1: CU-SeeMe video call (1993).

 In 2012, Web Real-Time Communication (WebRTC) was proposed as a new function that aimed

to implement RTC into web browsers, enabling video/audio calls between two or more end users

with no need to install third party plug-ins or specific applications. Some video/audio service

providers require their users to install specific applications, such as Google Hangouts [12]. Also,

some social networks require installing a specific application, such as Facebook, which provides

video/audio chat services for their subscribers, but the users have to install third party plug-ins to

improve the features of the existing browser [3]. Integrated WebRTC enhances web browser

features without the risk of session set-up failures due to conflicting plug-ins.

 Real-Time Communication on the Web (RTCWeb) is an open source project of the Internet

Engineering Task Force (IETF) and World Wide Web Consortium (W3C) team that aims to

standardize protocols and infrastructures for WebRTC [28]. Web developers can add WebRTC

features to their browsers via utilizing standard Hyper Text Markup Language (HTML5) with

simple Javascript APIs [19]. As with other Internet services that are provided to the public,

WebRTC must provide a certain level of quality to compete with other real-time interactive

applications, particularly with the growth of mobile users that has rapidly increased the network

load. WebRTC has to deal with quality from two different perspectives: the user’s and the

network. From the user’s perspective, services such as WebRTC and real-time technology have to

be provided with less packet loss and delays, along with a high incoming rate and video quality.

From the network perspective, the Internet infrastructure relies on the shared link, and when the

link reaches its capacity, WebRTC must have a mechanism that can deal with bottleneck problems

and congestion to produce acceptable performance during a WebRTC video session. Therefore,

IETF and W3C working groups have proposed a congestion control mechanism for WebRTC to

satisfy the quality requirements for real-time applications [25]. Their solution was the Google

3

Congestion Control Algorithm, which has two main controllers: Receiver-side controller and

Sender-side controller.

 This thesis proposes a rate adaption model for the receiver-side controller under congestion that

provides a high incoming rate with less delay. We implemented our model over unconstrained and

constrained networks. We compared our model performance with Google’s model regarding

incoming rate, Round-Trip Time (RTT), and packet loss fraction, in most cases.

1.1 Motivation and Research Problem

WebRTC API contains a congestion control mechanism that is proposed as the Google

Congestion Control Algorithm [25]. This master thesis focuses on the Google Congestion

Control’s receiver-side controller.

When congestion occurs, users experience packet losses or delays in picture or sound. The Google

congestion receiver-side controller reduces the receiving rate to stabilize the algorithm. The

receiver reduces the current incoming rate by a fixed amount. This reducing amount is called an

alpha (α). Alpha is a decreasing factor that is typically chosen to be in the interval [0.80, 0.95].

The receiver controller multiplies the decreasing factor (alpha) by the current incoming rate to

estimate the new receiving rate.

 As we explained previously, alpha is fixed amount which means it does not take into account any

parameters such as bottleneck network status or queuing delays. When congestion occurs, the

queuing delay becomes greater than the threshold and regardless of how much this difference is,

the receiver has to decrease its rate by fixed alpha. Therefore, the big difference between queuing

delay and threshold signs the same decreasing amount (fixed alpha) same as the small difference.

Thus, this reflects negatively on WebRTC performance as a general, and it presents in the form of

a low-quality video session.

 The overall aim of this thesis is to propose a dynamic rate adaption model that reacts with the

network status and queuing delays rather than simply reducing the incoming rate by fixed alpha.

The way to achieve this goal is proposing a dynamic alpha model can able to adapt to the network

changes. Therefore, suggesting a dynamic alpha mathematical model will enhance WebRTC

performance when the congestion occurs.

 We implemented our model based on WebRTC reference code [29], and for evaluating the

model, we assumed some scenarios to investigate how the receiver side will behave. The

scenarios include realistic environment with constrained (some network constraints are set such

as bandwidth capacity, packet loss rate, and delay), and unconstrained networks (no constraints

4

are set). Our experiments contain five test cases that are grouped into two based on whether the

network is constrained or unconstrained. Over an unconstrained network, we only have one test

case, and the rest test cases are over constrained network. The network parameters that are

changed from test case to another are the bandwidth capacity, packet loss rate, and two-way

delay. We evaluated our model according to different performance metrics, such as packet loss,

RTT, and incoming rate. Matlab has been used to plot and analysis the experiment results. The

analysis of the experimental results provided an overall evaluation of the WebRTC video

performance.

During this research, the following research question was identified: What is the general impact

of using a dynamic reduction model to estimate the receiving rate?.

To answer this question, the following things are needed:

• Observation of WebRTC behavior over a real environment with no constraints.

• Observation of WebRTC over a constrained network.

• Implementation of the rate adapting model in WebRTC reference code.

• Evaluation of the proposed model’s impact on interactive, real-time WebRTC sessions.

 • Comparing the performance metrics to the Google Congestion Control Algorithm’s

performance metrics.

1.2 Thesis Methodology

The main phases of our research methodology are shown in Figure 2, and we outline the main

details for each phase.

Figure 2: Thesis Methodology.

1
Requirement Collecting

Development and Implementation
2

3
 Results and Discussion

5

Phase 1: Requirement Collecting

 In this initial step, we collected published literature related to WebRTC and the congestion

control topic. We also defined our research area and proposed research questions to establish our

main objectives. The research questions are:

• What are the problems highlighted by the previous researchers?

• What is the problem that has to be our main goal?

• What is the possible reason behind this problem?

• What are the parameters that have direct and indirect relations with the problem?

• How to combine this parameter in the form of a mathematical equation?

At the end of this phase, we had the main research goal and an initial image of what our system

would be.

Phase 2: Development and Implementation

 In this phase, we worked on a number of activities. We proposed a rate adaption model for the

receiver-side controller in case congestion occurs. Furthermore, we investigate the efficiency of

the proposed model over an unconstrained network, without any network conditions, and over a

constrained network, with specific network conditions. We performed some activities in parallel,

such as building the WebRTC environment and working on the mathematical equation. However,

some of the activities relied on each other, and we worked on them task-by-task sequence, such as

building the WebRTC and then implementing our model. The implementation phase took longer

than the other phases for many reasons:

• We had to suggest different mathematical models and discuss our model in weekly meetings to

explore various options as well as to improve the design.

• We spent significant time building the WebRTC and fixing the set-up errors.

• We had to rely on the IETF RTCWeb group members in the WebRTC Google discussion group

[13] for clarifications for some of our building errors. We also had to design the experimental

scenarios and test our model.

6

Phase 3: Results and Discussion

We used analytical methods to evaluate the proposed model and our statistical results. We

compared our results with the Google’s model. To share our findings with the research

community, we published our initial results at the IEEE International Symposium on Multimedia

(ISM) 2015 conference.

1.3 Challenges

Working with WebRTC as a new technology presents a number of challenges:

• Since WebRTC was first proposed in 2012, we did not find many documentations or

previous literature that investigated and analyzed the Google Congestion Control. There is

even a lack of analytical experiments regarding the general congestion control mechanisms

and behaviors.

• Currently, WebRTC is still under development, and there have been many changes

added to the WebRTC code that are not yet updated in the internet draft published in this

document [25].

• WebRTC in this thesis was built according to the instructions guide that is available on

the WebRTC official site [28]. With little experience with the WebRTC environment, we

faced some technical problems related to the installation, which delayed setting up our

testbed environment.

• Almost all documents regarding WebRTC dive into the JavaScript code and HTML5

without focusing on the other aspects of WebRTC, such as security issues and suggestions

for improving the congestion control mechanism.

1.4 Thesis Structure

The Rest of the thesis is structured as follows:

• Chapter 1 is an introduction chapter that explains real-time communication and video

conferencing, clarifies the challenges in this work, and summarizes the thesis

methodology.

• Chapter 2 discusses the concept of congestion and presents the background for the work.

• Chapter 3 illustrates the Google Congestion Control and the latest research related to the

topic.

7

• Chapter 4 describes the experimental environment setup and presents the

implementations of the proposed rate adaption model.

• Chapter 5 explains the scenarios and presents their results.

• Chapter 6 concludes the thesis and illustrates the future work.

1.5 Contributions in this Thesis

The Google Congestion Control Algorithm for the receiver-side uses fixed alpha to calculate

the receiving rate. In this thesis, we make the following contributions:

• We model a dynamic Alpha to compute the receiving rate. Since the receiver controller

contains overuse detector which is responsible for determining whether the network

overuse, underuse, or normal, the receiver can then take advantage of the overuse detector

information, such as the difference between the threshold and the delay variation. This

information helps to estimate its receiving rate in case of overuse. To the best of our

knowledge, we are the first researchers who work on modeling alpha.

• We propose our mathematical model to estimate the receiving rate in case of overusing.

Implementing this mathematical model increased the incoming rate, decreased RTT, and

improved packet loss in most cases.

1.6 Research Publication

[1] Rasha Atwah, Razib Iqbal, Shervin Shirmohammadi, and Abbas Javadtalab, “Dynamic Alpha

Congestion Controller for WebRTC”, IEEE International Symposium on Multimedia, Miami,

USA, Dec14 – 16, 2015.

8

Chapter 2

 Background

This chapter provides a brief background of congestion control concepts, rate adaption algorithms

and earlier research findings. We explain TCP congestion control that is used to transmit reliable

date and how it works. We illustrate some congestion control algorithms that are currently used in

the Internet applications. Also, since the sender side in the GCC algorithm uses TCP-Friendly

Rate Control (TFRC) to estimate the sending rate, we provided more details about the TFRC

algorithm.

2.1 Congestion Control and Flow Control

There is no standard definition of congestion. According to [33], “Congestion occurs when

resource demands exceed the capacity.” Therefore, we can set our own definition from two

perspectives: the network perspective, and the user perspective. From the network perspective, if

we have two or more sources, and each source increases its sending rate beyond the link capacity,

after a while the network will get congested. From the user perspective, congestion is a form of

decreased quality, which appears in the form of delays or packet loss. To allow the user to use the

network as efficiently as possible, and since the Internet provides the best effort service to its

users, there have been many proposed congestion control technologies and mechanisms [30].

 Congestion control or congestion avoidance is the process of controlling or avoiding the

congestion to attain a higher throughput, lower loss ratio, and smaller delays with a lower average

queue size. First, we must point out the difference between two terms: congestion control and

flow control. Congestion control is for protecting the network from being congested; however,

flow control is for protecting the receiver from overload by informing the sender to slow its

sending rate [30].

 There are few commonly used congestion avoidance mechanisms, such as Drop Tail, Random

Drop, Early Random Drop (ERD), and Random Early Detection (RED), etc. Drop Tail is one of

the simplest congestion avoidance mechanisms; however, it gives lower throughput. It is a first

_in_first out (FIFO) queuing mechanism [9]. When the queue becomes full, the last arrived

packets are dropped. In the ERD mechanism, when the queue size exceeds a certain threshold, the

packets are dropped with a fixed drop probability [14]. RED is a congestion control mechanism

9

proposed in the early 1990s [9]; however, it is still being used today due to its efficiency and

considerable throughput. [10]. In RED, after each packet arrives, the average queue size is

computed, and the congestion is detected. There are two threshold levels on the average queue

size: the Max threshold and the Min threshold. When the average queue size reaches the Min

threshold, the arriving packets are dropped based on a creation probability. If the queue size is

reached or begins to be greater than the Max threshold, the arriving packets are dropped [9].

2.2 Transmission Control Protocol (TCP) Congestion Control

 Transmission Control Protocol (TCP) is a protocol for providing reliable data transmission across

an unreliable IP communication channel [10]. TCP is the most widely used protocol on the

Internet, and most internet applications, such as email, web browsers, and File Transfer Protocol

(FTP) download, use TCP. Figure 3 illustrates the Internet architecture and the position of TCP.

 Figure 3: Internet layers with TCP/UDP protocol architecture.

 The importance of TCP appears in the congested network when the packet loss increases; TCP

recovers the lost packets by retransmitting them. The Internet had experienced a problem called

congestion collapse for the first time in the 1980s, and RFC 896
1
is one of the earliest documents

that mentioned the congestion collapse term [10]. According to [10], congestion collapse occurs

when the sender’s rates increase, which leads to reducing throughput. When the congestion

collapse occurs, the packets are lost, which means most packets in the network are retransmitted,

1
 https://tools.ietf.org/html/rfc896.

10

causing congestion. The solution to such a problem was described in RFC 5681
1
, which proposed

a slow-start algorithm and a sender rate adaption in case packet loss is detected and a

retransmission at lower rates [21]. This solution was implemented in TCP itself and in any

application that uses TCP. Approximately 127 documents have been published related to the TCP

topic [10].

 One of the earliest specifications of TCP was described in RFC 675
2
 in 1974 by the name

“Transmission Control Program.” However, the most important TCP document was described in

RFC 793
3
 in 1981, and it is considered the foundation of TCP [10]. RFC 793 replaced the earlier

document, RFC 675, due to its robustness. RFC 793 acknowledged the reliable full-duplex

transmission and pointed out that retransmission timeout should be dynamically determined [10].

According to [10], all TCP details are described in the ‘standard track’ RFCs that are shown in

Figure 4. We point out the main philosophy of the design of TCP in subsequent sections.

1
 https://tools.ietf.org/html/rfc5681

2 https://tools.ietf.org/html/rfc675
3 https://www.rfc-editor.org/rfc/rfc793.txt.

11

1981 RFC 793
1

1989 RFC 1122
2

 1992 RFC 1323
3

 1996 RFC 2018
4

 1999 RFC 2581
5

 2000 RFC 2883
6

 2000 RFC 2988
7

 2001 RFC 3042
8

 2001 RFC 3168
9

 2002 RFC 3390
10

 2003 RFC 3517
11

 2004 RFC 3782
12

Figure 4: TCP specification (standard track).

1 https://www.rfc-editor.org/rfc/rfc793.txt.
2 https://tools.ietf.org/html/rfc1122.
3 https://www.ietf.org/rfc/rfc1323.txt.
4 https://tools.ietf.org/html/rfc2018.
5 https://tools.ietf.org/html/rfc2581.
6 https://tools.ietf.org/html/rfc2883.
7 https://tools.ietf.org/html/rfc2988.
8 https://tools.ietf.org/html/rfc3042.
9 https://tools.ietf.org/html/rfc3168.
10 https://tools.ietf.org/html/rfc3390.
11 https://tools.ietf.org/html/rfc3517.
12 https://tools.ietf.org/html/rfc3782.

The basics.

Slow start and congestion avoidance, Silly Window Syndrome (SWS) avoidance/Nagle,

RTO calculation, delayed Acknowledge .

Timestamps, window scaling.

Selective ACK (SACK).

Duplicate selective ACK (DSACK).

Retransmission timeout (RTO)

Full specification of slow start, congestion avoidance, and FR/FR.

Limited transmit.

 Explicit Congestion Notification (ECN).

Larger initial window.

SACK-based loss recovery.

NewReno.

https://en.wikipedia.org/wiki/Network_congestion#Explicit_Congestion_Notification_.28ECN.29

12

This paragraph and the next one are based on [20]. TCP implements windows-based flow control

on its transmission rate. Using windows-based or a sliding window means that the receiver allows

the sender a certain amount of data (‘window’), and the sender cannot send more than the full

window before receiving the acknowledgments (ACK). TCP gives a sequence number to each

segment and notifies the sender with the next expected sequence number that the receiver is

willing to receive, as illustrated in Figure 5, which shows the TCP header. When the ACK is

received, the received segment is removed from the transmission buffer. However, if the

retransmission timeout (RTO) timer expires before the corresponding ACK is received, the TCP

retransmits the lost segment [20]. The receiver can also notify the sender that a certain segment

has not been received by sending a negative acknowledgment (NACK).

Figure 5: The TCP header.

 To understand TCP congestion control mechanisms, we have to define the following terms to

illustrate the four control algorithms that are implemented in TCP:

 The congestion window (cwnd) is a TCP state variable that limits the amount of data that

can be sent by the TCP sender.

 The receiver window (rwnd) is the advertised receiver window.

 The maximum segment size (MSS) is the largest segment size that can be transmitted.

 The slow-start threshold (ssthresh) is another TCP state variable that determines whether

TCP should do a slow-start or a congestion avoidance algorithm to control the data

transmission. This variable was proposed in RFC 2581 in 1999. The initial ssthresh value

may be arbitrarily high, but it can be reduced in response to congestion and is often set to

13

64 kb [10-20]. When cwnd < ssthresh, the slow-start algorithm is used. On the contrary,

the congestion avoidance algorithm is used when cwnd ˃ ssthresh. In the case of cwnd =

ssthresh, the TCP sender may have the chance to use a slow-start or a congestion

avoidance algorithm.

2.2.1 Slow Start and Congestion Avoidance

 Slow-start and congestion avoidance algorithms are used to control data transmission between the

TCP sender and receiver. The TCP sender implements the congestion window state variable

(cwnd) to limit the amount of transmitting data; however, the TCP receiver implements the

advertised window (rwnd) to limit the outstanding data [20]. The slow-start threshold (ssthresh)

determines whether a slow-start or a congestion avoidance algorithm is used.

 The slow-start algorithm is used when data begins transferring between two peers; if there is not

enough information about the network conditions, such as available bandwidth, the TCP sender

starts transmitting the data in a slower mode to avoid congestion [20]. The process starts with only

one segment sent, and then one ACK is received. During the slow start, TCP increases cwnd by

the MSS bytes for each ACK received, at most. When the slow-start threshold (ssthresh) is

reached, or congestion is detected, the slow start ends. .

By combining the slow start and congestion avoidance algorithms, we get a single congestion

control algorithm that works as follows:

1. The TCP sender works under the slow-start mode at the beginning of the connection, and

it remains like that until ssthresh is exceeded or congestion is observed.

2. The TCP sender switches to the congestion avoidance mode until packet loss is detected.

3. The TCP sender goes back to the slow-start mode [10].

2.2.2 Fast Retransmit and Fast Recovery

 When an out-of-order segment arrives, the TCP receiver sends a duplicate ACK to the sender to

inform the sender that it received an out-of-order segment. According to [20], there are three

reasons that can cause the duplicate ACKs: a dropped segment, re-ordering segments, or a

replicated ACK or data segment. Receiving three duplicate ACKs is an indicator of packet loss,

[10]. Therefore, when the sender receives the duplicate ACKs, the sender uses the fast retransmit

algorithm to resend the lost segment and repair the loss. After the sender receives the duplicate

ACK, it retransmits the lost segment even without waiting for the retransmission timer to expire.

Until a non-duplicated ACK arrives, the fast-recovery algorithm is used to transmit the new data.

14

2.2.3 Various TCP Congestion Control methods

We give more details about some congestion control mechanisms such as slow start, congestion

avoidance, and re-transmission. In this section, we set the main points of some of commonly used

congestion control and avoidance mechanisms that have proposed for TCP/IP protocols, namely:

Tahoe, Reno, New-Reno, SACK, and Vegas. According to [1], the paper starts with giving a brief

look at each of the congestion control algorithms and noting some differences between each

others. Here, we outline the main parts of reference [1].

TCP Tahoe is TCP congestion control algorithm that was suggested by Jacobson in [16]. TCP

implements the principle of ‘conservation of packets’ by using the acknowledgment to clock

outgoing packets and maintains a congestion window cwnd to reflect the network capacity. TCP

Tahoe uses slow-start and congestion avoidance algorithms that we explain in details in the

previous section. The main thing in Tahoe is that it detects packet losses by timeout. However,

one of TCP Tahoe problems is that it takes a complete timeout interval to detect packet loss and

sometimes, it takes even longer. Also, whenever a packet is lost, TCP Tahoe has to wait for the

timeout and the pipeline is emptied which offers the main cost in high bandwidth delay links.

 TCP Reno uses the basic principle of TCP Tahoe, but it detects the packet loss earlier, [17]. TCP

Reno suggested an algorithm called, “Fast Retransmit” that is mentioned in the previous section.

Another modification that is suggested by TCP Reno is avoiding reduce the congestion windows

to 1 after a packet loss. When the packet losses are small, Reno works very well over TCP.

However, with multiple packet losses in one window, TCP Reno is same as Tahoe in

performance. Both of them cannot perform too well under high packet loss. Moreover, no

received DACK if the windows are very small when the loss occurs. Thus, TCP Reno cannot

effectively detect multiple packet losses.

TCP New Reno is a slight modification over TCP Reno that can detect multiple packet losses

[23]. This modification is on the fast-recovery phase that allows multiple re-transmission.

Furthermore, TCP New-Reno overcomes the problem faced by Reno of reducing the congestion

window many times by avoiding exit fast-recovery phase until all outstanding data is

acknowledged. The drawback of New-Reno is that it takes one RTT to detect each packet loss.

Selective Acknowledgment (SACK) is an extension of TCP Reno which the segment

acknowledged selectively [2]. SACK does not send a new packet before checking which segment

15

unreceived and resend it [8]. SACK overcomes the problems faced by TCP Reno and TCP New-

Reno which are a detection of multiple lost packet and re-transmission of more than one lost

packet in one RTT. Since each ACK contains a block that describes the selective segment, the

sender has the idea of which segments have been acknowledged. The major problem in SACK

that is the selective acknowledgments are not provided by the receiver. Also, SACK is not very

easy to incorporate in TCP.

 TCP Vegas has modified extension of Reno. TCP Vegas still uses the other mechanisms of

Reno and Tahoe. However, to prevent congestion in the network, TCP Vegas suggests three major

changes:1) a modified slow start algorithm.2) a modified congestion avoidance, and 3) new re-

transmission mechanism. Vegas modified slow start and congestion avoidance algorithms to be

more accurate in measuring the available bandwidth more than Tahoe. Thus, it uses network

resources efficiently. Also, the new re-transmission mechanism overcomes Reno’s problem of not

being able to detect packet loss when the window is small by preventing many of the coarse-

grained timeouts. It checks if the current time segment transmission is greater than RTT or not. If

the current time segment transmission ˃ RTT, the Vegas immediately retransmits the segment

with no need for waiting for three DACK or coarse timeout, [4].

2.3 TCP-Friendly Rate Control (TFRC)

According to [24], RFC 5348 defines the TCP-friendly rate control as “TFRC is a congestion

control mechanism designed for unicast flows operating in the Internet environment and

competing with TCP traffic.” In other words, TFRC is a congestion control algorithm that

provides a smooth transmission rate for real-time applications [26]. TFRC is designed to give the

best performance for applications that use a fixed segment size and vary their sending rates in

response to congestion [24]. However, for applications that do not use a fixed segment size, such

as video applications, the TFRC perhaps gives less performance because these applications vary

their sending rates according to the needs of the application. The Google Congestion Control

sender-side implements TFRC to estimate the sending rate based on Equation 2.1. Later, we will

cover how the sender side adjusts its sending rate based on the TFRC rate, and more details are

presented in subsequent sections. TFRC calculates its transmission rate, according to the TCP

throughput equation shown below [15]:

16

Where X is the sending rate in byte/second, s is packet size in bytes, R is Round trip time in

second, p is loss event rate between 0 and 1, t_RTO is the TCP retransmission timeout values in a

second, and b is the number of packets acknowledged by a single TCP.

 The receiver uses timestamps and RTT to determine if losses belong to the same loss event or

not. The TCP throughput equation takes the RTT to calculate the TFRC rate. The sender can

adjust its sending rate, according to the TFRC rate [26]. According to [13], RFC 3448 is suited for

many multimedia streaming applications. However, it is also used for the continuous flow of data

[26]. The development of TFRC is still ongoing in the IETF group.

X=
𝐒

𝐑√
𝟐𝒃𝒑

𝟑
+ {𝐭_𝐑𝐓𝐎 (𝟑√

𝟐𝒃𝒑

𝟖
)𝐩 (𝟏+𝟑𝟐 𝒑𝟐)

 (Equation 1.1)

17

Chapter 3

The Google Congestion Control (GCC)

 In this chapter, we explain the main components in the GCC algorithm. We show the rate

adaption model for both the receiver-side and the sender-side. Furthermore, we present the

algorithms for the overuse detector and the rate region to provide a deeper understanding for the

overuse detector and rate region mechanisms

3.1 Introduction to Google Congestion Control for Real-Time Commination

(WebRTC)

The increased popularity of the accessibility and mobility of multimedia and video conferencing

applications has motivated the creation of browser-to-browser video conferencing technology that

can compete with current standalone video conferencing applications. WebRTC is an effort to

embed real-time communication capabilities into browsers and mobile applications via HTML5

tags and simple JavaScript APIs [19].

The long-term goal of WebRTC is to allow any web browser running on any operating system and

any device to connect seamlessly with any other web browser running on any operating system

and any device via the Internet and to communicate in real-time, as long as both web browsers

support WebRTC. WebRTC is open source and is currently implemented on three browsers:

Google Chrome, Firefox, and Opera [28]. Without the need for any native applications, WebRTC

offers many rich features, such as running across different operating systems and browsers,

desktop and mobile compatibility, and support for multiple media sources.

 Like any other real-time multimedia system operating over a best-effort network such as the

Internet, WebRTC requires a congestion control mechanism that satisfies the congestion control

requirements [18]. Requiring a congestion control mechanism is to ensure the smooth flow of

media packets (audio, video, etc.) in the face of dynamically changing network parameters (packet

loss rate, bandwidth, delay, etc.) so as to improve the user’s experience. The IETF and W3C

working groups have proposed the Google Congestion Control Algorithm (GCC) [25] as the

current WebRTC congestion control mechanism. According to [11], GCC employs two main

controller models: Receiver-side and Sender-side controllers. Figure 6 illustrates the main

components of each controller, where the receiver-side controller itself is composed of the five

18

main components shown in Table 1: arrival-time filter, remote rate region, overuse detector,

remote rate controller, and receiver estimated max bitrate (REMB) message processing.

Figure 6: GCC Receiver-side and Sender-side components.

The sender-side consists of two main components: TCP-friendly rate control (TFRC) bandwidth

estimation and the sending rate controller. The dynamic behavior of the WebRTC congestion

control has a significant impact on WebRTC’s performance as perceived by the user. The work in

[11] is one of the earliest documents that focuses on understanding the dynamic behavior of GCC.

It showed that TCP flow starves a WebRTC flow when they share the same link. The reason

behind such issue is the threshold mechanism that is employed by the GCC’s receiver side. The

researchers found that a threshold ¯γ has a significant impact on the dynamic of the receiving rate

Ar(i). They showed the impact on some metrics such as the channel utilization, the queuing delay,

the loss ratio, and the fairness of the WbRTC flow when coexisting with a TCP flow [11]. They

suggested not to use the default value of the threshold ¯γ = 25/60 ms.

As a remedy, authors in [5] proposed a mathematical model for adapting the threshold, ¯γ,

dynamically to provide fair coexistence of WebRTC flows with TCP flows. Their results showed

that the proposed model can fairly share the bottleneck between WebRTC flows and TCP flows.

19

 Table 1: Receiver-side controller’s main components.

3.2 Google Congestion Control Algorithm

 Congestion occurs when a data network’s resources reach near their maximum capacity.

According to [30], we can define congestion, from the end-user perspective, as a decrease in the

service quality due to a high network load. Subsequently, we can use congestion control or

congestion avoidance techniques to use the network as efficiently as possible. Therefore,

congestion control is an important requirement for all applications that share the Internet [26]. The

GCC is the proposed congestion avoidance algorithm for WebRTC, and it is a rate-based control

algorithm; the sender is aware of its sending rate, and the receiver informs the sender of the next

expected receiving rate to prevent the sender from exceeding this rate. GCC is an internet draft

[25] that explains the congestion control implemented in WebRTC; however, we must note that

there are many changes being made to WebRTC’s current implementation that have not yet been

added to this internet draft. The internet draft highlights two congestion control algorithms that are

implemented on the receiver side and the sender side. The sender side is a loss-based module,

while the receiver side is a delay-based module, as described next.

Component Name

Component Functions

Arrival-Time Filter

Estimating the queuing time variation T

Remote Control Region

Computing the threshold ᵞ

Overuse Detector

Producing a signal (i.e. Overuse, Underuse, or Normal) based

on the queuing delay variation T and the threshold ᵞ

Remote Rate Controller

Estimating the next expected receiving rate (Ar)

REMB Messages

Processing

Notifying the sender with the next expected receiving rate (Ar)

20

3.2.1 Sender-side controller

The sender is responsible for monitoring packet loss and adjusting the sending rate. The sender-

side estimates the sending rate by using the TCP-friendly rate controller (TFRC) equation [6]

based on the feedback from the receiver side. The feedback from the receiver arrives in the form

of real-time transport control protocol (RTCP) reports, which carry the packet loss rate (p) and

Round-Trip Time (RTT). Also, the Receiver Estimated Maximum Bit (REMB) messages contain

the maximum rate (Ar) that is expected to be handled by the receiver side. As in [11], the sender

side uses the packet loss rate to estimate the sending rate (As), which is given by Equation 3.1:

𝑨𝒔(𝒊) = {

𝒎𝒂𝒙[𝐒(𝒊), 𝑨𝒔 (𝒊 − 𝟏)(𝟏 − 𝟎. 𝟓𝒑)] 𝒊𝒇 𝒑 ˃ 𝟎. 𝟏𝟎

𝑨𝒔(𝒊 − 𝟏) 𝒊𝒇 𝟎 . 𝟎𝟐 < 𝒑 < 𝟎. 𝟏𝟎

𝟏. 𝟎𝟓[𝑨𝒔(𝒕 − 𝟏) + 𝟏𝐤𝐛𝐩𝐬] 𝒊𝒇 𝒑 < 𝟎. 𝟎𝟐

 (Equation 2.1)

Where S(𝑖) is TCP throughput at time 𝑖 that is used by TFRC [24], and 𝑝 is the packet loss rate. In

Equation 3.1, the relationship between the packet loss rate and the estimation of the sending rate

can be summarized as follows:

1. If 𝑝 is larger than 10%, then the sending rate is decreased.

2. If 𝑝 is less than 2%, then the sending rate is increased.

3. If 𝑝 is between 2% and 10%, then the sender maintains the previous sending rate.

Also, as per [6], the new sending rate must be less than the receiver’s rate estimation and larger

than the TFRC, as shown in the following:

TFRC < As(i)< Ar(i)

 3.2.2 Receiver-side controller

 While the sender’s main purpose is monitoring packet loss and computing the sending rate, the

receiver’s purpose is monitoring the video stream and the changes in frame delay. According to

[11], the receiver side estimates the receiving rate given in Equation 3.2 based on the state of the

overuse detector. The overuse detector monitors the changes in the frame delay and the state of

the bottleneck to produce one of three signals: Overuse, Underuse, or Normal, according to

Algorithm 1 which is derived from the codes in [29] and shown on the next page. In addition, the

receiver side computes the packet loss rate (p) and sends it with the receiving estimate (Ar) and

RTT to the sender side via REMB messages and RTCP reports.

21

𝑨𝒓(𝒊) = {

𝛈𝐀𝐫(𝐢 − 𝟏) 𝐈𝐧𝐜𝐫𝐞𝐚𝐬𝐞

𝐀𝐫(𝐢 − 𝟏) 𝐇𝐨𝐥𝐝
𝛂 𝐑(𝐢) 𝐃𝐞𝐜𝐫𝐞𝐚𝐬𝐞

 (Equation 3.2)

Here, Ar(i-1) is the previous receiving rate estimate, η is the receiving rate increase factor, R(i) is

the current incoming rate, and α is the incoming rate decrease factor. The α is a fixed value

(normally chosen between 0.80 and 0.95) while the receiving rate estimate is constrained by the

following condition [6]:

 Ar(i) < 1.5 × R(i)

Where R(i) is the incoming rate. We can interpret the stream flow between the receiver and the

sender from Figure 6. The media stream flow is sent by the sender to the receiver with the RTP

packets while the arrival-time filter computes the queuing delay variation, T. The remote control

region sets the threshold according to Algorithm 2, also shown below. There are three region

statuses that are set, based on whether we are far from congestion (MaxUnknown), close to

congestion (NearMax), or congested (AboveMax).

 According to [9], the default threshold value used by the Chrome browser is 25/60 ms, but

when we are close to congestion, the threshold is halved. Then, the overuse detector receives the

queuing delay variation T from the arrival-time filter and the threshold from the remote control

region to produce a signal according to Algorithm1. Based on the overuse detector signal, the

remote rate controller estimates the receiving rate based on Equation 3.3 and sends it to the sender

via REMB messages with the packet loss rate value. On the sender side, the sender receives the

packet loss rate and the receiving rate estimate. The sender side calculates the TFRC and the

sending rate, according to Equation 3.1. The sender compares the sending rate with the TFRC

throughput to ensure compliance with the constraint in Section 3.2.2. Finally, the sender sets its

sending rate and sends the next stream.

22

1 //Overuse Detector

2 IF number of deltas < 2

3 Then Overuse detector state = Normal

4 /*compute T, which is the offset estimate multiply of number of deltas*/

5 T = min (number of deltas, 60) * offset

6 //compare T with threshold (ᵞ)

7 IF T ˃ γ

8 // Initialize the timer of time of overusing (the time spent in overusing period)

9 IF time of overusing = -1

10 Then time of overusing = ts _deltas/2

11 Else time of overusing = time of overusing + ts _deltas

12 // increase Overusing counter by 1

13 Overuse counter = +1

14 /* check if the time of overusing counter reaches Overusing time threshold

15 and check Overuse counter too */

16 IF time of overusing ˃ Overusing time threshold AND Overuse counter ˃1

17 /* check whether if the current offset estimate larger than the previous one

18 or not */

19 IF current offset ˃ previous offset

20 Then time of overusing = 0 //reset the counter

21 //reset the counter

22 Overuse counter = 0

23 Overuse detector state = Overuse

24 Else T < - γ

25 //reset the counter

26 time of overusing = 0

27 Overuse detector state = Underuse

28 //reset the counter

29 Else time of overusing = 0

30 //reset the counter

31 Overuse counter = 0

32 Overuse detector state = Normal

Algorithm 1: Overuse detector pseudo-code.

23

1 //Rate control Region

2 IF Control-Region = MaxUnknown

3 𝐓𝐡𝐞𝐧 𝜸 = 𝛾′

4 /∗γ is 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝛾′ is the default thresholds

5 i. e. chromium 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is
25

60
 𝑚𝑠 ∗/

6 IF Control-Region = AboveMax //congestion occurs

7 OR Control-Region = NearMax //close to congestion

8 𝐓𝐡𝐞𝐧 𝜸 =
𝜸

𝟐
 //Halved the threshold

Algorithm 2: Rate control region algorithm.

3.3 Summery of WebRTC Google Congestion Control Algorithm

 In this section, we presented the current rate adaption that is used in the WebRTC

implementation. The algorithm consists of two main modules: the receiver side, which is delay-

based, and the sender side, which is packet loss-based. The receiver side has an arrival-time filter

that is used for considering the inter-arrival time of video frames. The receiver sends (REMB)

messages to the sender to let the sender know the next maximum expected rate that can receive.

The RTCP reports are also sent by the receiver with REMB messages. The RTCP reports have the

packet loss and the RTT. Based on the feedback from the receiver, the sender calculates its

sending rate. The sending rate is increased if the packet loss is less than 2%; however, the sending

rate is decreased if the packet loss is larger than 10%. The new sending rate is limited by an upper

bound (the receiving rate) and a lower bound (TFRC throughput) [21]. Also, we have to mention

that there are many changes in the current implementation they do not add yet to the Internet draft.

24

Chapter 4

Proposed Design and Implementation

 In this chapter, we present our proposed model with some details, and we present a proof-of-

concept for it.Then, we explain our testbed environment and the test cases that we implemented.

We present the network conditions and experiment with the GCC original model and our model

on constrained and unconstrained networks. We chose the performance parameters that we used to

evaluate our performance. The evaluation parameters are related to the network overview, such as

the incoming rate, packet loss, and Round-Trip Time.

4.1 The Proposed Design

When the overuse detector generates an overuse signal, the receiver attempts to reduce the

receiving rate estimate by multiplying the current incoming rate by a fixed value, α, that is within

the interval [0.80, 0.95]. It is interesting to note that in the WebRTC’s recent implementation, α is

set to be 0.90 or 0.95.

 In this scenario, the receiver has to decrease its rate by this fixed α factor, without taking into

account the difference between the queuing delay variation (T) and the threshold (γ) that the

overuse detector has provided, see Algorithm 1, (Chapter 3, Section 3.2.2). In other words, the

receiver has to decrease its rate by the same fixed α regardless of whether the queuing delay is

slightly smaller or significantly greater than the threshold. Intuitively, this is not optimal; the rate

decrease should not be fixed, but it should be dynamic and should depend on whether the queuing

delay is slightly smaller or significantly greater than the threshold. Dynamically setting the rate

decrease should positively affect the overall performance in terms of incoming bit rate and packet

loss rate. To do so, in this thesis, we propose to adjust the value of α, termed “dynamic alpha,”

according to the actual difference between the queuing delay variation (T) and the threshold (γ).

To calculate the dynamic alpha, we propose Equation 4.1:

 𝐃𝐲𝐧𝐚𝐦𝐢𝐜𝐀𝐥𝐩𝐡𝐚 =
√𝐞−(

(𝐓−𝛄)

𝐓
) + 𝐚

 (Equation 4.1)

25

Where T is the queuing delay variation, the threshold is the threshold that is set by the remote rate

region as shown by Algorithm 2 (Chapter 3, Section 3.2.2), and 𝒂 is a scalar parameter calculated

in Equation 4.2:

𝒂 =

{

 (𝟎. 𝟗𝟗 − √𝐞−(

(𝐓−𝛄)

𝐓
))/𝟏. 𝟑

 𝐢𝐟 𝐑𝐞𝐦𝐨𝐭𝐞 𝐑𝐞𝐠𝐢𝐨𝐧 = 𝐀𝐛𝐨𝐯𝐞𝐌𝐚𝐱 𝐨𝐫 𝐌𝐚𝐱𝐔𝐧𝐤𝐧𝐨𝐰𝐧

(𝟏 − √𝐞−(
(𝐓−𝛄)

𝐓
))/𝟏. 𝟏𝟒

 𝐢𝐟 𝐑𝐞𝐦𝐨𝐭𝐞 𝐑𝐞𝐠𝐢𝐨𝐧 = 𝐍𝐞𝐚𝐫𝐌𝐚𝐱

 (Equation 4.2)

To simplify the formula in Equation 4.2, we define b as given in Equation 4.3:

 𝒃 = √𝒆
−(

(𝑻−𝛄)

𝑻
)
 (Equation 4.3)

The final formula for calculating the scalar parameter a is given by Equation 4.4:

 𝒂 =

{

(𝟎. 𝟗𝟗 − 𝒃)/𝟏. 𝟑

 𝒊𝒇 𝑹𝒆𝒎𝒐𝒕𝒆 𝑹𝒆𝒈𝒊𝒐𝒏 = 𝑨𝒃𝒐𝒗𝒆𝑴𝒂𝒙 𝒐𝒓 𝑴𝒂𝒙𝑼𝒏𝒌𝒏𝒐𝒘𝒏
(𝟏 − 𝒃)/𝟏. 𝟏𝟒

𝒊𝒇 𝑹𝒆𝒎𝒐𝒕𝒆 𝑹𝒆𝒈𝒊𝒐𝒏 = 𝑵𝒆𝒂𝒓𝑴𝒂𝒙

(Equation

4.4)

Let us explain the justification for our design. The dynamic alpha allows the receiver to decrease its

receiving rate based on the magnitude of the difference between the queuing delay variation (T)

and the threshold (γ). Therefore, a small difference between T and γ results in a dynamic alpha near

unity; i.e., the dynamic alpha can take the value of 0.99 or 0.98 rather than using 0.90 or 0.95 in the

fixed alpha case. In other words, the dynamic alpha allows a small decrease of the receiving rate

estimate for a small value of T, which leads to a higher incoming rate for the media (video, audio,

etc.). However, when T significantly exceeds γ, the dynamic alpha assumes a smaller value; i.e.,

the dynamic alpha can be reduced to 0.90 or even 0.85 for the large differences.

 We also designed two different values of a as shown in Equation 4.2 to be more adaptable to the

two default values of the threshold: 25/60 and (25/60) /2. Designing a is based on the value of the

threshold, which is determined by the remote rate region in Equation 4.2, and the final formula for

a is shown in Equation 4.4 based on the value of the threshold. Also, in Equation 4.2, we use two

equations to calculate a by using two different values (1.30 and 1.14) to adapt to a threshold value,

which is determined by remote rate region. Based on network status, remote rate region sets two

26

values for threshold:1) the default threshold (γ), and 2) the default threshold by two (γ/2).

Therefore, our scaler parameter a changes to adapt these two threshold values. To verify our

model theoretically, we applied the following steps:

1. We observed the T value (the queuing delay) for 20 sessions with the fixed alpha,

2. We chose different values for T related to its observed max and min values.

3. We used the different T value with the two values of the threshold. The expected dynamic alpha

values are shown in Table 2.

 Default threshold (γ)=25

T dynamic alpha

26 0.99

45 0.95

100 0.92

1000 0.91

5000 0.90

threshold (γ)=25/2

T dynamic alpha

13 0.99

20 0.96

45 0.93

100 0.91

5000 0.90

Table 2: Different assumed T values and the expected dynamic alpha.

 We describe the details for the testbed that we used for running the WebRTC test cases. We

implemented our proposed rate adaption model in WebRTC reference code and building

WebRTC in two hosts. Then, we observed various network parameters to analyze the performance

of our model. Measurements plotting were carried out by using Matlab.

27

4.2 Building WebRTC for Windows

To build the WebRTC, we followed the building instructions for Windows x64 that are provided

in [29]. First, we installed the prerequisite software, such as Depot Tools, Visual Studio 2013

Community, and Windows 10 SDK. Then, we compiled the code as our baseline. We avoided

updating the code continuously due to the bugs that appeared in each version since we

successfully built our testbed.

4.3 Implementation of our proposed changes

To implement our algorithm, we modified some parts of the WebRTC reference code. Our

changes and modifications were made in different files, which are described in the next lines.

We defined a new object called dynamic alpha, and we gave it the initial value = 0.90 in the

../src/webrtc/modules/remote_bitrate_estimator/aimd_rate_control.cc file. To make the object

visible, we also added it in the header file aimd_rate_control.h.

dynamic_alpha(0.9f)

Since our algorithm uses some values from the overuse detector, such as threshold and delay, we

made those objects global to allow for using them by the aimd_rate_control.cc file in our

algorithm’s calculation. We created a new header file called global.h to define the global objects,

which are the saved values of γ and T.

extern double global_threshold;

extern double global_T;

We added the following lines in overuse_detector.cc:

global_T = T;

global_threshold_= threshold;

Going back to the aimd_rate_control.cc file, we replaced some code lines to compute the

receiving rate. The code lines that were replaced are as follows:

current_bitrate_bps = static_cast<uint32_t>(beta_ incoming_bitrate_bps + 0.5);

is replaced by

28

current_bitrate_bps = static_cast<uint32_t>(dynamic_alpha incoming_bitrate_bps + 0.5);

Also, we replaced

current_bitrate_bps=static_cast<uint32_t>(beta_ avg_max_bitrate_kbps_ * 1000 + 0.5f);

with

current_bitrate_bps = static_cast<uint32_t>(dynamic_alpha avg_max_bitrate_kbps_ * 1000 +

0.5f);

In the same file, we wrote the code lines according to Equation 4.1 and replaced them with the

original code as follows:

beta_ = 0.9f;

is replaced by

dynamic_alpha=sqrt(exp(-(global_T_global_threshold_)/global_T_)) + (0.99 - (sqrt(exp(-

(global_T_ - global_threshold_)/global_T_))))/1.3;

Also, we replaced

beta_ = 0.95f;

with

dynamic_alpha =sqrt(exp(-(global_T_ - global_threshold_)/global_T_)) + (1 - (sqrt(exp(-

(global_T_ - global_threshold_)/global_T_))))/1.14;

4.4 Network Setup

The experimental testbed consists of two laptops having similar specifications. Each side acts as

an independent client. The DELL laptop (Intel Core i7-000 M, 8 GB RAM, Windows 7 64-bit)

was designated as the sender, and we called it Client-1; the Lenovo ThinkPad W540 laptop (Intel

Core i7-7400MQ - 8 GB RAM, Windows 7 64-bit) was designated as the receiver, and we called

it Client-2. We set up an experimental testbed over a real network. The WebRTC native code is

implemented on both sides [29]. Two clients ran the WebRTC Version March 2015, and an

Ethernet cable connected them. To emulate a wired network, we used a software-based network

29

emulator, NEWT [22]. NEWT is used to emulate a variety of network attributes, such as available

bandwidth, packet loss, and propagation delay.

4.5 Video Call Setup

Multiple video streaming sessions were completed between both sides, the sender and the receiver,

and vice versa. We used a virtual video camera tool [27] to inject the video sequence and to ensure

that the video stream is consistent. Virtual camera tool emulates a webcam in our system and

works like a real camera. By using virtual camera tools, we can set our video clip sequence. Also,

to support the experiments’ reproducibility, we used the publicly available Wave Hand Video Clip

[7]. To generate the video flows, Host A ran the peer-connection client JavaScript API as a client

and peer-connection server JavaScript API as a server, while Host B ran the peer-connection client

JavaScript API as a client.

 4.6 Test Cases

The NEWT [22] tool that was used in this study can simulate different scenarios over wired

access networks. We designed the test cases to be as clear and as simple as possible. We have four

scenarios are under constrained network in addition to one scenario under unconstrained network,

which was without any constraints. We repeated each scenario twice - the first time with the

original GCC and second time with our proposed model. We observed the overuse detector states

to make sure that congestion occurred during the session. Since our proposed method works when

congestion appears, we eliminated each session that did not contain an overuse signal (see Figure

7). We took the same action for the session with only Normal signal. However, we accepted the

green session, which showed congestion.

Figure 7: Overuse status for three different sessions.

30

For each scenario, we collected the performance metrics that we will describe in the next section.

In each scenario, we compared the WebRTC performance metrics for the proposed model with the

performance metrics for the existing GCC model. The following sub-sections are the test cases

that were considered and implemented in this thesis.

4.6.1 Unconstrained Network

 In Test case 1, we do not set any network attributes to the network emulator. The purpose of this

test is to analyze the WebRTC behavior in an uncontrolled environment with no constraints, such

as limited bandwidth. Based on this test case, we chose which network attributes would work in

the next phase. We called this case the reference case. The Ethernet cable speed is approximately

75 Mbps. We observed the WebRTC behavior for GCC and the proposed model by repeating the

scenario for each model and collecting the performance metrics. Figure 8 shows the testbed for

this case.

Figure 8: Testbed Architecture (unconstrained network).

4.6.2 Constrained Network

In the next test cases, we set various network conditions to investigate how WebRTC with GCC

and with the proposed model adapts to varying the available bandwidth, packet loss, and

propagation delay. Figure 9 illustrates the testbed for these test cases. Table 3 shows the test cases

and the network attributes.

31

Figure 9: Testbed Architecture (constrained network).

32

Table 3: Test cases with network attributes.

 Test Cases

Number

The Available

Bandwidth

The Packet

Loss Rate

The

Prorogation Delay

Unconstrained

Network

Test Case 1

No Constraints

No Constraints

No Constraints

Constrained

Network

Test Case 2

50 kbps

200 kbps

500 kbps

1000 kbps

Null

Null

Test Case 3

Null

2%

5%

10%

12%

Null

Test Case 4

Null

Null

50 ms

250 ms

500 ms

1000 ms

Test Case 5

500 kbps

1000 kbps

5%

10%

50 ms

250 ms

33

Varying available bandwidth. First, we investigated how the WebRTC responded to varying

available bandwidth in the network. Since NEWT was used in this study to emulate different

network attributes, we used it to vary the bandwidth capacity from 50 kbps to 1000 kbps with no

random packet loss rate and no propagation delay.

Varying packet loss. In this test case, we varied the packet loss rate from 2% to 12% with no

two-way propagation delay. The purpose of this test was investigating the WebRTC response to

the packet loss.

Varying propagation delay. In this test, we measured the WebRTC’s performance metrics by

varying the two-way delay propagation delay from 50 ms to 1000 ms in the NEWT emulator.

Varying available bandwidth – packet loss -propagation delay. In this test, we merged

different network conditions and measured the WebRTC’s performance metrics by varying

available bandwidth, packet loss rate, and two-way delay; we set 500 kbps with 5% packet loss

rate and 50 ms propagation delay. Also, we set 1000 kbps with 10% packet loss rate and 250 ms

two-way delay. As previous test cases, we used the NEWT emulator to set these conditions.

 4.7 WebRTC Performance Metrics

In this section, we chose the evaluation metrics that usually trigger the congestion control

mechanisms in WebRTC. Therefore, to evaluate our system, we chose three performance metrics:

1. Incoming Rate: the amount of data (kbps) that the receiver accepts during the video session.

2. Round-Trip Time (RTT): the time it takes to send the signal and the time it takes to receive

the acknowledgment in ms.

3. Packet Loss Fraction: the number of lost packets during the video session.

34

Chapter 5

Results and Analysis

 This chapter presents the experimental results of the rate adaptation model of the WebRTC and

our proposed model. Our experiments were implemented over a constrained and an unconstrained

network. We show the performance enhancement regarding the incoming rate, and RTT. We

present and discuss the results of the proposed model in our thesis. First, we implemented our

model over an unconstrained network. Then, we used a network emulator [22], which is capable

of performing test cases over various wired access networks. The network emulator allows us to

implement our model over constrained network.

5.1 Case 1: Unconstrained Network

 In this test case, we did not add any network conditions to our experiment to observe WebRTC

behavior under a real network. In this test case, we ran 12 video sessions with no constraints.

Duration of each video session was two minutes. For each session, we computed the average of the

evaluation metrics, which were directly gotten from the WebRTC source code (see Section 4.4).

 Figure 10 shows the incoming rate that is experienced by the receiver side. The green rectangles

illustrate the average incoming rate for all sessions using our proposed dynamic alpha while the red

triangles illustrate the rate for sessions using the fixed alpha. The superiority of our proposed

approach is clear; we can see that the incoming rate is increased by 33% on average. This higher

incoming rate is due to the different values that are assumed by the dynamic alpha.

35

Figure 10: Average incoming rate (kbps) for 12 sessions.

The performance of RTT, and packet loss fraction are shown in Figure 11, and Figure 12,

respectively. We can see that number of the packet loss fraction is about the same, occasionally a

few more, compared to the fixed alpha method. The numbers do not show a significant difference

in terms of the number of packets lost, as can be seen in Figure 12. However, our method achieves

a lower RTT, by 16% on average, as shown in Figure 11.

Figure 11: Average of Round-Trip Time (ms) for 12 sessions.

36

Figure 12: Average of Packet Loss Fraction (packets) for 12 sessions.

The WebRTC’s original model results and the results of the proposed model for each session are

shown in Table 4.

37

Session

Number

Incoming Rate

(Kbps)

Packet Loss Fraction

(Packets)

Round-Trip Time

(ms)

 WebRTC

Original

Proposed

Model

WebRTC

Original

Proposed

Model

WebRTC

Original

Proposed

Model

1 267.43 338.99 0.34 3.1 389.92 156.047

2 135.08 170.53 2.9 4.27 375.28 271.64

3 69.67 99.15 0.24 1.17 287.47 280.5

4 70.45 81.72 0 0.2 257.67 231.4

5 218.2 231.75 6.71 0.75 470.67 232.22

6 92.09 130.92 0.29 1.2 221.4 227.76

7 65.02 82.11 3.58 0.29 368.7 303.18

8 178.22 310.64 0.78 0.32 252.93 208.33

9 65.78 91.09 0 0.28 433.99 349.5

10 160.99 176.17 1.08 0 179.72 194.35

11 100.96 128.72 1.32 0.6 206.65 219.91

12 117.572 197.84 0.97 2.01 532.199 450.01

Table 4: WebRTC results for the original model and the proposed model.

38

5.2 Constrained Network

The scenarios that are shown in Table 3 aim at investigating how WebRTC congestion control

algorithm with fixed and dynamic alphas react to sudden changes of available bandwidth, packet

loss rate, and network delays. For each of those scenarios, we have considered three WebRTC

video sessions. The time duration of each video call was considered to be 30 seconds. The video

session is established when both users (Host A and Host B) were connected together. After 30

seconds, the video session was terminated by the users. We set the same video sequence over the

virtual came. We computed the average of the performance metrics for the three sessions. We

observed the results of how the original WebRTC receiver’s rate model and our proposed model

performed based on both sides: Receiver and Sender.

 To investigate the impact of the bandwidth capacity, the packet loss rate, and the delay on the

GCC with fixed and dynamic alphas, we set different network constraints.

5.2.1 Case 2: WebRTC with varying bandwidth constraints

In this test case, we varied bandwidth capacity to investigate the impact of network bandwidth

availability in the GCC with the fixed alpha and the dynamic alpha. We varied the bandwidth

capacity on the network emulator from 50 kbps to 1000 kbps, with no packet loss rate and delay

constraints. Figure 13 shows the incoming rate that is experienced by the receiver side. As with the

previous graphs, the green rectangles illustrate the average incoming rate for the three video

sessions that used our proposed dynamic alpha, while the red triangles illustrate the rate for the

three sessions that used the GCC with the fixed alpha. We observed that the dynamic alpha gives a

higher incoming rate compared to what we experienced with the fixed alpha.

Table 5 shows each bandwidth constraint and the percentage of increase in the incoming rate for

the GCC with fixed and dynamic alphas.

39

Figure 13: Incoming rate increase amount (kbps) under different bandwidth constraints.

Bandwidth Constraints Incoming Rate Increasing Amount (%)

50 KB +20.60 %

200 KB +26.92 %

500 KB +125.91 %

1000 KB +83.39 %

Table 5: Incoming rate increase amount by percentage.

The incoming rate increase is between 20% to 125%, which is considered a good improvement.
Furthermore, our proposed dynamic alpha decreased RTT (see Table 6, and Figure 14).

Moreover, the dynamic alpha slightly decreases the packet loss fraction by 29.4% when the

bandwidth capacity was 50 KB. However, with 200, 500, and 1000 KB, the packet loss fraction

tended to increase. Figure 15 illustrates acceptable decrease in packet loss fraction under 50 KB

bandwidth capacity, yet slight increases under other bandwidth constraints.

40

Figure 14: RTT decrease amount by percentage under different bandwidth constraints.

Bandwidth Constraints RTT Decreasing Amount (%)

50 KB -8.82%

200 KB -18.72%

500 KB -9.22%

1000 KB -37.43%

Table 6: RTT decrease by percentage.

We can see that our proposed method loses about the same number of packets, occasionally a

few more, compared to fixed alpha method. The numbers do not show a significant difference in

terms of the number of packets lost, as can be seen in Figure 15. However, our method achieves a

higher incoming rate, by 125%, and a lower RTT, by 37%, on average, as previously shown in

Figure 13: Incoming rate increase amount (kbps) under different bandwidth constraints.

41

Figure 15: Packet Loss Fraction under different bandwidth constraints.

Bandwidth Constraints Packet Loss Fraction Amount (%)

50 KB -29.4%

200 KB +38.29%

500 KB +2.01%

1000 KB +19.61%

Table 7: Packet Loss Fraction under different Bandwidth Capacity.

From the results of this experiment, WebRTC with a dynamic alpha is able to improve

performance regardless of the network bandwidth capacity. Also, it is worth noticing that WebRTC

shows low performance when the bandwidth capacity is equal to or under 200 KB.

5.2.2 Case 3: WebRTC with varying packet loss rate constraints

 In this test case, we introduced random packet losses in the network. The packet loss rate varied

from 2% to 12%. The measurement results are illustrated in Figure 16 to Figure 18. Figure 16

shows the impact of packet losses in the network on the GCC with fixed and dynamic alphas. The

red and green bars present the average incoming rates for the GCC with a fixed and a dynamic

42

alpha, respectively. Based on the experimental testbed, Figure 16 shows the huge difference

between the incoming rates with fixed and dynamic alphas. The dynamic alpha is able to give a

much higher incoming rate compared to the fixed alpha.

Figure 16: Incoming rate (kbps) under different packet loss rate constraints.

Table 8 shows each bandwidth constraint and the amount of increase in the incoming rate. It can be

viewed that the proposed dynamic alpha increases the incoming rate up to 274%.

Packet Loss Rate

Constraints

The Incoming Rate Increasing

Amount (%)

2% + 66.21%

5% + 242.26%

10% + 274.94%

12% + 72.86%

Table 8: The incoming rate increase percentage.

43

Another enhancement that can be provided by the proposed dynamic alpha is the decrease in the

packet loss fraction when the network faces different packet loss rates. The proposed dynamic

alpha decreases the packet loss fraction under 2%, 5%, 10%, and 12% packet loss rates (see

Figure 17). The packet loss fraction decrease is around 60% (see Table 9).

Figure 17: Packet Loss Fraction (number of packets) under different packet loss rate constraints

Packet Loss Rate

Constraints

The Losses Fraction Decreasing

Amount (%)

2% -54.63%

5% -60.48%

10% -89.28%

12% -15.37%

Table 9: The percentage of Packet Loss Fraction decrease.

Also, the GCC with the dynamic alpha is still able to reduce RTT, in general. Figure 18 shows the

decrease in RTT under various packet loss rates: 2%, 5%, 10%, and 12%.

44

Figure 18: Round-Trip Time (ms) under different packet loss rate constraints.

Table 10 clearly presents the percentage of decrease in RTT. Generally, RTT decreased between

3% and 39%.

Packet Loss Rate

Constraints

The RTT Decreasing Amount (%)

2% -28.53%

5% -39.80%

10% -32.78%

12% -3.86%

Table 10: The percentage of RTT decrease.

Our results indicate that a dynamic alpha can give high performance compared to fixed alpha

under various packet losses. The proposed dynamic alpha increases the incoming rate while

decreasing the packet loss fraction and Round-Trip Time.

5.2.3 Case 4: WebRTC with two-way propagation delay constraints

 This scenario is aimed at investigating how the WebRTC’s receiving rate reacts to different

latencies. We varied the propagation delays and observed the impact on the performance of

45

WebRTC. We introduced two-way delays of 50, 250, 500, and 1000 ms before starting to report

our results. It is worth noting that WebRTC under 500 and 1000 ms delays cannot be run for more

than 23 seconds. Therefore, the results that we plotted here for delays of 500 ms and 1000 ms are

for sessions 23 seconds long. Figure 19 illustrates the average incoming rates for the three

sessions under different delay constraints. As shown in Figure 19, the proposed dynamic alpha

increases the incoming rate in general. The increased amount is approximately 4% to 23% (see

Table 11).

 Figure 19: Incoming rate (kbps) under different two-way delay constraints.

Table 11: The percentage of the incoming rate increase.

Delay Constraints (ms) The Incoming Rate Increasing

Amount (%)

50 +4.42%

250 +19.68%

500 + 23.93%

1000 + 8.09%

46

The packet loss fraction clearly reduces with the proposed dynamic alpha compared to the fixed

alpha (see Figure 20). The decrease is approximately 13% to 29% (see Table 12). Table 11

summarizes the packet loss fraction decrease under the current scenario.

Figure 20: Packet loss fraction (packets) under different two-way delay constraints

Delay Constraints (ms) Packet Loss Fraction Decreasing

Amount (%)

50 -26.89%

250 -24.96%

500 -29.52%

1000 -12.95%

 Table 12: The percentage of Packet Loss Fraction decrease.

As shown in Figure 21, our proposed dynamic alpha can decrease RTT in all cases. It reduces

RTT by 75% over the network with a 50 ms delay and approximately 26% with a 250 ms delay

and a 500 ms delay. The dynamic alpha cannot give the same amount of reduction when the delay

is 1000 ms; however, it is still able to reduce RTT by 1% (see Table 13).

47

Figure 21: Round-trip time decrease amount (ms) under different two-way delay constraints.

Delay Constraints (ms) RTT Decreasing Amount (%)

50 -75.68%

250 -26.21%

500 -25.00%

1000 -1.05%

Table 13: The percentage of RTT decrease.

From the current scenario, we found that the proposed dynamic alpha improves WebRTC

performance under various delays. However, WebRTC shows low performance and cannot

exceed 30 seconds long when the network delay is more than 250 ms.

5.2.4 Case 5: WebRTC with varying Bandwidth, Packet Loss Rate, and Delay constraints

 In this test case, we present more extensive measurement results. This scenario is aimed at

investigating how the WebRTC’s receiving rate reacts to various network conditions. We merged

different bandwidth constraints, with different packet loss rate and two-way delay constraints.

48

This test case consists of two sub-test cases: Test Case 5 (a) and Test Case 5 (b). In Test Case 5

(a), the bandwidth capacity is set to 500 kbps, the packet loss rate is 5%, and the propagation

delay is 50 ms. In Test Case 5(b), we increase the bandwidth capacity to be 1000 kbps, the packet

loss rate is 10%, and the propagation delay is 250 ms.

Figure 22 to Figure 24 show the measurement results of Test Case 5. The proposed dynamic alpha

is keeping improve the incoming rate. The improvement of the incoming rate by percentage is

shown in Table 14. The incoming rate is increased by 19% in both sub-test cases 5 (a) and 5 (b).

Figure 22: The incoming rate under different Network constraints.

Test Case The Incoming Rate Increasing

Amount (%)

Test Case 5 (a) + 19.71%

Test Case 5 (b) + 19.42%

Table 14: The percentage of incoming rate increase for Case 5.

Moving to packet loss fraction, when the bandwidth capacity is 500 kbps with 5% packet loss rate

and two-way delay is 50 ms, the packet loss fraction is increased by implementing our model

49

(Test Case 5 (a)). However, when we increase the bandwidth capacity to 1000 kbps, the packet

loss fraction is decreased. The packet loss fraction in Test Case 5 (b) can decrease even with

increasing the packet loss rate to 10% and the delay to 250 ms. So, the decreasing of packet loss

fraction in Test Case 5 (b) is due to increasing the bandwidth capacity.

Figure 23: Packet loss fraction under different Network constraints.

Test Case Packet Loss Fraction

 Amount (%)

Test Case 5 (a) + 34.69%

Test Case 5 (b) -40.17%

 Table 15: The percentage of packet loss fraction difference for Test Case 5.

Figure 23 presents the increasing and the decreasing in packet loss fraction in both Test Cases 5

(a) and 5 (b), respectively, and Table 15 shows the percentage of the increase and the decreased

percent of packet loss fraction.

50

 Test case 5 (a) also shows slightly increase in RTT by 2%. However, Test Case 5 (b) illustrates

significant decreasing in RTT by 30% (see Figure 24, and Table 16). We assume the same reason

behind decreasing RTT in Test Case 5 (b) which is the increasing on the bandwidth capacity.

Figure 24: RTT over different Network constraints.

Test Case RTT

 Amount (%)

Test Case 5 (a) + 2.93%

Test Case 5 (b) -30.26%

Table 16: The percentage of RTT difference for Test Case 5.

 From the current scenario, we found that the proposed dynamic alpha improves WebRTC

performance under various Network constraints in terms of incoming rate, packet loss fraction,

and RTT in Test Case 5 (b). However, WebRTC only shows improvement in the incoming rate in

Test Case 5 (a). We see a slight increase in RTT around 2%, this is due to the time that we run our

experiment. We run this experiment on Saturday afternoon that is a weekend day, and as we know

this is the time that the network usually becomes busy.

51

According to all experimental results, we notice that incoming rate, RTT, and packet loss fraction

are showing higher or lower based on the experiment time. For example, if our experiment runs in

rush hours such as Saturday afternoon, the incoming rate shows little increase with a little RTT

decrease. However, on Monday at five a.m., our experiments show high incoming rate reaches to

200% increase and higher RTT decrease reaches to 75%.

52

Chapter 6

 Conclusion and Future Work

 In this chapter, we summarize what we covered in the previous chapters. We conclude our

results and contributions. Furthermore, we highlighted some discussions and suggested some

future work related to our studies.

6.1 Conclusion

 In this thesis, we proposed a rate adaptation model for WebRTC receiver controller to improve

real-time interactive video during overusing. Our model is built based on the Google Congestion

Control algorithm current implementation

 The baseline simulation results for the WebRTC show that a fixed factor (fixed alpha) is not the

best way to calculate the receiving rate decrease. Therefore, we have to take advantage of the

overuse detector information, including the difference between the delay variation and the

threshold. The reason for proposing such a dynamic alpha model is to determine accurate estimates

of the receiving rate for the WebRTC receiver side during overuse, which reflects positively on the

WebRTC performance.

 In order to observe the performance of the rate adaption model, we carried out an experiment

using a real network and obtained extensive performance measurements. We implemented our

model under an unconstrained and a constrained network. Our studies compare two major rate

adaption models: the Google rate adaption model and our proposed model. The first adaption

model was the Google Congestion Receiver Controller model (only under Overusing), which let

the receiver controller estimate its receiving rate by decreasing it by a fixed amount when

congestion occurs. The second adaption model was our proposed model that we showed in Chapter

3, which used the difference between the threshold and the delay variation to decrease the receiving

rate by a dynamic factor (dynamic alpha).

 Based on the experimental results, we showed that our model improves the performance regarding

the incoming rate and RTT. The dynamic alpha can increase the incoming rate and decrease RTT.

In most cases, our model was able to decrease the number of packet loss fraction as well. However,

in some cases, our model displayed a slight increase in the packet loss fraction. Mostly, the

proposed model shows good performance when compared to the Google model. Based on our

53

observation the increasing and the decreasing in the packet loss fraction due to the network status

whether the network is busy or not.

6.2 Discussions and Future Work

 First of all, we have to note that our model was designed based on the Chrome threshold, which is

25/60 ms. Therefore, our model may require modifications for compatibility with different browser

thresholds. Also, we carried out our experiments in a simulated environment. If we could apply our

work on the Internet, it would be more realistic and stronger.

 There are also numerous ongoing discussions in the IETF groups in order to find out how to

improve the performance of WebRTC sessions. Therefore, there are several suggested alternative

rate adaption models and protocols. There are other congestion control algorithms might enhance

WebRTC performance, such as Low Extra Delay Background Transport (LEDBT) and Datagram

Congestion Control Protocol (DCCP).

 Another discussion is whether we can add a different rate adaption model based on the network

conditions. Also, another discussion is about what can be used as a better alternative of RTCP as

feedback mechanisms.

 Further researches could be done in order to determine the usability limits of WebRTC and how

to reduce theses limits. Also, future work can include more experiments on what we can add to

enhance WebRTC performance on the mobile environment.

 Some studies discuss WebRTC framework and what we can do to improve WebRTC framework.

Some suggested parameters to add them to WebRTC framework such as adding more overuse

detector states.

 In future studies, this work may be extended to undertake a further evaluation of our model in

terms of the subjective video quality, by taking into account the viewer’s subjective rating. In

addition, the future evaluation has to cover the objective video quality. Also, we may further

extend the work by proposing and comparing more rate adaption models. Since our model shows

improvement in packet loss fraction in some cases, adding packet loss fraction to our model may

control packet loss fraction decreasing and increasing.

54

References

[1] A Comparative Analysis of TCP Tahoe, Reno, New-Reno, SACK and Vegas (1st ed.).

Retrieved from

http://inst.eecs.berkeley.edu/~ee122/fa05/projects/Project2/SACKRENEVEGAS.pdf

[2] Ait‐Hellal, O., & Altman, E. (2000). Analysis of TCP Vegas and TCP Reno.

Telecommunication Systems, 15 (3-4), 381-404.

http://dx.doi.org/10.1023/A:1019159332202.

[3] Alonso, M., Geiger, G., & Jorda, S. (2004). An Internet Browser Plug-in for Real-time Audio

Synthesis. In Proceedings of the Fourth International Conference on Web Delivering of

Music, Spain, pp. 23-26.

[4] Brakmo, L., & Peterson, L. (1995). TCP Vegas: end to end congestion avoidance on a global

Internet. IEEE J. Select. Areas Commun., 13 (8), 1465-

1480.http://dx.doi.org/10.1109/49.464716

[5] Carlucci, G., De Cicco, L., & Mascolo, S. (2014). Modeling and control for web real-time

communication. In Decision and Control (CDC), 2014 IEEE 53rd Annual Conference, Los

Angeles, pp. 6824 – 6829.

[6] Cicco, L., Carlucci, G., & Mascolo, S. (2013). Experimental investigation of Google

congestion control for real-time flows. In FhMN '13 Proceedings of the 2013 ACM

SIGCOMM workshop on Future human-centric multimedia networking, USA.

[7] Fake Webcam - Play video as webcam, apply effects on webcam. Retrieved from

http://www.fakewebcam.com/avatar.asp.

[8] Fall, K., & Floyd, S. (1996). Simulation-based comparisons of Tahoe, Reno and SACK

TCP. ACM SIGCOMM Computer Communication Review, 26 (3), 5-21.

http://dx.doi.org/10.1145/235160.235162.

[9] Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance.

IEEE/ACM Transactions On Networking, 1 (4), 397-413.

http://dx.doi.org/10.1109/90.251892.

55

[10] Forouzandeh, F. (2005). FPGA Implementation of Congestion Control Routers in High

Speed Networks(Computer Science Master thesis). Concordia University.

[11] G., L., Cicco, D., & Mascolo, S. (2013). Understanding the Dynamic Behavior of the Google

Congestion Control for RTCWeb. In Packet Video Workshop (PV), 2013 20th International.

San Jose, CA.

[12] Google.com,. (2015). Google Hangouts. Retrieved 12 August 2015, from

http://www.google.com/+/learnmore/hangouts/.

[13] Groups.google.com,. (2015). Google Groups. Retrieved 2015, from

https://groups.google.com/forum/#!forum/discuss-webrtc.

[14] Hashem, E. (1989). Analysis of random drop for gateway congestion control, Cambridge.

[15] Tools.Ietf.org,. (2003). RFC 3448: TCP- Friendly Rate Control (TFRC): Protocol

Specification. Retrieved from https://www.ietf.org/rfc/rfc3448.txt

[16] Jacobson, V. (1988). Congestion avoidance and control. In SIGCOMM '88 Symposium

proceedings on Communications architectures and protocols, USA, pp. 314-329.

[17] Jacobson, V. (1990). Modified TCP Congestion Avoidance Algorithm. Retrieved from

http://ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail.

[18] Jesup, H. (2012). draft-jesup-rtp-congestion-reqs-00 - Congestion Control Requirements For

Real Time Media. Tools.ietf.org. Retrieved from https://tools.ietf.org/html/draft-jesup-rtp-

congestion-reqs-00.

[19] Johnston, A., & Burnett, D. (2013). WebRTC. St. Louis, MO: Digital Codex LLC.

[20] MARTIGNON, F. (2002). Enhanced Bandwidth Estimation and Loss Differentiation in the

TCP Congestion Control Scheme, (Ph.D). Politecnico di Milano.

[21] Öhman, K. (2014). A Flexible Adaptation Framework for Real-Time

Communication, (Master thesis). Luleå University of Technology.

[22] Software Informer, Network Emulator for Windows Toolkit. Get the software safe and easy..

Retrieved 2015, from http://network-emulator-for-windows-toolkit.software.informer.com/.

56

[23] Tools.ietf.org,. (1999). RFC 2582 - The NewReno Modification to TCP's Fast Recovery

Algorithm. Retrieved November 2015, from https://tools.ietf.org/html/rfc2582.

[24] Tools.ietf.org,. (2008). RFC 5348 - TCP Friendly Rate Control (TFRC): Protocol

Specification. Retrieved from https://tools.ietf.org/html/rfc5348.

[25] Tools.ietf.org, (2015). draft-alvestrand-rtcweb-congestion-03 - A Google Congestion Control

Algorithm for Real-Time Communication on the World Wide Web. Retrieved July 2015,

from https://tools.ietf.org/html/draft-alvestrand-rtcweb-congestion-03.

[26] VishnuVardhan, S., & Chenna Reddy, P. (2012). Congestion Control in Real-Time

Applications. International Journal Of Computer Applications, 51(3), 33-37.

http://dx.doi.org/10.5120/8025-1176.

[27] Webcam, V., & Mart, W. Virtual Webcam 8.0.2.454 Quick review - Free download - Free

Virtual Webcam adds as a real camera. Download3k.com. Retrieved 2015, from

http://www.download3k.com/Internet/Instant-Messengers-Chat/Download-Virtual-

Webcam.html.

[28] Webrtc.org, (2015). WebRTC. Retrieved June 2015, from http://www.webrtc.org

[29] Webrtc.org, Development - WebRTC. Retrieved 2015, from http://www.webrtc.org/native-

code/development.

[30] Welzl, M. (2005). Network congestion control, England.

[31] Wikipedia, (2015). Videoconferencing. Retrieved 1 August 2015, from

https://en.wikipedia.org/wiki/Videoconferencing#Impact_on_the_general_public.

