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Abstract—The increasing popularity of audio content sharing
in online platforms requires the development of techniques
to better organize and retrieve this data. In this paper we
look at how to improve similarity search through content
categorization in the context of Freesound, a popular online
sound sharing site. We focus on organization based on morpho-
logical description. In particular, we propose to improve search
results by incorporating information about query sound’s
loudness profile. This is performed within a thresholding based
framework and can be generalized to structure information
about the temporal evolution of other sound attributes. We
perform a subjective evaluation to demonstrate the practical
relevance of our method.
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I. INTRODUCTION

There is an exponential increase in the amount of user
annotated multimedia content on the internet. This requires
development of sophisticated techniques to classify, index
and retrieve this content for better navigation and storage.
In this paper we focus on Freesound1 which is an online
database of sounds where audio clips are shared by users
under the creative commons licenses [1]. This database,
which has now more than four million registered users
continues to expand each day. Each uploaded sound in the
database is accompanied by a set of tags and description.
Currently, users can browse through sounds using tags and
content-based audio similarity search (or query-by-example).
Freesound allows for similarity search through low-level
content descriptors, but the descriptors are not tailored to
the particular types of content that can be found in it. As
a consequence, the search results are often not relevant.
This makes conducting structured content search a persisting
problem.

Most of the current audio retrieval systems do not take
advantage of perceptual criteria or information about sound’s
temporal evolution, instead they use feature values averaged
over a bag of frames approach. As a result we are faced
with two primary difficulties:
• Audio search engines – like Freesound contain many

abstract sounds which are difficult to access through a
text-based search. For instance, for the class of sound
effects, where a sound might have an undefined source
or is not adequately described in words, retrieval would

1http://www.freesound.org

be difficult without a perception based advanced search.
Some sound engineers or artists also tend to have a
template of “how the sound should be ?” in terms of
its loudness or pitch profile. We believe filtering sounds
based on such criteria would improve the retrieval
results and user experience.

• Users are often presented with irrelevant similarity
search results because it disregards the temporal evolu-
tion of several perceptually relevant features.

Thus, to alleviate these limitations there is a need to incor-
porate information about the primary perceptual attributes of
sound, namely loudness, pitch and timbre. Here we propose
a generic thresholding-based framework for loudness profile
categorization to improve audio retrieval. The rest of the
paper is organized as follows: In Sec. II we discuss the
previous work followed by a rationale and description for
our approach in Sec. III. Subsequently in Sec. IV we present
experimental results and conclude in Sec. V.

II. RELATED WORK

A sound can either be described in terms of the previously
stated perceptual characteristics or based on its source of
generation. Though the source-centric description is im-
portant, as discussed earlier, a categorization in terms of
perceptual traits (or morphological characteristics) would
provide a more generic description for any kind of sound.
In this context, we discuss Schaeffer’s work [2] on typo-
morphology which has been utilized to build taxonomies
for sound indexing and retrieval [3], [4].

Schaeffer defines causal, semantic and reduced listening
as three perspectives for describing a sound. Causal refers
to recognition of the sound’s source, semantic to identifying
the meaning attached to a sound and reduced points to the
description of a sound regardless of its cause or meaning.
From the latter comes the concept of a sound object which is
defined as a sound unit perceived in its material, its particular
texture, its own qualities and perceptual dimensions [5].
Schaeffer proposes to describe these objects using seven
morphological components, grouped into three ‘criteria’.
Fig. 1 concisely presents this. The matter/form (or shape)
pair are central to Schaeffer’s morphological taxonomy. The
variation criteria comes about when both form and matter
vary. Several descriptors have been explored in literature for
quantification of these constructs and the given morpholog-
ical components. Interested reader is referred to [6], [3], [4]



for details on suggested taxonomies and representations. We
use Peeters et al.’s [4] taxonomy with some modifications.

Figure 1. Schaeffer’s morphological criteria [7]

We use [4], [3] as key references. With respect to the
previous work, our primary contributions are (i) proposal
of a simple, intuitive and flexible approach for loudness
profile categorization using thresholding (ii) demonstrating
that filtering similarity search results based on query sound’s
loudness profile improves their relevance.

III. OUR APPROACH

A. Methodology

In this work we concern ourselves with loudness, which,
as defined by the American National Standards Institute
(ANSI) is that attribute of auditory sensation in terms of
which sounds can be ordered on a scale extending from
quiet to loud. A loudness profile can then be described as
the temporal evolution of a sound’s loudness.

The idea is to threshold a few meaningful parameters
to retrieve sounds similar to any kind of loudness profile.
Thus, we first extract features relevant for describing a
sound’s loudness profile. Ideally we would now allow the
user to customize the loudness profile parameters for sound
retrieval. However, from the viewpoint of evaluation we
show that it can be done for the taxonomy shown in Fig. 2.

Dataset

Complex Events Single Events

Impulsive Stable Varying

1.  Increasing
2.  Decreasing
3.  Increasing-Decreasing
4.  Others

Figure 2. Content categorization scheme based on loudness profiles

B. Modeling Temporal Evolution - Feature Extraction

We modify the modeling strategy used in [4] to incorpo-
rate our requirements.

1) Loudness Computation - Spectrum is computed and
outer-mid ear filtering is performed [8]. Next, the

energy in each bark band, denoted by E(z, t) is
obtained. The loudness is then computed as

l(t) =
∑
z

l′(z, t) where l′(z, t) = E(z, t)0.23 (1)

In order to smooth the signal, l(t) is lowpass filtered.
Its maximum value, lm is determined and the part
of l(t) over 10% of lm is considered for subsequent
stages. The filter cut-off was set at 2 Hz. The time
axis is normalized for all the sounds.

2) Complex/Single Event Classification - Clearly, the
profile description would apply only to single sound
events i.e. sounds with one loudness envelope. Since
the dataset we use also contains complex events,
we automatically separate complex and single events
using the loudness curve. First, an onset detection
function is constructed from the derivative of the
loudness profile and then, peaks of this function are
detected using a running mean threshold. Any sound
with more than one peak is classified as complex.
Hereafter, we only consider the loudness curves for
single events.

3) B-Spline Modeling - In order to extract meaningful
descriptors for our classification we obtain a first-order
B-spline approximation (or straight line approxima-
tion) for the loudness curve that is continuous at lm.
Now we have a straight line approximation for the
filtered, thresholded log-scale loudness curve.

4) Extracted Features - As shown in Fig. 3, we extract
the following slope and relative duration features from
this representation. We denote the time instances cor-
responding to start, maximum and end of the profile
with ts, tM and te respectively:
• RD1 - Relative duration - tM − ts
• RD2 - Relative duration - te − tM or 1-RD1
• S1 - Slope of the approximation from where it

begins (ts) to the maximum (tM )
• S2 - Slope of the approximation between maxi-

mum (tM ) and the end point (te)
We compute the absolute effective duration at 10%
(ED10) and 40% (ED40) i.e. the duration for which
the profile is above 10% and 40% of its maximum,
respectively. Also, the relative (normalized time axis)
effective duration at 80% (ED80) is computed. These
features help us classify impulsive and stable sounds.

C. Profile Categorization

The template of a short/long sound or increas-
ing/decreasing profile can be defined intuitively. We demon-
strate here how that intuition can be translated into parameter
thresholds for broad categorization into classes shown in Fig.
2. As indicated, for single events the loudness curve could
belong to one of the following categories: impulsive if it has
either a sharp attack or is of a very short duration; stable



Figure 3. Loudness Profile Descriptors [4]

if the loudness of the sound does not vary much; It is of
increasing (or decreasing) category if the loudness increases
(or decreases) for significant portion of the sound’s duration.
and of delta class if it is perceived of increasing-decreasing
loudness. The others class would contain sounds which lie
in the “confusion” areas

1) Setting Thresholds: Consider for instance the increas-
ing class, ideally the sound would increase in loudness for all
its duration, however, in reality, the loudness would fall after
rising for a ‘significant’ part of the sound’s total duration.
Thus, with the thresholding approach we say that a sound
would belong to the increasing category if it rises for atleast
70% of its total duration (denoted by a dashed line). In this
case, we have set a threshold on the duration for which the
sound must rise to be classified as increasing. The other
profiles can be understood similarly.

1) Impulsive: ED40 ≤ δ or ED10 ≤ γ, where δ = 0.25
and γ = 0.3

2) Stable: ED80 ≥ 1− δ, where δ = 0.3
3) Increasing : RD1 ≥ 1− δ, where δ = 0.3
4) Decreasing : RD2 ≥ 1− δ, where δ = 0.3
5) Delta: |RD1− 0.5| ≤ δ, where δ = 0.1
6) Others: According to the definitions above, the others

class has two components others-increasing (Oth Inc.):
0.6 < RD1 < 0.7 and others-decreasing (Oth Dec.):
0.3 < RD1 < 0.4

Observe that we would first need to separate the impulsive
and stable class from the set of single events. This is also a
result of the features we extract. For instance, after a straight
line approximation the features of a stable sound might be
very similar to that of a sound from the delta class. This
also explains the need for the effective duration features we
mentioned in the previously.

IV. EXPERIMENTAL RESULTS

A. Dataset

First the FS-SFX dataset, containing 5248 sounds was
created by downloading content from Freesound using the
’fx’ tag as a filter. It was also ensured that all the sounds
were less than 10s in duration. For the experiments dis-
cussed in this paper we also use SFX-Reduced dataset (238
sounds), a subset of FS-SFX manually annotated according
to the loudness profile. The details are provided in Table I.

Class Number of sounds

Complex 57
Impulsive 53

Stable 28
Increasing 30
Decreasing 36

Delta 34

Table I
SFX-REDUCED DATASET DETAILS

B. Sanity Test

We perform this as a sanity check for our manually
thresholded categories. Classification results are presented
on the SFX-Reduced dataset. We use Essentia [9] for ex-
tracting onsets and loudness curve. We make the following
observations from Table II:

1) Note that the sounds were manually annotated to
belong to one of the five classes in Table I. Hence,
the confusion matrix is not square and includes the
others and the complex classes for predictions. The
system mis-classifies 28/181 single events into com-
plex category. We emphasize that we are only aiming
for broad categorization and satisfactorily achieve that
with very less complexity.

2) A sound belonging to other categories has been mis-
classified into the impulsive class. It is particularly
evident for the delta class. This implies that, using only
the effective duration descriptors for the impulsive
class is not sufficient.

Predicted
Imp Stb Inc Dec Delta Oth-Inc Oth-Dec Cmp

A
ct

ua
l

Imp 32 0 6 4 1 2 0 8
Stb 2 11 6 0 0 0 0 9
Inc 4 0 21 0 0 1 0 4
Dec 2 0 3 19 5 0 5 5

Delta 9 0 6 1 8 2 6 2

Table II
CONFUSION MATRIX: LOUDNESS PROFILE CLASSIFICATION

C. Subjective Evaluation

We analyze the utility of our framework for the use
case of similarity search. This is a very useful application
of morphological description, which, to the best of our
knowledge is not deployed by any online audio sharing
platform. In particular, we compare the performance of
the current Freesound similarity search with the proposed
modified version of it.

Current implementation in freesound performs a kNN
search over PCA features extracted using the Essentia
framework. The euclidean similarity measure is used. Fea-
tures consist of statistics computed over various low-level



features. 2 Thus the information embedded in temporal
variations is lost. For the modified system the results are
obtained after filtering current system’s results according to
the query sound’s loudness profile category.

Query Sound Category Filter

Impulsive Impulsive
Stable Stable

Increasing Inc. + Oth Inc.
Decreasing Dec. + Oth Dec.

Delta Oth Dec. + Delta + Oth Inc.

Table III
MODIFIED SYSTEM: FILTERS FOR REFINING SEARCH RESULTS

1) Experiment Design: We ran an online survey where
each user was asked to rate retrieval results from two systems
for eight query sounds. Each query sound was followed by
top 5 results (computed over FS-SFX dataset) from the two
systems presented in separate columns, labeled I and II.
For each sound, the system presented in each column was
randomized. The task was to carefully go through each query
sound along with its results. The user was then asked to
indicate his/her preference for system in column I or II based
on the similarity of its retrieval results to the query sound.
The users were also provided with a ‘No Preference’ option,
in case they did not find any of the systems to be better than
the other. For each user 8 query sounds were chosen from
a pool of 91 sounds selected from SFX-Reduced dataset.
These were sounds which were correctly classified into
the five categories by our system (refer to Table II). For
the modified system, the filters used for refining similarity
search results are presented in Table III.

2) Results and discussion: 13 candidates participated in
this online experiment. We obtained a total of 104 judge-
ments (8/candidate). Out of these, 25.9% (27/104) were
‘No preference’. Discarding these, we see from Fig. 4 that
74.02% (57/77) of the judgements were in favor of the
modified system. To further validate the performance, we
see that for all the candidates, the number of responses in
favor of the modified system were always greater than or
equal to those in favor of current Freesound system (equality
held only in one case). This gives us strong evidence to claim
that the modified version is an improvement over the current
Freesound system.

V. CONCLUSION

We have successfully demonstrated the use of high-level
loudness descriptors for generic audio similarity search.
More generally we observe that simple search strategies can
be improved significantly by incorporating domain-specific
constraints. We must highlight that we wanted to achieve

2File in freesound code repository specifying similarity search
setting - https://github.com/MTG/freesound/blob/master/similarity/presets/
lowlevel.yaml

Figure 4. Shows no. of responses in favor of Modified system (MOD),
Freesound system (FS) and ‘No Preference’ respectively

broad categorization and not accurate classification. Hence,
intuitively choosing soft bounds over meaningful parameters
suffices for our purposes. Moreover, the thresholds are
only presets which can be adjusted according to a user’s
preference.

Immediate applications would include: (i) Extension of
this framework to other sound attributes (ii) Advanced search
facility in freesound (iii) Automatic content-based labeling.
Overall, this work is relevant for sound databases where
information can be organized based on perceptual criteria
for better content-based retrieval and metadata generation.
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