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Abstract—This paper presents a novel method for efficient
image retrieval, based on a simple and effective hashing of
CNN features and the use of an indexing structure based on
Bloom filters. These filters are used as gatekeepers for the
database of image features, allowing to avoid to perform a
query if the query features are not stored in the database
and speeding up the query process, without affecting retrieval
performance. Thanks to the limited memory requirements
the system is suitable for mobile applications and distributed
databases, associating each filter to a distributed portion of
the database (database shard), addressing large scale archives
and allowing query parallelization. Experimental validation has
been performed on three standard image retrieval datasets,
outperforming state-of-the-art hashing methods in terms of
precision, while the proposed indexing method obtains a 2×
speedup.

Keywords-Nearest neighbor retrieval; hashing; Bloom filter;
CNN;

I. INTRODUCTION

Content based image retrieval (CBIR) has been an active

research topic in computer vision and multimedia in the last

decades, and it is still very relevant due to the emergence

of social networks and the creation of web-scale image

databases. Most of the works have addressed the develop-

ment of effective visual features, from engineered features

like SIFT and GIST to, more recently, learned features such

as CNNs [1]. To obtain scalable CBIR systems features are

typically compressed or hashed, to reduce their dimension-

ality and size. However, research on data structures that can

efficiently index these descriptors has attracted less attention,

and typically simple inverted files (e.g. implemented as hash

tables) are used.

In this paper we address the problem of approximate

nearest neighbor (ANN) image retrieval proposing a simple

and effective data structure that can greatly reduce the need

to perform any comparison between the descriptor of the

query and those of the database, when the probability of a

match is very low. Considering the proverbial problem of

finding a needle in a haystack, the proposed system is able

to tell when the haystack probably contains no needle and

thus the search can be avoided completely.

To achieve this we propose a novel variation of an

effective hashing method for CNN descriptors, and use this

code to perform ANN retrieval in a database. To perform

an immediate rejection of a search that should not return

any result we store the hash code in a Bloom filter, i.e. a

space efficient probabilistic data structure that is used to

test the presence of an element in a set. To the best of

our knowledge this is the first time that this data structure

has been proposed for image retrieval since, natively, it

has no facility to handle approximate queries. We perform

extensive experimental validation on three standard datasets,

showing how the proposed hashing method improves over

state-of-the-art methods, and how the data structure greatly

improves computational cost and makes the system suitable

for application to mobile devices and distributed image

databases.

II. PREVIOUS WORKS

Visual features: SIFT descriptors have been successfully

used for many years to perform CBIR. Features have been

aggregated using Bag-of-Visual-Words and, with improved

performance, using VLAD [2] and Fisher Vectors [3].

The recent success of CNNs for image classification

tasks has suggested their use also for image retrieval tasks.

Babenko et al. [1] have proposed the use of different layers

of CNNs as features, compressing them with PCA to re-

duce their dimensionality, and obtaining results comparable

with state-of-the-art approaches based on SIFT and Fisher

Vectors. Aggregation of local CNN features using VLAD

has been proposed in [4], while Fisher Vectors computed

on CNN features of objectness window proposals have been

used in [5].

Hashing: One of the most successful visual feature hashing

methods presented in the literature is Product Quantization

(PQ), proposed by Jégou et al. [6]. In this method the

feature space is decomposed into a Cartesian product of

subspaces with lower dimensionality, that are quantized

separately. The method has obtained state-of-the-art results

on a large scale SIFT and GIST features dataset. The good

performance of the Product Quantization method has led

to development of several related methods that introduce
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variations and improvements. Norouzi and Fleet [7] have

built two variations of k-means (Orthogonal k-means and

Cartesian k-means) upon the idea of compositionality of the

PQ approach. Ge et al. [8] have improved PQ minimizing

quantization distortions w.r.t. space decomposition and quan-

tization codebooks, in their OPQ method; He et al. [9] have

approximated the Euclidean distance between codewords in

k-means method, proposing an affinity-preserving technique.

More recently, Kalantidis and Avrithis [10] have proposed

to use a local optimization over a rotation and a space

decomposition, applying a parametric solution that assumes

a normal distribution, in their vector quantization method

(LOPQ).

Most of recent approaches for CNN features hashing are

based on simultaneous learning of image features and hash

functions as in the method of Gao et al. [11], that uses visual

and label information to learn a relative similarity graph, to

reflect more precisely the relationship among training data.

In [12] CNN binary hash codes are learned through a two

stage approach: in the first one a supervised pre-training

is performed on ImageNet, then in the second phase is

added a latent layer to the CNN network, to learn hash like

representations, during a fine tuning process on the target

image dataset. Retrieval is performed using a coarse-to-fine

approach, based on hash codes (coarse) and FC7 features

(fine).

Unsupervised two steps hashing of CNN features has

been proposed by Lin et al. [13]. In the first step Stacked

Restricted Boltzmann Machines learn binary embedding

functions, then fine tuning is performed to retain the metric

properties of the original feature space.

Indexing: Typically hashed features are stored in inverted

files. A few works have studied other data structures to speed

up approximate nearest neighbors. Babenko and Lempitsky

[14] have proposed an efficient similarity search method that

generalizes the inverted index; the method, called inverted

multi-index (Multi-D-ADC), replaces vector quantization

inside inverted indices with product quantization, and builds

the multi-index as a multi-dimensional table. Ercoli et
al. [15] have proposed an hashing method that improves

over PQ by performing multiple assignments to k-means

centroids, and have stored the hash codes in Marisa Tries to

greatly compress their storage.

Bloom filter: Bloom filter and its many variants have

received an extremely limited attention from the vision and

multimedia community, so far. Inoue and Kise [16] have

used Bloomier filters (i.e. an associative array of Bloom

filters) to store PCA-SIFT features of an objects dataset more

efficiently than using an hash table; they perform object

recognition by counting how many features stored in the

filters are associated with an object. Bloom filter has been

used by Danielsson [17] as feature descriptor for matching

keypoints. Similarity of descriptors is evaluated using the

“union” operator. Srijan and Jawahar have proposed to use

Bloom filters to store compactly the descriptors of an image,

and use the filter as postings of an inverted file index in

[18]. More recently Araujo et al. [19] have proposed the use

of Bloom filters for query-by-image video retrieval, where

video scenes are stored as Fisher-embedded local features

in Bloom filters.

III. THE PROPOSED METHOD

In the proposed approach, differently from [11], we learn

a vector quantizer separately from the CNN features, so

to easily replace different and pre-trained CNN networks

for feature extraction, without need of retraining. Moreover,

we propose to include Bloom filters into feature indexing

structures to improve the speed of queries. Bloom filters act

as gatekeepers that rule out immediately, with a very limited

memory cost, if a query should be completely performed or

if it can be avoided. The proposed data structure is very

suitable for mobile and distributed applications.

A. Quantization Algorithm

The proposed approach is a variation of [15], which

is an efficient method for mobile visual search based on

a multiple assignment k-means hashing schema (multi-k-
means) that obtained very good results, compared to PQ,

on the BIGANN dataset.

The first step of the method consists in learning a standard

k-means dictionary with a small number of centroids (to

maintain a low computational cost). Each centroid is asso-

ciated to a bit of the hash code, that has thus length equal

to the number of centroids. The bit is set to 1 if the feature

is assigned to the centroid, 0 otherwise. A feature can be

assigned to more than one centroid, and it is assigned to it if

the distance from the centroid is less than the mean distance

from all the centroids (Figure 1, top). Instead, in this work

we select a fixed number N of distances and we set to 1

all the bits associated to the smaller N distances (Figure 1,

bottom). In the following we refer to this method as MINx.

This change has proven to be more efficient when coding

CNN feature descriptors, that were used in the experiments.

Figure 1. Binarization examples with a distance vector of 8 elements:
(top) geometric mean (MEAN method); (bottom) smaller distances N = 3
(MINx method).

Approximate nearest neighbor retrieval of image descrip-

tors is performed in two steps: in the first step is performed

an exhaustive search over the binary codes using Hamming

distances, to reduce negative effects of quantization errors.
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All the binary codes with Hamming distance below a thresh-

old are selected. In the second step the candidate neighbors

are re-ranked according to the distance computed using the

full feature vector. In this case the distance is computed

using cosine distance, that proved to be more effective than

L2 during the experiments.

B. Bloom Filter Algorithm

To improve search of feature vectors we also introduce the

use of Bloom filters [20]. Typically this type of structures are

used to speed up the answers in a key-based storage system

(Figure 2).

Figure 2. Memory accesses with Bloom filters

A Bloom filter is an efficient probabilistic data structure

used to test if an element belongs to a set or not. This

structure works with binary signatures, and can provide

false positive response but not false negative and more

elements are inserted into the structure and more high is the

probability to obtain a false positive. To insert an element

inside a Bloom filter we need to define k hash functions

which locate k positions inside the array, setting them to 1.

To check the presence of an element inside a Bloom filter

we to compute the k hash functions over the element and

check the related positions inside the array. If at least one bit

of these positions is equal to 0 it means that the element is

not present inside the array; if all the checked bits are equal

to 1 it means that either the element is inside the array or

we have a false positive. We used the method of [21] to

create the k functions from just two hash functions, that in

our implementation were based on MurmurHash3.

A useful property of Bloom filter is that we can measure

the presence of a false positive with probability:

(1− e−kn/m)k = (1− p)k = ε (1)

where m is the bit size of the array, n is the number of

inserted items, p is the probability that one position of the

array is equal to 0, and k is the number of hash functions

(that should be perfectly random). We can obtain the optimal

value k, given n and m, which minimizes false positive

probability. Typically m = O(n) it is a good compromise.

Figure 3. Example Bloom filter: (top) Insertion, (bottom) Search

This property makes the Bloom filters interesting for exact

retrieval; to handle the case of approximate testing, two

variations called Distance-Sensitive Bloom filter (DSBF)

[22] and Locality-Sensitive Bloom Filters (LSBF) [23], have

been proposed, where LSH functions are used as k hash

functions. In our approach, storing in the Bloom filter, using

the k random hash functions, the hash codes designed for

ANN, as those of Sect. III-A, results in a data structure that

is similar, from a practical point of view, to DSBFs and

LSBFs. In this approach the ANN hash codes are required

to reduce the false negatives; this avoids the need to use a

multi-probe approach as in [23]. Experimental results show

that the ANN signature is effective in avoiding the issue (see

Tab. II).

C. Retrieval System

Our proposed retrieval system merges the methods intro-

duced in III-A and III-B. Regarding visual feature hashing

we have applied the proposed method to CNNs features.

The system (Figure 4) uses a coarse-to-fine approach: in the

coarse phase hashes are used to select a subset of images

that are re-ranked in the fine phase.

More in detail in the initial phase descriptors are extracted

from base images, binarized following one of the methods

introduced in III-A and saved inside a data structure com-

posed by a set of inverted files of hashes implementing

an horizontal partition of data (allowing to distribute the

database as “shard”), each one guarded by a Bloom filter.

The hash code is also added to the Bloom filter of the

corresponding inverted file.

During the search phase we extract the CNN descriptor

from query images, compute the hash code, and check the

presence of the hash in the Bloom filters, each of which

guard a subset of the database (shard). If one of this Bloom

filters gives a positive response (this means that we have

a positive or a false positive match), all the hash codes

within an Hamming distance threshold are used to select

the full feature vector. This provides a great speedup in the

approximate nearest neighbor retrieval since we consider

only descriptors from base coded by a Bloom filter, and

below the Hamming threshold value. For each resulting

original CNN descriptor we compute the distance and we

rearrange results to obtain a ranked list of vectors.
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Figure 4. System overview: a CNN descriptor is hashed to 64 bits, used
to query a sharded database. Each database shard is accessed through a
Bloom filter that contains the hashes of the CNN descriptors stored in the
DB. If the Hamming distance between the query hash and the DB hash is
less than a threshold the full CNN descriptors are selected to re-rank the
final list.

IV. EXPERIMENTAL RESULTS

A. Datasets and Configurations

We tested our system using three standard dataset: INRIA

Holidays [24], Oxford 5K [25] and Paris 6K [26]. We

used the query images and ground truth provided for each

dataset, adding 100,000 distractor images from Flickr 100
[27]. When testing on a dataset training is performed using

the other two datasets. Features have been hashed to 64

bits binary codes, a length that has proved to be the best

compromise between compactness and representativeness.

Other parameters used for hashing were:

– number of N nearest distances used in the hash code

computation (N ∈ {6, 10, 16, 32, 40});
– Hamming distance threshold ∈ {2, 4, 6, 10, 16, 30}.

For the sake of brevity, in the following we report only

the best combinations. For the evaluation we used the Mean

Average Precision (MAP) metric. The CNN features used

in the following experiments have been extracted using the

1024d average pooling layer of GoogLeNet [28], that in

initial experiments has proven to be more effective than the

FC7 layer of VGG [29] used in [5].

B. Results

In the first experiment we evaluate the effects of the

method parameters, comparing the proposed hashing ap-

proach (MINx) with the original method of [15] (MEAN),

a baseline that uses no hashing, and many state-of-the-

art methods, among which the recent UTH method [13].

Although, several of these methods have been originally

tested on engineered features, in this case the results have

been obtained hashing CNN features; figures reported have

been obtained from [13], using a VGG convnet. The best

combinations of MINx are reported, compared on the three

datasets in terms of MAP. As expected the uncompressed

features perform better, but the MIN6 setup, with an Ham-

ming distance ≥ 6 has comparable results, and greatly

outperforms any state-of-the-art hashing method. A more

detailed evaluation of the parameters of the proposed hash-

ing method is reported in Figure 5 for the INRIA Holidays

dataset. Time results in seconds, for INRIA Holidays dataset,

are reported in Figure 6. A 2 × −10× speedup can be

obtained with Hamming distances between 6 and 10. Similar

results have been obtained on Oxford 5K and Paris 6K

datasets.

Table I
MAP RESULTS ON HOLIDAYS, OXFORD 5K AND PARIS 6K DATASETS.

THE PROPOSED MINX METHOD OUTPERFORMS ALL THE CURRENT

STATE-OF-THE-ART METHODS. ALL HASHES ARE 64 BIT LONG AND

HAVE BEEN COMPUTED ON CNN DESCRIPTORS.

Method Holidays Oxford 5K Paris 6K
ITQ [30] 53.68 23.00 -

BPBC [31] 38.10 22.51 -
PCAHash [30] 52.80 23.90 -

LSH [32] 43.08 23.91 -
SKLSH [33] 24.09 13.39 -

SH [34] 52.22 23.24 -
SRBM [35] 51.58 21.23 -
UTH [13] 57.10 24.00 -

MIN6
Thr. 10 75.62 46.03 67.57

MIN6
Thr. 16 75.63 46.06 67.84

MIN10
Thr. 10 74.33 45.66 60.84

MIN10
Thr. 16 75.63 46.04 67.70

MEAN [15]
Thr. 10 68.26 36.22 48.02

Baseline 75.63 46.06 67.84

2 4 6 10 16 20 30
Threshold Hamming Distance
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Figure 5. INRIA Holidays: MAP results on Holidays dataset for the
proposed MIN method, with different thresholds, compared to the MEAN
[15] and Product Quantization [6] methods, and baseline without hashing.

In the second experiment we evaluate a use case in which

a database of images is queried with a large number of

images that do not belong to it. Hash codes have been
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Figure 6. INRIA Holidays: time comparison for the MINx method, the
MEAN [15] method and baseline without hashing.

computed with different variants of the proposed hashing

method. The database contains the Paris 6K images, and

it is queried with all the query images of Paris 6K and all

the 100,000 distractor images. A different number of Bloom

filters, with different sizes is tested and compared against a

baseline that does not use any Bloom filter. MAP values

(computed on Paris queries) and query time in seconds are

reported in Tab. II (MAP in the first row and time in the

second). The speedup obtained is about 2× since a large

number of distractor queries are immediately stopped by the

system; the slight increase in MAP is due to the beneficial

effect of elimination of some false positives of the Paris 6K

images, that do not result in retrieving wrong dataset images.

Table II
MAP+TIME (SECS.) OBTAINED ON PARIS 6K WITH THE PROPOSED

SYSTEM WITH DIFFERENT NUMBERS OF BLOOM FILTERS (1, 2 AND 5)
AND WITH A BASELINE WITHOUT FILTERS. 2n AND 5n ARE THE SIZE OF

THE FILTERS, WHERE n IS THE NUMBER OF STORED ELEMENTS. Thr. IS

THE MAX. HAMMING DISTANCE USED FOR HASH CODE RETRIEVAL.

No
BF

1 BF 2 BF 5 BF
2n 5n 2n 5n 2n 5n

MIN6 67.57 67.57 67.57 67.94 70.96 67.53 68.21
Thr. 10 460.31 242.72 173.46 311.26 205.08 382.14 366.61
MIN10 67.70 67.69 67.69 68.37 68.46 67.66 66.70
Thr. 16 553.79 307.46 174.53 459.74 272.31 543.65 430.06

In the third experiment we evaluate a more challenging

and large scale experiment: three datasets composed by

distractor images and Holidays, Paris 6K and Oxford 5K

images are built and stored in the proposed data structure.

The standard dataset query images are then used to query the

system. In this case we have used 10 filters to “shard” the

database that, thus, can be distributed. Tab. III reports the re-

sults in terms of MAP and time (secs.). For the sake of space

we report only results for MIN6 and Hamming threshold 10.

Using the proposed method results in speed improvement

of 2× while improving MAP, except the Holidays dataset

that only improves speed. The size of each Bloom filter is

∼ 6 − 62 KB, allowing the use of the method in a mobile

environment, by distributing the Bloom filters to the mobile

devices and maintaining the shards of the database on the

backend.

Table III
MAP+TIME (SECS.) OBTAINED ON PARIS 6K, OXFORD 5K AND

HOLIDAYS WITH THE PROPOSED SYSTEM WITH 10 BLOOM FILTERS OF

VARYING SIZE AND WITH A BASELINE WITHOUT FILTERS. THE

DATABASE CONTAINS 100,000 DISTRACTOR + THE DATABASE IMAGES

OF EACH DATASET.

# BF Paris 6K Oxford 5K Holidays
No BF 58.52 42.05 59.56

3.35 2.35 56.71
10 BF 59.44 41.45 52.15

10n 2.66 1.95 47.21
10 BF 61.21 42.01 42.36

20n 1.93 1.53 36.36
10 BF 62.82 42.29 39.26

30n 1.43 1.25 31.37
10 BF 63.52 42.24 34.29

50n 1.21 1.11 26.59

V. CONCLUSIONS

In this paper we have presented a simple and effective

method for CNN feature hashing that outperforms current

state-of-the-art methods on standard datasets; the proposed

method is robust with respect to its two parameters, and has

also the added value of being simple so that it can be easily

re-implemented.
A novel indexing structure, where Bloom filters are used

as gatekeepers to inverted files storing the hash codes, results

in a 2× speedup for ANN, without loss in MAP. The

indexing structure allows to distribute the inverted files used

to store the hashes and descriptors of images as database

shards. Given the very compact size of the Bloom filters it

is also viable to distribute these indexes to clients running

on mobile devices, so to reduce the cost of querying remote

databases.
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