
1

Deep Autoencoders with Value-at-Risk
Thresholding for Unsupervised Anomaly Detection

Albert Akhriev and Jakub Marecek

Abstract—Many real-world monitoring and surveillance ap-
plications require non-trivial anomaly detection to be run in the
streaming model. We consider an incremental-learning approach,
wherein a deep-autoencoding (DAE) model of what is normal
is trained and used to detect anomalies at the same time.
In the detection of anomalies, we utilise a novel thresholding
mechanism, based on value at risk (VaR). We compare the
resulting convolutional neural network (CNN) against a number
of subspace methods, and present results on changedetection.net.

Index Terms—convolutional autoencoder, incremental training,
background subtraction

I. INTRODUCTION

Consider the problem, where starting from high-dimensional
streamed data, one should like to distinguish between “normal”
input of time-varying nature (also known as background) and
“anomalies” (events, or foreground). This problem is known
as anomaly or event or outlier detection in Data Engineering
[1], [2] and as background subtraction in Computer Vision [3].

Early methods studied the data (block-)coordinate-wise. For
example for image data, these methods worked pixel-by-pixel
[4]–[7], where each pixel is a block of three coordinates.
Subsequently, the view of anomaly detection as a low-rank
matrix-completion problem has become popular. A typical
approach stacks a number of recent flattened observations,
e.g. video frames, into rows of a data matrix, which is then
approximated via a low-rank matrix. The low-rank model
corresponds to the background, and anomalies are outside of
the low-rank subspace [8]–[12]. In Signal Processing [13]–
[15], there is much related work on robust principal component
analysis (RPCA) and subspace tracking. Extensive literature
surveys can be found in [16]–[18].

More recently, deep-learning techniques have been de-
veloped, based on the matrix-completion view of anomaly
detection [2], [19]. Notably, autoencoder architecture have
proven successful, in practice. A multi-scale framework, pro-
posed in [20], encodes the input images by means of pre-
trained VGG-16 followed by a sub-net that pools features
at multiple scales before feeding them into decoder. Authors
claim robustness against camera jitter and shadows despite a
very limited number of labelled images used for training. In
[21] authors extended ideas of [4], [5] by training a CNN on
image patches. Subsequently, the trained CNN was applied
to assemble foreground mask from patches on previously
unseen images. Likewise a patch-based CNN in [22] learns to
output foreground probability on a small number of labelled
training examples. Double-autoencoder network, introduced in
[23], reconstructs background in two stages. It requires some
initial training but afterwards can proceed in online fashion.

There are also sparse [24], robust [25] variants and variants
combining auto-encoders with Gaussian mixture models [26].
For a broader view of recent advances in deep architectures
for background modelling, reader is advised to consult the
comprehensive surveys [3], [27].

A key challenge across subspace and deep-learning ap-
proaches is the amount of supervision and tuning. Interest-
ingly, many approaches therein rely on very simple threshold-
ing mechanisms that require extensive tuning and output quite
noisy foreground masks. In particular, across both traditional
methods [4], [5], methods based on matrix-completion [28],
and autoencoders [26], the use of Gaussian mixture models
(GMM) is the state of the art. While there are plausible
alternatives [29, e.g.], the typical use of GMM involves the
use of expectation-maximization (EM) heuristics, which suffer
from a host of issues, including the sensitivity to noise and
sensitivity to balance in the mixing coefficients, as well as
getting stuck in arbitrarily poor local optima. One would hence
like to obtain an unsupervised approach, without the GMM
assumptions.

Our main contribution is a technique for unsupervised use
of deep autoencoders:
• the use of a thresholding mechanism based on value

at risk (VaR), which can be computed exactly in time
required to sort the incoming data.

• a novel weighing (pre-processing) of the input to the
autoencoder.

• a numerical study of deep-autoencoders and matrix-
completion methods with a variety of thresholding meth-
ods on changedetection.net.

The use of VaR-based thresholding makes it possible to adapt
deep-learning approaches into unsupervised methods without
data-dependent tuning.

The paper is organised as follows: in Section II, we describe
a variant of background subtraction algorithm based on a con-
volutional autoencoder. In Section IV, it is compared against
selected low-rank approximation methods. Both approaches
can be seen as non-linear subspace tracking [30], which
motivated our choice of comparison candidates. Section V
summarises our vision of future efforts.

II. THE UNSUPERVISED CONVOLUTIONAL AUTOENCODER

Since having labelled data is unaffordable in many real-
world applications, an unsupervised approach to anomaly de-
tection is desirable. Our approach uses a convolutional neural
networks (convolutional autoencoder) without an explicit train-
ing phase for anomaly detection in streamed data. In particular,
it uses incremental training of a model of what is normal

ar
X

iv
:1

91
2.

04
41

8v
1

 [
cs

.C
V

]
 9

 D
ec

 2
01

9

2

(background), without any supervised data, and concurrent use
of the model, to estimate what is normal (background).

A baseline deep convolutional autoencoder (DAE) could be
seen as a generalisation of low-rank approximation methods.
Upon arrival of a new frame I of a stream, we do exactly one
forward/backward iteration in order to train the autoencoder
(update phase), and then draw an estimate of background
model B as an output of the autoencoder network (reconstruc-
tion phase). L1-norm loss function minimises the difference
between I and B, effectively ignoring the outliers (here, points
of moving objects).

Figure 1 depicts the architecture of our autoencoder. Except
the first and the last layer, all other convolution layers have 64
filters of size 5×5 (input and output number of channels equals
to 64), interleaved with non-linear activations. Experimentally,
we found that hyperbolic tangent function (tanh) works better
than logistic function or rectified linear unit.

In a pre-processing step, the input is flattened, block-
coordinate to a single coordinate (e.g., red-green-blue to
grayscale), before being fed into the autoencoder. (Note that at
night time, there are no colours in video data anyway.) Each
frame is then reshaped into a “standard” layout (1×576×704)
and the values are normalised to [−0.5 . . . 0.5] range. Re-
constructed background and foreground mask undergo the
inverse transformation. The bottleneck layer is represented
by 1D tensor of size 2048, surrounded by fully-connected
layers. Encoder’s layers are shrunk by a factor of 2 (stride
2), as the data propagate from input to output, and decoder’s
(transposed) layers are expanded by the same factor of 2 (stride
2), respectively. Here we try to balance between network
depth (that increases computational burden) and background
reconstruction quality.

In early experiments, we used single image as an input
and output respectively. This approached demonstrated solid
results compared to other methods. Nonetheless, dynamic
background case can be handled better, if we admit multiple
images in the process of outlier thresholding. We have at
least two options here. First, accumulate a short history of
recent frames (50 in our experiments, or 2 seconds of video).
In each iteration, pick up a subset of 10 images uniformly
spread over this short history, and stack them into 10×H×W
tensor, where W , H stand for width and height respectively.
This tensor is fed into an autoencoder as a multi-channel
image I(c, i) with “colour channels” c = 1 . . . 10 and points
i = 1 . . . (H ×W). The reconstructed background B(c, i) has
the same layout. The goal is to make training procedure less
prone to overfitting.

Multi-channel input image increases the number of weights
in the first and the last convolution layers making for-
ward/backward passed more compute-intensive. The second
option, also adopted in this study, presents a trade-off between
CPU/GPU load and foreground detection quality. Namely,
we use approach similar to described above except a multi-
channel input is replaced by a mini-batch of 10 input/output
images. This reduces the number of weights in convolutional
layers but, in theory, also lessens the flexibility of autoencoder
network. In practice, we found no difference and both options
produce very similar results up to minor variations attributed

to randomization in Xavier’s initialization of network weights.
Algorithm 1 summarizes the main steps of proposed ap-

proach 1) transform a new frame into a “standard” form; 2)
update a time window of a history of 50 recent frames; 3)
compute weights using the optic-flow algorithm (2) and plug
them into the loss function (1); 4) make one forward and one
backward step in training the autoencoder (cf. Figure 1); 5) re-
construct background model B, and compute the residuals; 6)
estimate the optimum threshold using Value at Risk, and apply
it to the residuals; 7) output a binary mask outlier/background
reshaped back to the original size.

Algorithm 1 A single step of the incremental autoencoder
training and anomaly detection

1: Input: Next element from a data stream, e.g., one frame
of video data.

2: Output: a binary mask suggesting what is an anomaly.
3: Reshape the data to suit the convolutional network and

normalise the values, e.g., to an image in 1×576×704
resolution, linearly transformed to [−0.5 . . . 0.5] range.

4: Update a time window considered, e.g., a history of 50
recent images.

5: Compute weights (2) using the optic flow and plug them
into the loss function (1).

6: Make one forward and one backward step in training the
autoencoder.

7: Reconstruct a model of what is normal (background) B,
and compute residuals ri.

8: return threshold(ri) of Algorithm 2, which estimates
the optimum threshold, and applies it to the residuals.

A. DIS-Based Weights
As pointed out in [23], the robustness of the loss function

L can be improved by introducing point-wise weights:

L =
∑

c,i
wi |I(c, i)−B(c, i)| , (1)

where index i runs through all the pixels, and wi is close to 0
for a moving point, and close to 1 otherwise. Because filters
in CNN are shared by all the points, few remaining outliers
would not harm the training process and will be suppressed
by L1-norm loss function. One possible option for weight
computation is to decrese the weights using the DIS algorithm
[31]:

wi = exp
(
−v2i /

(
2 ·median over image

(
v2
)))

, (2)

where vi is a velocity at point obtained by optic-flow com-
putation from a pair of consecutive input frames I(t−1) and
I(t), at times t − 1, t. The scaling factor inside the exponent
is computed as a median squared velocity over all points.
In this way, the moving points are effectively down-weighed
during the training phase. Alternatively, the masks output
by fast and reliable algorithms introduced in [6], [7] could
be used as the weights. Note that it would be sufficient to
mask out the majority of foreground points. Because filters
in a convolutional network are shared by all the points, few
remaining outliers would not be harmful for the training
process and will be suppressed by L1-norm loss function.

3

T
a

n
h

 n
o

n
-l
in

e
a

r
a

c
ti
v
a

ti
o

n

In
p

u
t

im
a

g
e

 b
a

tc
h

,
im

a
g

e
 l
a

y
o

u
t:

 1
x
5

7
6

x
7

0
4

C
o

n
v
:

5
x
5

,
c
h

a
n

n
e

ls
 i
n

:
1

,
o

u
t:

 6
4

,
s
tr

id
e

:
2

T
a

n
h

 n
o

n
-l
in

e
a

r
a

c
ti
v
a

ti
o

n

C
o

n
v
:

5
x
5

,
c
h

a
n

n
e

ls
 i
n

:
6

4
,

o
u

t:
 6

4
,

s
tr

id
e

:
2

C
o

n
v
:

5
x
5

,
c
h

a
n

n
e

ls
 i
n

:
6

4
,

o
u

t:
 6

4
,

s
tr

id
e

:
2

T
a

n
h

 n
o

n
-l
in

e
a

r
a

c
ti
v
a

ti
o

n

F
u

lly
-c

o
n

n
e

c
te

d
,

in
:

6
4

x
3

6
x
4

4
,

o
u

t:
 2

0
4

8

T
a

n
h

 n
o

n
-l
in

e
a

r
a

c
ti
v
a

ti
o

n

B
o

tt
le

n
e

c
k
 l
a

y
e

r,
 1

D
,

s
iz

e
:

2
0

4
8

F
u

lly
-c

o
n

n
e

c
te

d
,

in
:

2
0

4
8

,
o

u
t:

 6
4

x
3

6
x
4

4

T
ra

n
s
p

.C
o

n
v
:

5
x
5

,
c
h

a
n

n
e

ls
 i
n

:
6

4
,

o
u

t:
 6

4
,

s
tr

id
e

:
2

T
ra

n
s
p

.C
o

n
v
:

5
x
5

,
c
h

a
n

n
e

ls
 i
n

:
6

4
,

o
u

t:
 6

4
,

s
tr

id
e

:
2

T
ra

n
s
p

.C
o

n
v
:

5
x
5

,
c
h

a
n

n
e

ls
 i
n

:
6

4
,

o
u

t:
 1

,
s
tr

id
e

:
2

T
a

n
h

 n
o

n
-l
in

e
a

r
a

c
ti
v
a

ti
o

n

T
a

n
h

 n
o

n
-l
in

e
a

r
a

c
ti
v
a

ti
o

n

T
a

n
h

 n
o

n
-l
in

e
a

r
a

c
ti
v
a

ti
o

n

R
e

c
o

n
s
tr

u
c
te

d
 b

a
c
k
g

ro
u

n
d

 b
a

tc
h

C
o

n
v
:

5
x
5

,
c
h

a
n

n
e

ls
 i
n

:
6

4
,

o
u

t:
 6

4
,

s
tr

id
e

:
2

T
a

n
h

 n
o

n
-l
in

e
a

r
a

c
ti
v
a

ti
o

n

T
ra

n
s
p

.C
o

n
v
:

5
x
5

,
c
h

a
n

n
e

ls
 i
n

:
6

4
,

o
u

t:
 6

4
,

s
tr

id
e

:
2

T
a

n
h

 n
o

n
-l
in

e
a

r
a

c
ti
v
a

ti
o

n

Fig. 1. The architecture of the convolutional autoencoder. Note that after the second fully-connected layer, we reshape the intermediate tensor to 64×36×44
for subsequent decoding, where the number of channels (64) comes first in PyTorch convention. Also, parameter “padding=2” is specified in all convolutional
layers and additionally “output padding=1” in transposed convolutional layers (Transp.Conv) respectively.

III. THE VAR-BASED THRESHOLDING

A key step in the use of low-rank or autoencoding ap-
proaches is thresholding. Therein, one considers the so-called
residual map, which is an array of the same dimensions as the
input I and background B. In this study, the residual ri at ith
point is defined by:

ri = min
k∈Ni, c=1...10

∣∣∣I(1, i)−B(c, i)
∣∣∣, (3)

wherein Ni are the points in 3×3 vicinity of (central) point
i, c ranges over 10 recently reconstructed backgrounds, and
a variety of norms (distance functions) can be used, outside
of the absolute value of (3). Based on the residual map,
the thresholding produces a binary-per-block-coordinate array
ri > t, which suggest what are the anomalies (moving objects)
and what constitutes the normal background process.

We should like to stress that thresholding is a vast area
by itself, even when restricted to anomaly detection [32].
Although locally adapted threshold, e.g. [33], [34], may work
best, it is quite common to choose a single, even hard-coded,
threshold for each frame. We follow the same practice by
choosing automatically estimated, global threshold for every
block-coordinate in residual map. Among the techniques for
automatic threshold selection, we found that classical methods
and their variations such like Otsu’s one [35], where threshold
is determined by minimizing intra-class intensity variance, or
maximum entropy method in [36] do not produce convinc-
ing foreground/background segmentation. The comprehensive
surveys [32], [37], [38] give a good insight into the related
methods.

Apparently, a threshold estimator should take some spatial
information into consideration in order to make an “optimal”
decision. At a high level, we seek a threshold for the highest

sensitivity, when isolated noisy points “just” show up. To this
end, we need to define isolation and sensitivity.

In defining isolation, we have adopted a simple, yet efficient,
mechanism first proposed by Malistov [39]. He estimated the
probability of formation of a false “object” when 4 or more
adjacent points exceeded a threshold. From that consideration,
he deduced an optimum threshold value. We extended the idea
by testing spatial neighborhood of a pixel and examining 3×3
contiguous patches that have 1 or 2 pixels, including the center,
marked as an anomaly. This is illustrated in Figure 2.

Fig. 2. The configurations of the 3 × 3 contiguous patches, whose fraction
within all the 3× 3 contiguous patches is sought.

For a given threshold, one analyses 3× 3 patches centered
at each point in the residual map. There are several cases how
residual value ri at the central point relates to its neighbours.
Let us consider one example. Suppose that the central value
r1 is the largest one and we pick up the second r2 and the
third r3 largest ones from the 3 × 3 patch, r3 ≤ r2 ≤ r1.
Suppose that all the values are integral, as usual in computer-
vision applications. If a threshold happens to lie in the interval
[r3 + 1 . . . r1], then one of the patterns depicted on Figure 2
will show up after thresholding. As such, this particular central
point “votes” for the range [r3 + 1 . . . r1].

One can view the “votes” as forming a probability mass
function of a random variable supported on the range of
possible values of the thresholds, e.g., [0, 255]. Figure 3
suggests to see this as an histogram of thresholds. In particular
for the center point of the previous paragraph, we would

4

Fig. 3. An example of the histogram of thresholds. The histogram was
truncated from the original 255 size to allow for some clarity of presentation.
Three threshold values read as follows: GT – “ground-truth” threshold
obtained by minimizing a mismatch between binarized image of residuals
and the ground-truth foreground mask provided in cdnet 2014; HT – “hard”
threshold, here 25; AT – “automatic” threshold obtained by Algorithm 2.

increment counters in the bins corresponding to threshold
values r3+1 to r1 in the histogram. Repeating the process for
all the points and all combinations of 3 largest residuals r1,
r2, r3, we arrive at the information as to the number HT (t)
of (central) points of one of the patterns of Figure 2 would be
observed if the threshold t were used. In other words, HT (t)
gives a rate of appearance of patterns in Figure 2 as a function
of selected threshold t. Figures 3 to 5 give an example of a
histogram of thresholds, a histogram of residuals and a log-
transformed histogram of residuals respectively.

In defining sensitivity, consider a discrete random variable
X , and risk measures thereof. While it is customary to analyze
the histogram of residuals, e.g. [32], [35]–[37], [40], [41], all
our calculations are done over the histogram of thresholds
introduced above. As risk measures, we consider the value
at risk (VaR):

VaRα(X) := min{c : P (X ≤ c) ≥ α}, (4)

and the conditional value at risk (CVaR):

CVaRα(X) := E[X : X ≥ VaRα(X)]. (5)

CVaR is also known as the Average Value-at-Risk, Expected
Shortfall, and Tail Conditional Expectation, in various commu-
nities within computational finance, where the random variable
usually models the loss associated with an asset or a collection
of assets.

For comparison purposes, we introduce two more types of
thresholds in this study. The first one is called an “ground-
truth” threshold (GT), which is obtained by minimizing a
mismatch between thresholded residuals and the ground-
truth foreground mask provided in cdnet 2014 dataset. A
“hard” threshold (HT) is a hard-coded value of 25. (Notice
that a “hard” threshold is quite common in state-of-the-art-
implementations, cf. [42].) For the sample frame in Figure 6,

Fig. 4. An example of the histogram of residuals. The histogram was truncated
from the original 255 size to allow for some clarity of presentation. Three
threshold values read as follows: GT – “ground-truth” threshold obtained by
minimizing a mismatch between binarized image of residuals and the ground-
truth foreground mask provided in cdnet 2014; HT – “hard” threshold, here
25; AT – “automatic” threshold obtained by Algorithm 2.

our automatic threshold is VaR(at)
α = 38 and the ground-

truth threshold is VaR(gt)
α = 9. The corresponding parameters

are αgt = 0.835 and αat = 0.876 respectively. Loosely
speaking, this means the following: Had we selected the above
VaRs as thresholds, a pixel with the residual exceeding the
values of 83.5% and 87.6% of the smallest residuals should
be considered as an outlier (a point of a moving object in
this context).For the same parameters α, the corresponding
CVaR values are CVaR(gt)

α = 70.1 and CVaR(at)
α = 85.8

respectively. The big difference between VaR and CVaR values
(for the same α) can be explained by slow decay of the residual
distribution, see Figure 5, which contains not only the regular
background samples, but also the outliers belonging to moving
objects.

Figure 6 shows the result of thresholding by either “ground-
truth” or by our “automatic” threshold. Clearly, the ground-
truth threshold produces a solid mask, but it captures the
background noise as well. In some cases, it could be not trivial
to eliminated that noise. On the other hand, the “automatic”
threshold gives less amount of clutter in background, but more
“holes” in moving objects. Note, we do not use any mask post-
processing in this study.

Algorithm 2 summarizes all the steps. It returns maximum
of the four values: (1) hard threshold Th; (2) value exceeding
2/3 of the smallest residuals; (3) right-hand side margin of
the smallest interval that contains 50% of histogram area; (4)
automatic VaR threshold as described above.

Finally, note that assuming the cardinality of the finite
discrete range for the threshold values is a constant, the
histogram of thresholds could be built in linear time, that is,
the computational complexity is linear in the number of central
points. In computer-vision applications, residuals often take
integral values between 0 and 255 inclusive, and the same is
true for the thresholds, so the assumption is easily satisfied.

5

Fig. 5. An example of the histogram of residuals. The histogram was truncated
from the original 255 size to allow for some clarity of presentation. Also, the
vertical axes was log-transformed making tail values better visible. Three
threshold values read as follows: GT – “ground-truth” threshold obtained by
minimizing a mismatch between binarized image of residuals and the ground-
truth foreground mask provided in cdnet 2014; HT – “hard” threshold, here
25; AT – “automatic” threshold obtained by Algorithm 2.

Algorithm 2 Computation of Value-at-Risk threshold
1: Input:

• image of integral residuals ri ∈ [0, 255],
• rate of noisy patterns in Figure 2, R = 0.0025,
• hard threshold Th = 25.

2: Output: threshold t.
3: Initialise threshold t to a lower bound, which is just above

the values of 2/3 of the smallest residuals.
4: Build the histogram of thresholds HT (t) from ri.
5: Compute the smallest interval that contains 50% of the

histogram area, and get the right margin of this interval
mright.

6: Adjust the initial threshold: t← max (t, Th,mright).
7: for t ≤ 255 do
8: Explore the range x ∈ [t−5 . . . t+5].
9: if all HT (x) ≤ R · (number of pixels) then

10: break
11: else
12: t← t+ 1
13: end if
14: end for
15: return t.

A. Extensions

Intuitively, it is clear that we are interested in the study of
the tail of the random variable, whose histogram of thresholds
we have constructed. That is: The region around the mode of
the histogram (approximately 50% of its area) mostly contains
noise. We could search for the optimum threshold from the
right-hand side of the region around the mode of the histogram
of thresholds HT (t), until the rate of noisy patterns in Figure 2
falls below certain value.

One could also require the threshold to be above 2/3 of
residual values in the image. This requirement is typically
well-matched with expected amount of moving points in
surveillance video.

One can consider other notions of isolation, which may have
further benefits. In particular, we have considered 5×5 vicinity
of each points and account only for those configurations where
internal 3 × 3 pattern from Figure 2 is completely isolated
from the pixels on outer border of 5× 5 neighbourhood with
values exceeding a threshold. In other words, one-pixel thin
lines should not influence threshold estimation. However, the
implementation would be more complicated in this case. We
hence consider only the 3× 3 patches.

IV. EXPERIMENTAL EVALUATION

To demonstrate our approach, we have implemented the
autoencoder in Python 3 using PyTorch, the deep-learning
engine. For evaluation and comparison against other methods,
we present results on changedetection.net (cdnet 2014), a well-
established benchmark of [43]. Although cdnet-2014 is not the
benchmark where the convolutional autoencoder would work
best, considering that the video sequences in cdnet 2014 are
quite short (1, 200 to 9, 000 frames), we perform three passes
over each sequence, in order to circumvent the shortage of
data. Evaluation and computation of the foreground mask is
performed only during the final pass. Note that we do not use
any labelling information in the training at all, in sharp contrast
to some other authors testing deep-learning approaches on
cdnet-2014. For scoring, we utilize cdnet 2014 evaluation
software on categories: “badWeather”, “dynamicBackground”,
“cameraJitter”, “baseline”, “nightVideos”, “shadow”. Each
category contains several videos. Since our autoencoder ex-
pects a standard image size of 576×704, we resize input
image, if necessary, and the computed foreground mask is
resized back to the original size. This procedure affects both
quality and performance, but seems unavoidable because net-
work architecture is determined by the image size.

For comparison, we have chosen several methods from
LRSLibrary, an excellent toolbox developed by A. Sobral
and co-authors [42], [44]. Considering that our approach can
be seen as a low-rank approximation method, we have fo-
cussed on five well-performing methods considering the “low-
rank and sparse” model for background modeling and subtrac-
tion in videos. The five methods were: LRR_FastLADMAP
[8], MC_GROUSE [9], RPCA_FPCP [10], ST_GRASTA
[11], TTD_3WD [12], when considering both statistical per-
formance and the run-time per frame. We also used the
recent and state-of-the-art algorithm OMoGMF, proposed in
[28], [45], as implemented in Matlab by the authors. OMoGMF
was identified as a top performer in our experiments. The only
caveat to keep in mind is that OMoGMF algorithm outputs black
foreground mask after about 2, 500 frames. As a workaround,
we discard the foreground masks with all black pixels from
the scoring process. Considering neither of the methods used
for comparison requires a fixed frame size, we do not rescale
the frames.

The data matrix has been built from 50 most recent frames,
which is the default setting used across both LRSLibrary

6

Fig. 6. Sample frame from the video-sequence highway (left), corresponding ground-truth foreground mask provided by cdnet 2014 (middle-left), result of
binarization of residual image by the “ground-truth” threshold obtained by minimizing a mismatch between binarized image and the ground-truth (middle-right),
result of binarization of residual image by the “automatic” threshold obtained by Algorithm 2 (right).

Method Recall Specificity FPR FNR Precision F1 Run-time [s/frame]
LRR FastLADMAP [8] 0.74694 0.93980 0.06020 0.25306 0.28039 0.36194 4.611
MC GROUSE [9] 0.65640 0.89692 0.10308 0.34360 0.25425 0.31495 10.621
OMoGMF [28], [45] 0.89943 0.98289 0.01711 0.10057 0.62033 0.72611 0.123
RPCA FPCP [10] 0.73848 0.94733 0.05267 0.26152 0.29994 0.37900 0.504
ST GRASTA [11] 0.45340 0.98205 0.01795 0.54660 0.44009 0.42367 3.266
TTD 3WD [12] 0.61103 0.97117 0.02883 0.38897 0.35557 0.40297 10.343
Autoencoder, 5×5 min. thr. 0.65676 0.99360 0.00640 0.34324 0.77756 0.70593 0.57

TABLE I
PERFORMANCE RESULTS ON “BASELINE” VIDEO-CATEGORY FROM HTTP://CHANGEDETECTION.NET. THE EXECUTION TIME IN SECONDS PER FRAME IS
GIVEN FOR “HIGHWAY” VIDEO-SEQUENCE WITH 240×320 IMAGES. THE LAST LINE REFLECTS ONLY FORWARD/BACKWARD SINGLE ITERATION TIME.

.

and OMoGMF. Upon arrival of a new image, it was inserted at
the end of the queue keeping the time-ordering, which some
algorithms might be sensitive to.

A. Statistical Performance

Results for the “baseline” category, along with timing infor-
mation in the last column for “Highway” video, are presented
in Table I.

Table II summarizes scoring results obtained on 6 video-
categories for all the methods including OMoGMF, which was
identified as the best subspace method in this study, and our
convolutional autoencoder. Note, there are two sub-tables for
autoencoder results. In the first case (“min. threshold”) we
derive the optimum threshold from a distribution of minimum
residuals across a batch of reconstructed backgrounds, but
without looking at points’ neighbourhoods. In the second
case (“5×5 min. threshold”), threshold was computed with
the extensions described in the previous section, formula (3),
and that leads to an improvement in the overall F -measure,
especially for dynamic-background category.

Figures 7 and 8 present selected results obtained by
Autoencoder and OMoGMF methods. Here we provide some
typical cases, where advantages and disadvantages of both
approaches can be clearly seen. A few observations deserve
attention. First, OMoGMF performs really well in general. It
integrates a flexible Gaussian Mixture Model (GMM) and pro-
duces a solid motion mask, but it is less resistant to noise and
non-stationary background than our autoencoder. Second, our
autoencoder yields a good background estimation and copes
better with dynamic background than many other methods.
While a single choice of a threshold is not flexible enough, as
it produces “holes” in the motion mask and worse scores, our
VaR-based method seems more robust than the alternatives.

Third, foreground sometimes “leaks” into background, as for
example in the “canoe” result in Figure 8. Partially, this can
be explained by videos being too short for proper training of
autoencoder, which tends to memorize images — the known
problem. Also note that autoencoder operates on grayscale
images, unlike other methods. By taking advantage of colour
images the detectability of moving objects can be improved,
whereas realistic scenarios include night-time videos, where
colour information is not available anyway.

B. Runtime

All the methods used for comparison, except our autoen-
coder, are implemented in Matlab. It took several weeks to
process selected videos on Intel Core i7-4800MQ, 4-core CPU,
16 Gb, 2.70 GHz workstation powered by RedHat 7.6/64
Linux and Matlab 2018a. To make use of the general-purpose
graphics processing unit (GPGPU), we have utilised a different
machine to run the autoencoder. This machine was equipped
with Intel Xeon E5-2699 CPU at 2.20 GHz and Tesla K40c
GPGPU with 12 GB of on-board memory, and ran by RedHat
Linux 7.5. With the GPGPU, it took about 2 days to run on
the benchmark.

Since we are using different hardware for our autoencoder
and OMoGMF, it is not straightforward to compare their com-
putational speed. In general, our autoencoder utilizes a single
CPU core and the GPGPU specified above. OMoGMF utilizes
4 CPU cores and takes about 0.123 seconds per a 240×320
frame (video-sequence “highway”). In the case of our autoen-
coder, the DIS algorithm followed by forward/backward steps
takes about 0.57 sec. per a 576×704 frame. Thresholding
and storing on hard-disk (for subsequent scoring) take about
1 second. Our thresholding procedure has very simple code
and can be easily improved to real-time performance. The

http://changedetection.net

7

actual bottleneck resides in neural network implementation.
Considering 576×704 images and at least linear dependency
of processing time on the number of pixels, the processing
times of OMoGMF and the main part of our autoencoder should
be comparable.

V. A SUMMARY AND DISCUSSION

We have presented an algorithm for tracking of time-varying
low-rank background models of time-varying matrices, using
a continuously trained and applied convolutional autoencoder.
Our approach displays solid performance overall, and seems
comparable to the best subspace methods. Three features may
be worth highlighting. First, incremental training makes the
network adaptive to gradual scene changes, which always hap-
pen in reality. Second, no labelled data is needed, in contrast to
typical deep-learning approaches. Instead, we down-weighing
the moving points using a rough estimation of the foreground
mask. The training is primarily driven by background points
and robust to outliers. Third, we compute foreground mask of
moving objects by considering the spatial neighbourhood of
each pixel and VaR-based thresholding.

Low-rank methods have made remarkable progress in recent
years, but still demonstrate certain limitations. As it turns out,
all the methods considered in this study have difficulties in
producing a convincing foreground motion mask in the case
of fast-varying background. Clearly, there are good statistical
and complexity-theoretic reasons [46], [47] for any method
to have difficulties in fast-changing environments, but there
may be a scope for improvement. Improving upon thresholding
technique can alleviate the problem of a poor foreground mask,
to some extent.

Originally, we designed the algorithm to handle video
streams, collected from a network of CCTV cameras in
Dublin, Ireland, which posed a serious challenge to any
algorithm we tested: camera jitter, compression artefacts, poor
image quality, adverse weather condition, night videos and
so on. Usually, it takes approximately 20 minutes (30, 000
video-frames) for autoencoder to build up a good background
model. However, the standard video sequences, adopted by
the community for benchmarking, are typically very short –
few thousands frames. This rises a question about the scoring
process, particularly when algorithms based on deep learning
architecture are involved.

It seems that the next generation of benchmarks should
be designed. This can be, for example, a collection of com-
pressed, one-day long videos with few thousand check-point
images evenly scattered across the sequence and manually
labelled. When video-processing reaches the next check-point
frame, the scoring procedure is applied to collect and update
a performance statistics. That would offer a more realistic
comparison protocol.

An important avenue for further efforts, as can be seen in
the last column of Table I, is the speed-up of the autoencoder.
This is a principal limitation of any deep-learning architecture,
overall. Although hardware advances lessen the cost and
increases the performance of GPGPUs at remarkable pace,
having a GPGPU per camera may still be too expensive for

many applications. One possible solution is to run forward
steps often and backward (training) ones rarely. This will
reduce the rate of adaptation, but also decrease the run-time.

REFERENCES

[1] M. Kontaki, A. Gounaris, A. N. Papadopoulos, K. Tsichlas, and
Y. Manolopoulos, “Continuous monitoring of distance-based outliers
over data streams,” in 2011 IEEE 27th International Conference on Data
Engineering, pp. 135–146, April 2011.

[2] L. Cao, Y. Yan, C. Kuhlman, Q. Wang, E. A. Rundensteiner, and
M. Eltabakh, “Multi-tactic distance-based outlier detection,” in IEEE
33rd Int. Conf. on Data Engineering (ICDE), pp. 959–970, 2017.

[3] T. Bouwmans and B. Garcia-Garcia, “Background subtraction in real
applications: Challenges, current models and future directions,” CoRR,
vol. abs/1901.03577, 2019.

[4] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models
for real-time tracking,” Proc. 1999 IEEE Computer Society Conf. on
Comp. Vision and Pattern Recognition, vol. 2, pp. 246–252 Vol. 2, 1999.

[5] Z. Zivkovic and F. van der Heijden, “Efficient adaptive density estima-
tion per image pixel for the task of background subtraction,” Pattern
Recognition Letters, vol. 27, no. 7, pp. 773 – 780, 2006.

[6] O. Barnich and M. Van Droogenbroeck, “Vibe: A powerful random
technique to estimate the background in video sequences,” in 2009 IEEE
Int. Conf. on Acoustics, Speech and Signal Proc., pp. 945–948, 2009.

[7] P. St-Charles, G. Bilodeau, and R. Bergevin, “Subsense: A universal
change detection method with local adaptive sensitivity,” IEEE Trans-
actions on Image Processing, vol. 24, pp. 359–373, Jan 2015.

[8] Z. Lin, R. Liu, and Z. Su, “Linearized alternating direction method with
adaptive penalty for low-rank representation,” in Advances in Neural
Information Processing Systems 24 (J. Shawe-Taylor, R. S. Zemel, P. L.
Bartlett, F. Pereira, and K. Q. Weinberger, eds.), pp. 612–620, Curran
Associates, Inc., 2011.

[9] L. Balzano and S. J. Wright, “On GROUSE and incremental SVD,” in
2013 5th IEEE International Workshop on Computational Advances in
Multi-Sensor Adaptive Processing (CAMSAP), pp. 1–4, Dec 2013.

[10] P. Rodriguez and B. Wohlberg, “Fast principal component pursuit via
alternating minimization,” in 2013 IEEE International Conference on
Image Processing, pp. 69–73, Sep. 2013.

[11] J. He, L. Balzano, and J. C. S. Lui, “Online Robust Subspace Tracking
from Partial Information,” arXiv e-prints, p. arXiv:1109.3827, Sep 2011.

[12] O. Oreifej, X. Li, and M. Shah, “Simultaneous video stabilization and
moving object detection in turbulence,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, pp. 450–462, Feb 2013.

[13] N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy, “Robust
subspace learning: Robust pca, robust subspace tracking, and robust
subspace recovery,” IEEE Signal Processing Magazine, vol. 35, no. 4,
pp. 32–55, 2018.

[14] Y. Chen and Y. Chi, “Harnessing structures in big data via guaranteed
low-rank matrix estimation: Recent theory and fast algorithms via
convex and nonconvex optimization,” IEEE Signal Processing Magazine,
vol. 35, no. 4, pp. 14–31, 2018.

[15] G. Lerman and T. Maunu, “An overview of robust subspace recovery,”
Proceedings of the IEEE, vol. 106, no. 8, pp. 1380–1410, 2018.

[16] S. Ma and N. S. Aybat, “Efficient optimization algorithms for robust
principal component analysis and its variants,” Proceedings of the IEEE,
vol. 106, pp. 1411–1426, Aug 2018.

[17] T. Bouwmans, S. Javed, H. Zhang, Z. Lin, and R. Otazo, “On the
applications of robust pca in image and video processing,” Proceedings
of the IEEE, vol. 106, no. 8, pp. 1427–1457, 2018.

[18] L. Balzano, Y. Chi, and Y. M. Lu, “Streaming pca and subspace tracking:
The missing data case,” Proceedings of the IEEE, vol. 106, no. 8,
pp. 1293–1310, 2018.

[19] X. Zhang, W. Dou, Q. He, R. Zhou, C. Leckie, R. Kotagiri, and Z. Salcic,
“Lshiforest: A generic framework for fast tree isolation based ensemble
anomaly analysis,” in 2017 IEEE 33rd International Conference on Data
Engineering (ICDE), pp. 983–994, April 2017.

[20] L. A. Lim and H. Y. Keles, “Learning multi-scale features for foreground
segmentation,” CoRR, vol. abs/1808.01477, 2018.

[21] M. Babaee, D. T. Dinh, and G. Rigoll, “A deep convolutional neural
network for background subtraction,” CoRR, vol. abs/1702.01731, 2017.

[22] M. Braham and M. Van Droogenbroeck, “Deep background subtraction
with scene-specific convolutional neural networks,” in Int. Conf. on
Systems, Signals and Image Proc. (IWSSIP), pp. 1–4, May 2016.

8

[23] P. Xu, M. Ye, X. Li, Q. Liu, Y. Yang, and J. Ding, “Dynamic background
learning through deep auto-encoder networks,” in Proceedings of the
22Nd ACM International Conference on Multimedia, MM ’14, (NY,
USA), pp. 107–116, 2014.

[24] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding
algorithms,” in Advances in neural information processing systems,
pp. 801–808, 2007.

[25] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep
autoencoders,” in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 665–674,
ACM, 2017.

[26] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and
H. Chen, “Deep autoencoding gaussian mixture model for unsupervised
anomaly detection,” in International Conference on Learning Represen-
tations, 2018.

[27] T. Bouwmans, S. Javed, M. Sultana, and S. K. Jung, “Deep neural
network concepts for background subtraction: A systematic review and
comparative evaluation,” CoRR, vol. abs/1811.05255, 2018.

[28] H. Yong, D. Meng, W. Zuo, and L. Zhang, “Robust online matrix
factorization for dynamic background subtraction,” IEEE Trans. on Pat.
Analysis and Mach. Intelligence, vol. 40, pp. 1726–1740, July 2018.

[29] J. Xu and J. Marecek, “Parameter estimation in gaussian mixture models
with malicious noise, without balanced mixing coefficients,” in 2018
56th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pp. 446–453, Oct 2018.

[30] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[31] T. Kroeger, R. Timofte, D. Dai, and L. J. V. Gool, “Fast optical flow
using dense inverse search,” CoRR, vol. abs/1603.03590, 2016.

[32] M. Sezgin and B. Sankur, “Survey over image thresholding techniques
and quantitative performance evaluation,” Journal of Electronic Imaging,
vol. 13, pp. 146–168, Jan 2004.

[33] D. Bradley and G. Roth, “Adaptive thresholding using the integral
image,” J. Graphics Tools, vol. 12, pp. 13–21, 01 2007.

[34] W. Tao, H. Jin, Y. Zhang, L. Liu, and D. Wang, “Image thresholding
using graph cuts,” Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, vol. 38, pp. 1181 – 1195, 10 2008.

[35] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, pp. 62–
66, Jan 1979.

[36] J. Kapur, P. Sahoo, and A. Wong, “A new method for gray-level picture
thresholding using the entropy of the histogram,” Computer Vision,
Graphics, and Image Processing, vol. 29, no. 3, pp. 273–285, 1985.

[37] P. Rosin, “Thresholding for change detection,” in Proc. ICCV, pp. 274–
279, 02 1998.

[38] C. Chang, Y. Du, J. Wang, S. Guo, and P. D. Thouin, “Survey
and comparative analysis of entropy and relative entropy thresholding
techniques,” IEE Proceedings - Vision, Image and Signal Processing,
vol. 153, pp. 837–850, Dec 2006.

[39] A. Malistov, “Estimation of background noise in traffic conditions and
selection of a threshold for selecting mobile objects,” Actual problems of
modern science, vol. 4, 2014. In Russian. In addition, see the abstract
of PhD Thesis, pp. 12-13 in http://www.malistov.ru/docs/dissertation/
abstract malistov.pdf.

[40] C. Conaire, N. O’Connor, E. Cooke, and A. Smeaton, “Detection thresh-
olding using mutual information,” VISAPP – International Conference
on Computer Vision Theory and Applications, Feb 2006.

[41] X. Fu-song, “Survey over image thresholding techniques based on
entropy,” in 2014 International Conference on Information Science,
Electronics and Electrical Engineering, vol. 2, pp. 1330–1334, April
2014.

[42] A. Sobral, T. Bouwmans, and E.-h. Zahzah, “Lrslibrary: Low-rank and
sparse tools for background modeling and subtraction in videos,” in
Robust Low-Rank and Sparse Matrix Decomposition: Appl. in Image
and Video Proc., CRC Press, Taylor and Francis Group., 2015.

[43] N. Goyette, P. Jodoin, F. Porikli, J. Konrad, and P. Ishwar, “Changede-
tection.net: A new change detection benchmark dataset,” in in Proc.
IEEE Workshop on Change Detection (CDW-2012) at CVPR-2012,
Providence, RI, Jun 2012.

[44] T. Bouwmans, A. Sobral, S. Javed, S. K. Jung, and E.-h. Za-
hzah, “Decomposition into low-rank plus additive matrices for back-
ground/foreground separation: A review for a comparative evaluation
with a large-scale dataset,” CoRR, vol. abs/1511.01245, 2015.

[45] D. Meng and F. D. L. Torre, “Robust matrix factorization with unknown
noise,” in Proc. of the 2013 IEEE Int. Conf. on Computer Vision,
ICCV’13, pp. 1337–1344, IEEE Computer Society, 2013.

[46] P. Whittle, “Restless bandits: Activity allocation in a changing world,”
Journal of applied probability, vol. 25, no. A, pp. 287–298, 1988.

[47] J. C. Gittins, K. D. Glazebrook, R. Weber, and R. Weber, Multi-armed
bandit allocation indices, vol. 25. Wiley Online Library, 1989.

http://www.malistov.ru/docs/dissertation/abstract_malistov.pdf
http://www.malistov.ru/docs/dissertation/abstract_malistov.pdf

9

Video Recall Specificity FPR FNR Precision F1
LRR FastLADMAP [8]:
badWeather 0.82941 0.82644 0.17356 0.17059 0.09239 0.15580
baseline 0.74694 0.93980 0.06020 0.25306 0.28039 0.36194
cameraJitter 0.75423 0.83766 0.16234 0.24577 0.18119 0.28715
dynamicBackground 0.69953 0.79853 0.20147 0.30047 0.03828 0.06968
nightVideos 0.80056 0.84435 0.15565 0.19944 0.11062 0.18503
shadow 0.72950 0.88521 0.11479 0.27050 0.23030 0.32793
Overall 0.76003 0.85533 0.14467 0.23997 0.15553 0.23125
ST GRASTA [11]:
badWeather 0.26555 0.98971 0.01029 0.73445 0.45526 0.30498
baseline 0.45340 0.98205 0.01795 0.54660 0.44009 0.42367
cameraJitter 0.51138 0.91313 0.08687 0.48862 0.23995 0.31572
dynamicBackground 0.41411 0.94755 0.05245 0.58589 0.08732 0.13736
nightVideos 0.42488 0.97224 0.02776 0.57512 0.24957 0.28154
shadow 0.44317 0.96681 0.03319 0.55683 0.42604 0.41515
Overall 0.41875 0.96192 0.03808 0.58125 0.31637 0.31307
RPCA FPCP [10]:
badWeather 0.82546 0.84424 0.15576 0.17454 0.09950 0.16687
baseline 0.73848 0.94733 0.05267 0.26152 0.29994 0.37900
cameraJitter 0.74452 0.84143 0.15857 0.25548 0.18436 0.29024
dynamicBackground 0.69491 0.80688 0.19312 0.30509 0.03928 0.07134
nightVideos 0.79284 0.85751 0.14249 0.20716 0.11797 0.19497
shadow 0.72132 0.90454 0.09546 0.27868 0.26474 0.36814
Overall 0.75292 0.86699 0.13301 0.24708 0.16763 0.24509
OMoGMF [28], [45]:
badWeather 0.86871 0.98939 0.01061 0.13129 0.57917 0.67214
baseline 0.89943 0.98289 0.01711 0.10057 0.62033 0.72611
cameraJitter 0.85954 0.90739 0.09261 0.14046 0.30566 0.44235
dynamicBackground 0.87655 0.86383 0.13617 0.12345 0.08601 0.15012
nightVideos 0.75607 0.92372 0.07628 0.24393 0.23252 0.31336
shadow 0.55771 0.80276 0.03057 0.27562 0.40539 0.37449
Overall 0.80300 0.91166 0.06056 0.16922 0.37151 0.44643
Autoencoder, min. threshold:
badWeather 0.83978 0.97169 0.02831 0.16022 0.46847 0.57446
baseline 0.72216 0.98873 0.01127 0.27784 0.62647 0.63878
cameraJitter 0.74510 0.92411 0.07589 0.25490 0.40775 0.50148
dynamicBackground 0.81096 0.86072 0.13928 0.18904 0.08430 0.14604
nightVideos 0.66925 0.95927 0.04073 0.33075 0.23837 0.34159
shadow 0.71458 0.98464 0.01536 0.28542 0.69253 0.68589
Overall 0.75031 0.94819 0.05181 0.24969 0.41965 0.48137
Autoencoder, 5×5 min. thr.:
badWeather 0.64712 0.99898 0.00102 0.35288 0.92511 0.75683
baseline 0.65676 0.99360 0.00640 0.34324 0.77756 0.70593
cameraJitter 0.64940 0.95970 0.04030 0.35060 0.43331 0.51465
dynamicBackground 0.55339 0.97154 0.02846 0.44661 0.24313 0.30643
nightVideos 0.53979 0.97544 0.02456 0.46021 0.33687 0.39017
shadow 0.62316 0.98857 0.01143 0.37684 0.76103 0.67776
Overall 0.61160 0.98130 0.01870 0.38840 0.57950 0.55863

TABLE II
PERFORMANCE RESULTS ON 6 VIDEO-CATEGORIES FROM HTTP://CHANGEDETECTION.NET. FOR AUTOENCODER WE PRESENT RESULTS FOR TWO

THRESHOLDING STRATEGIES IN THE LAST TWO SUB-TABLES AS DETAILED IN SECTION II.

http://changedetection.net

10

Fig. 7. “Pedestrians” video-sequence, cdnet 2014. Left to right: reconstructed background outputted by the Autoencoder, foreground mask by the
Autoencoder, the ground-truth, and foreground mask obtained by OMoGMF. Foreground mask obtained from autoencoder output does not undergo any
post-processing.

11

Fig. 8. Selected background subtraction results. Left to right: reconstructed background outputted by the Autoencoder, foreground mask by the
Autoencoder, the ground-truth, and foreground mask obtained by OMoGMF. Video-sequences, cdnet 2014, top to bottom: “highway”, “wetsnow”, “blizzard”,
“snowfall”, “boats”, “canoe”, “fall”. Foreground mask obtained from autoencoder output does not undergo any post-processing.

12

Fig. 9. “Blizzard” video-sequence, cdnet 2014. Left to right: reconstructed background outputted by the Autoencoder, foreground mask by the
Autoencoder, the ground-truth, and foreground mask obtained by OMoGMF. OMoGMF is good in detecting small objects, but noise is also often acquired.
Foreground mask obtained from autoencoder output does not undergo any post-processing.

13

Fig. 10. “Boats” video-sequence, cdnet 2014. Left to right: reconstructed background outputted by the Autoencoder, foreground mask by the
Autoencoder, the ground-truth, and foreground mask obtained by OMoGMF. Non-stationary background is a particularly difficult case for modelling
by any method mentioned in this study. Note that there is an issue in OMoGMF code that results in black foreground mask after approximately 2, 500 frames.
Foreground mask obtained from autoencoder output does not undergo any post-processing. Some “leakage” of slowly moving objects into reconstructed
background can be observed in the last two rows.

14

Fig. 11. “Highway” video-sequence, cdnet 2014. Left to right: reconstructed background outputted by the Autoencoder, foreground mask by the
Autoencoder, the ground-truth, and foreground mask obtained by OMoGMF. Notice that the autoencoder is more resistant against dynamic background, at
the expense of less solid motion mask. Foreground mask obtained from autoencoder output does not undergo any post-processing.

15

Fig. 12. “Canoe” video-sequence, cdnet 2014. Left to right: reconstructed background outputted by the Autoencoder, foreground mask by the
Autoencoder, the ground-truth, and foreground mask obtained by OMoGMF. This is another difficult case of non-stationary background. Notice the “leakage”
of slowly moving object into reconstructed background. Foreground mask obtained from autoencoder output does not undergo any post-processing.

	I Introduction
	II The Unsupervised Convolutional Autoencoder
	II-A DIS-Based Weights

	III The VaR-Based Thresholding
	III-A Extensions

	IV Experimental Evaluation
	IV-A Statistical Performance
	IV-B Runtime

	V A Summary and Discussion
	References

