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ABSTRACT
We propose a real-time human activity analysis system,

where a user’s activity can be quantitatively evaluated with
respect to a ground truth recording. We use two Kinects
to solve the problem of self-occlusion through extracting
optimal joint positions using Singular Value Decomposition
(SVD) and Sequential Quadratic Programming (SQP). Incre-
mental Dynamic Time Warping (IDTW) is used to compare
the user and expert (ground truth) to quantitatively score the
user’s performance. Furthermore, the user’s performance is
displayed through a visual feedback system, where colors on
the skeleton represent the user’s score. Our experiments use
a motion capture suit as ground truth to compare our dual
Kinect setup to a single Kinect. We also show that with our
visual feedback method, users gain statistically significant
boost to learning as opposed to watching a simple video.

Index Terms— Human Computer Interaction (HCI),
Kinect, Singular Value Decomposition, Sequential Quadratic
Programming, Incremental Dynamic Time Warping

I. INTRODUCTION

Human activity analysis is the process of automated
evaluation of different actions. Activity analysis has a wide
range of applications including: physical rehabilitation, as-
sisted living, telemedicine, entertainment, and fitness. In
many of these application areas, people wish to learn how
to perform certain activities. Traditionally, a user learns
through repetition while an expert observes and provides
qualitative feedback. Some problems with this approach is
that a human expert has to be present, and the feedback is
mostly qualitative so it varies between experts. A universal
automated activity analysis process can greatly enhance the
quality of life for many people, especially when the expert
is not present for the repetitive part of learning.

Early research in making activity analysis systems used
elaborate motion capture systems which were expensive,
thus reducing accessibility. RGB-D devices are a cheap and
commercially available alternative. Additionally Microsoft’s
Kinect Software Development Kit (SDK) offers real-time
skeletal tracking. There have been a few studies on appli-
cations for Kinect in training applications [1], [2]. Unfor-
tunately, these methods only classify exercises performed
as eithercorrect or incorrect and only at the end of the

exercise. A more recent work using Kinect provides real-
time evaluation of exercises in the form of qualitative audible
feedback [3]. While their system had positive feedback from
users, their quantitative results were inconclusive. To provide
meaningful evaluation of an exercise, the system needs to be
able to isolate the source of errors.

While the Kinect offers a cost effective method of depth
sensing, errors caused by occlusion limits natural move-
ments. Several methods have been proposed to correct failed
tracking [4], [5]. In [4], a computationally efficient method
is proposed where the skeletons from dual Kinects, facing
the user at different perspectives, are used to synthesize a
new skeleton. We improve upon their system with better
initialization to prevent the optimization algorithm from
getting stuck at a local maxima (details in Section II-A).
While there are more accurate methods such as [5], and even
commercial systems such as ipisoft (http://ipisoft.com/), the
accuracy comes at the price of high computational costs,
prohibiting their usage in real-time.

Our system which was initially proposed in [6], [7] was
designed to allow users to intuitively gauge their perfor-
mance in real-time. Incremental Dynamic Time Warping
(IDTW) was used to match the user to a pre-recorded ground
truth as it allows variation in speed. The IDTW costs were
calculated per limb and displayed back to the user with a
color-coded skeleton visualization, so that they can identify
which limbs are the source of error if they do not perform
the action properly. Using a color-coded image as a visual
measure of performance transfers information to the spacial
portion of working memory better than printed text [8]. Also,
any audio cues that convey qualitative feedback can still be
used because they use verbal working memory. While the
system showed potential in evaluating human activities, we
solve several of their limitations including:

* The limited number of natural movements with
only a single Kinect. One of the most serious weaknesses
of vision-based sensors is their dependance on perspective.
The use of multiple sensors increases the range of natural
movements that could be recorded as long as at least one
Kinect can see each body part.

* The reliance for the user and expert to use the
same Kinect setup.The goal of our system is to allow
users to practice activities unsupervised by an expert. Our
improved calibration stage allows Kinects to be moved
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around in between the expert session and the user session.
* The lack of quantitative experimentation to prove

the effectiveness of the system.Our previous works [6],
[7] had limited user experimentation. [6] only demonstrated
the visual feedback without user experiments and [7] did not
have a control group. The experiments done in the original
dual Kinect work measured the variation in limb length,
which discarded important orientation information, and did
not reference a ground truth [4]. Additionally the comparison
done between single, and dual Kinects, did not place the
single Kinect in its optimal viewing position (front facing).
Our experiments show a statistical improvement in user
learning rate when compared to trials with visual feedback
disabled. Additionally they show that our dual Kinects setup
increases the range of trackable movements; using a motion
capture suit as ground truth.

II. THE PROPOSED SYSTEM

II-A. Skeletal Voting

Two Kinects are used in a voting system to solve the
problem of self-occlusion as adapted from [4]. When our
system is run, calibration can be initiated by the user clicking
a button when they see both Kinects are tracking properly.
This calibration is used to find the rotation and translation
between the two Kinects. We designate an arbitrary Kinect
as the main Kinect and all other Kinects are transformed to
this space; using rigid body transform [9] achieved via SVD.
Our current setup uses two Kinects, but the voting system is
based on minimizing a weighted average and can therefore
be extended to multiple Kinects. As long as at least one
Kinect can see all joints at any given time, more Kinects do
not provide significant improvement. Using the calibration
data the skeletons are tranformed and averaged, to obtain
the user’s initial rotation based on the vector from left hip
to right hip, and the limb lengths.

The skeleton voting system uses SQP to optimize finding
joint positions. For each joint, weights are used to identify
which Kinect has the more accurate reported position. Let,
A and B denote the two Kinects, andSA and SB represent
the skeletons produced by them respectively. Each jointi
has positionsPAi i ∈ SA, and PBi i ∈ SB reported by each
Kinect. Our target is to calculate the weightswAi andwBi for
each joint representing how reliable the reported positions
are. Kinect reports mistracked joints as eitherinferred or
the reported position is a foreground pixel which is not the
correct joint position. As long as there are no objects occlud-
ing the user, any incorrect positions reported astracked are
from self-occlusion and therefore close to another reported
unconnected joint. Hence, the first step to calculating the
weights is to calculate the minimum distance between each
tracked joint and the closest unconnected joint:

dAi = min
k∈SA,k 6=i,c

||PAi −PAk ||2 dBi = min
k∈SB,k 6=i,c

||PBi −PBk ||2

(1)

Whered is the distance of jointi to the closest reported
joint k in skeletonS except for itself and any connected joint
c. The distances are normalized to form the initial part of
the weighting as shown as:

w̄Ai =
dAi

dAi +dBi

w̄Bi =
dBi

dAi +dBi

(2)

To incorporate the Kinect’s tracking state into the weight-
ing, variableshAi and hBi are used in creating the final
weights. Their value will be assigned a value ofθ if that
Kinect (A or B respectively) is tracking the jointi and
set to (1− θ) if the joint position is being inferred where
θ ∈ (0.5,1) and can be tuned. All examples in this paper
useθ = 0.9. By using a largerθ , the weighting relies more
on the joint being reported as tracked. The final weights are
normalized again as shown by by:

wAi =
(w̄AihAi)

4

(w̄Ai hAi)
4+(w̄BihBi)

4 wBi =
(w̄Bi hBi)

4

(w̄BihAi)
4+(w̄BihBi)

4

(3)

By adding the power of 4 to the normalization scheme,
the differences between weights are heavily exaggerated. If
one of the pre-normalized weights were significantly higher
than the other, after normalization with the power of 4 the
lower weight would be pushed down to almost 0 while the
higher weight would be pushed up to almost 1.

After weighting the reliability of the reported joint posi-
tions, Sequential Quadratic Programming (SQP) is used to
find the final optimal joint positions. SQP takes a quadratic
optimization function and a set of quadratic constraint
functions and iteratively finds a solution using Newton’s
Method. The objective function used in [4] is to minimize
the weighted sum of distances between the final voted joint
position and the reported position of each Kinect while the
constraint is that the limb length found during the calibration
stage must be preserved. The Lagrange function for the
described problem can be shown as:

ℓ(PVi ,λ ) = ∑
i∈SA,SB

wAi ||PVi −PAi ||2+wBi ||PVi −PBi ||2

+ λ ∑
i, j∈SA,SB

||PVi −PV j ||2− l2
i, j

(4)

where j is the parent joint which is the next connected
joint to i leading to the center hip,li j is the limb length that
was recorded in the calibration stage, andλ is the Lagrange
multiplier.

A visualization of the voting can be seen in 1. In [4],
the SQP was initialized at voted position from the previous



frame. In our system, we set our initial guess for each joint
as the position of the Kinect with the higher weighting.
Through testing, we found that it was possible with the old
initialization to get stuck at a local maxima. This is due to
the fact that SQP only looks for the closest local optimal
point which can be a max or min and is therefore sensitive
to initialization. Looking at figure 1, The final joint position
needs to be on the sphere with the radius defined by the
limb length. On that sphere, the minimum point should be
located closest to where the reported joint positions with
high weights are and the maximum point is on the opposite
side. If the previous voted joint position is closer to the max
point due to either fast movements or accidental mistracking,
then under the old initialization the joint will get voted to
the max point and the initialization for the next frame’s
voting will always be closer to the maximum. Under the new
initialization, as long as the Kinect with the higher weightis
tracking properly, the initialization will always be closer to
the min point. We end the line search when the voted point
moves less than 0.1mm or when 50 iterations have passed.

Fig. 1: Voting for one incorrect joint . PAi (tracking) and
PBi (mistracking) are the reported joint positions from Kinect
A and B. The radius of the circle represents the limb length
obtained in calibration. WithPVi being the final voted joint,
restricted by limb length.

II-B. The IDTW Algorithm and Grading

We use a similar grading scheme that was proposed in
[6]. Two major improvements are:

* We removed the requirement that for a limb to be
graded, there has to be a minimum amount of movement
of that limb. While this feature made the algorithm com-
putationally more efficient, certain exercises require proper
posture meaning that a limb can not be disregarded from
grading just because it does not move.

* During the calibration stage for multiple Kinects,
the vector between the left hip and right hip is saved and
every skeleton is rotated by that vector before being sent
to the grading algorithm. This allows our grading system
to be calibration dependent rather than Kinect placement
dependent. As a system that is meant to be used without
the expert being present, we must assume that the Kinect
setups will not have identical placement.

Grading using IDTW is done on a per-joint basis. Each
joint’s position is normalized by having the coordinates
from the parent subtracted and the result is divided by limb
length. Each normalized joint coordinate can be calculated

by Ji =
PVi−PVj

||PVi−PVj ||
, where PVi and PV j represent the voted

joint locations as stated before. This normalization allows
the system to accommodate for people with different limb
sizes [10].

Time sequences of the userU with N frames and the
expertE with M frames are compared in a grid. For each
cell (Ua,Eb) in the grid, the distance between the normalized
joint positionsJi are compared for the sequenceU at time
frame a and E at time frameb. The equation for IDTW is
[6]:

Di(U,E) = min
c=1,...,M

1
N

T

∑
t=1

||J Ut
i − J Et

i ||, i ∈ SU ,SE . (5)

Where T is the total grid cells taken in the warping path,
t corresponds to each grid coordinate(Ua,Eb) in that path,
and SU and SE are the set of all joints in the skeletons U
and E. In the classical DTW approach, the minimum path is
required to reach from the bottom left of the grid to the top
right. Since our application is real-time, the full sequence
for the user is not complete and therefore the requirement
for the sequence to reach the top right needs to be relaxed.
IDTW achieves this by requiring the warping path to include
all frames of the user sequence, but only using the firstc
frames of the expert sequence that minimizes the DTW cost.
Finally, the limb scores are calculated as:

Zi, j = e−ν∗(Di+D j)/2, (6)

Wherei and j are the joints that form this particular limb
Zi, j, andν is a parameter to control the score’s sensitivity.
In our experiments,ν was set to 10 for all joints above the
hips and 30 for the hips and below as we found that the legs
had an easier time keeping a good score. TheZi, j scores are
projected onto the skeleton visualization through a color map
to form the visual feedback system. The color map used in
this work is blue-aqua-green-yellow-red, i.e., the color stays
closer to blue if the user is doing well, and shifts towards
red as the performance worsens.

III. EXPERIMENTAL RESULTS

The goal of these experiments is to verify that the al-
gorithms can track and evaluate users and show that using
the system can improve performance. To our knowledge,
this is the most comprehensive set of experiments that
objectively demonstrate the performance of Kinect based
activity analysis. However, direct comparison to other meth-
ods is not possible due to the fact that experiments for
activity analysis systems are based on how the systems
were designed. Our system is meant to teach any kind of



activity while other systems may target teaching a specific
activity or increasing the user’s fitness. Many works such
as [11], [3], [1] have mixed results for user testing, failing
to convincingly demonstrate their claimed advantages. For
our experimental setup, our system is implemented using a
Visual Studio WPF application. The computer hardware was
an i7-4790 at 3.6GHz with 16GB RAM. The system ran
between 3 to 4 ms per frame on average with both skeleton
voting and IDTW running which is in-line with [4]. The
experiments are separated into three sections.

The first part of the experiment shows the system’s
improved tracking compared to a single front facing
Kinect using a XSens motion capture suit as ground
truth (https://www.xsens.com/products/xsens-mvn/. Thesec-
ond part of the experiment shows that our system can dif-
ferentiate between good and poor performances pinpointing
the source of errors. The third part of the experiment shows
that our real-time feedback system can allow users to learn
an activity much more efficiently than simply watching and
imitating a video. In all of our tests, we had 2 lab members
act as theexpert and 8 participants act asusers with a mix
of different gender, age, and demography. In all parts of
the experiment, four simple exercises (bar curl, horse stance
(from karate), marching, vertical press) and two complicated
Tai Chi exercises (brush Knee, parting the wild horse’s
mane) are used. The scores shown are the IDTW costs
totaled across all joints; lower scores are better. While thenu-
meric scores can give an indication of overall performance,
it does not give a clear picture of when and where mis-
takes occurred. For clarifications readers are recommended
to watch the video demonstrations of the exercises used
in the experiment at: https://youtu.be/GMkbgja5Nng and
https://youtu.be/zp1BjMsK22M.

III-A. Multi-Kinect Performance Test

In the tracking test, only the ground truth actors are used
for comparing Kinects to motion capture suits for all 6
exercises. The first actor performedbar curl, marching, and
brush knee while the other actor performedhorse stance,
vertical press, and horse’s mane. The Xsens MVN mocap
suit is used as ground truth since it is an inertial based motion
capture system meaning that it can not be self-occluded.
The actors performed each exercise with the dual Kinects
and single Kinect separately while wearing the MVN suit
for ground truth. The skeletons were synchronized at 30
FPS and a rigid body transform was used to match their
coordinate systems. Joint positions were normalized relative
to parent exactly like how our system process features. The
exercises were recorded multiple times to make sure the
mistracking consistently occurred for the single Kinect; only
one session is shown. The figures 2 and 3 shown are for
horse’s mane and brush knee since they highlight obvious
mistracking for single Kinects. The graphs show the distance
per frame between features created by the Kinect(s) and
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Fig. 2: Tracking results for horse’s mane exercise. The spikes
marked in (a) for single Kinect are shown in (b) and (d) while
equivalent dual Kinect frames are shown in (c) and (e). Blue
skeletons belong to the motion capture suit and red skeletons
belong to the Kinect

Xsens. The motion capture suits places joints in slightly
different locations than the Kinect so there will always be a
static amount of distance between them. Areas of interest in
the graphs will therefore be the spikes in the graphs which
are marked for single Kinect. For every single Kinect error
frame, we show the closest corrected Dual Kinect frame.
For every marked frame, the 3D skeletons are shown from
a perspective that shows the errors best. As seen in both of
these figures, a single front facing Kinect loses tracking in
both of the Tai Chi exercises while the dual Kinects maintain
tracking.

III-B. Grading Test

The grading test includes the four simple exercises in
which each participant knew the exercises ahead of time and
was asked to perform the exercise properly five times and
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Fig. 3: Tracking results for brush knee exercise. The spike
marked in (a) for single Kinect is shown in (b) while the
equivalent dual Kinect frame is shown in (c). Blue skeletons
belong to the motion capture suit and red skeletons belong
to the Kinect

then make a specific mistake five times. The exercises and
mistakes were: a) vertical press with inclined back, b) march
with not bending the legs 90◦, c) bar curl with putting the
whole arm into motion instead of only using biceps and d)
horse stance (from karate) with not spreading the legs far out
enough and compensating by pointing the knees outwards.
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Fig. 4: Results of the grading test. Each user’s good perfor-
mances shown in blue, while incorrect shown in red. The
results are shown in a boxplot representing the variance for
each user over five sessions.

The results of the grading test in Figure 4 show the

effectiveness of IDTW scoring. For each individual user,
the incorrect performances received higher IDTW costs on
average compared to their proper performances. It is also
important to note that the IDTW costs were fairly dependent
on the user and the type of exercise. While it may not be
possible to set a universal threshold between good and poor
performances, it is possible to easily tune the visual feedback
per individual and exercise by changingν in equation 6.

III-C. User Study

The objective of the user study is to quantify a user’s
performance over consecutive sessions with/without the col-
ored skeleton visualization while following a difficult routine
alongside an expert. We chose two Tai Chi exercisesParting
the Wild Horse’s Mane andBrush Knee. Tai Chi was chosen
as it was complex enough to require practice while not
being strenuous to perform. In order for the users to learn
the exercises quicker, the ground truth recordings break the
exercises up into individual steps with pauses in between
(shown in the videos). The eight participants were divided
into two groups: the first group performs Horse’s Mane
with the visual feedback system enabled while performing
Brush Knee with the visual feedback system disabled and
vice versa for the second group. All of the users confirmed
they did not know how to perform the exercise before
the experiment. Each user performed each exercise for ten
sessions. The users’ cumulative IDTW costs were recorded
at the end of each session.
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Fig. 5: Results of the user study. Each graph shows each
group’s individual DTW costs over 10 sessions for each of
the two exercises

As seen in Figure 5, when each group saw their feedback
there was a downward trend in their IDTW costs. When the
colored skeletons were disabled, the user’s IDTW costs were
more erratic overall and some users performed worse over
the ten sessions. While it can be argued that certain users
performed better than others and that both of the exercises
were not equal in difficulty, erratic scores between sessions
only occurred when users did not see their visual feedback.
To prove that users improved over 10 sessions when they



Table I: Results of Mann-Kendall trend test on the median IDTW of alluserswith feedback (WFB) andno feedback (NFB)

Session 1 2 3 4 5 6 7 8 9 10 P-value

WFB 0.8043 0.6828 0.6454 0.6092 0.6618 0.5436 0.5662 0.4780 0.5222 0.4635 0.0013

NFB 0.5598 0.5438 0.5147 0.4877 0.5763 0.4665 0.5486 0.5005 0.4688 0.5666 0.5195

saw feedback, we preformed statistical trend analysis. After
all the sessions were recorded, the samples were grouped
by sessions with visual feedback andsessions without visual
feedback. A Mann-Kendall test was run on the median per
session of each group [12]. The purpose of the Mann-Kendall
test is to identify if there are any monotonic trends in a
series of data. The median was recommended by [12] for
central values with small sample sizes. The hypothesis of
the test is that there are no trends in the data. Typically,
a p-value of less than 0.05 means that the hypothesis can
be rejected with confidence indicating there is a trend in
the series. Table I shows the median samples per session
and the results of the Mann-Kendall test. The sessions with
feedback received a p-value of 0.0013 meaning that there is
a trend present in the data while the group without feedback
failed to reject the hypothesis. These results demonstratethat
the visual feedback system can indeed help a user quickly
improve over time with easy-to-interpret feedback, which is
not possible with simply imitating a video.

IV. CONCLUSION

In this paper, we propose an improved real-time human
activity analysis system. Our system improves the range of
trackable movements through the use of dual Kinect voting
using SVD and SQP. IDTW is used to calculate the distance
cost between a partial user sequence and a complete expert
sequence. Visual feedback allows users to easily understand
where they can improve their performance in real-time.
Improvements were made to the system to allow differ-
ent Kinect placements between sessions. Our experiments
demonstrate the increase range of movements of the dual
Kinect setup without self-occlusion. Our experiments also
show a statistically significant learning trend when users saw
our visual feedback which did not occur when the visual
feedback was disabled. Our activity analysis system can
be used to improve learning for users while they practice
activities during the times when an expert is not present.
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