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Abstract—The heterogeneity gap problem is the main challenge
in cross-modal retrieval. Because cross-modal data (e.g. audio-
visual) have different distributions and representations that
cannot be directly compared. To bridge the gap between audio-
visual modalities, we learn a common subspace for them by
utilizing the intrinsic correlation in the natural synchronization
of audio-visual data with the aid of annotated labels. TNN-C-
CCA is the best audio-visual cross-modal retrieval (AV-CMR)
model so far, but the model training is sensitive to hard negative
samples when learning common subspace by applying triplet
loss to predict the relative distance between inputs. In this
paper, to reduce the interference of hard negative samples in
representation learning, we propose a new AV-CMR model to
optimize semantic features by directly predicting labels and
then measuring the intrinsic correlation between audio-visual
data using complete cross-triple loss. In particular, our model
projects audio-visual features into label space by minimizing the
distance between predicted label features after feature projection
and ground label representations. Moreover, we adopt complete
cross-triplet loss to optimize the predicted label features by
leveraging the relationship between all possible similarity and dis-
similarity semantic information across modalities. The extensive
experimental results on two audio-visual double-checked datasets
have shown an improvement of approximately 2.1% in terms of
average MAP over the current state-of-the-art method TNN-C-
CCA for the AV-CMR task, which indicates the effectiveness of
our proposed model.

Index Terms—Audio-visual learning, cross-modal retrieval,
cross-triplet loss, label space

I. INTRODUCTION

Vision and hearing are two important senses that humans
use to perceive their surroundings and understand the world by
capturing their intertwined relationships. For instance, when
we hear the sound of a baby crying in another room, we
subconsciously imagine his crying face and feel anxious as
we walk toward the baby. Therefore, the intrinsic correlations
in the natural synchronization between audio and visual data
accompany with events/labels that can be modeled as cross-
modal retrieval between these two modalities, i.e., given an
audio/visual as a query, the system can automatically retrieve
the relevant data that have the same annotated events as the
query from another modality.

The main challenge in AV-CMR task is the heterogeneous
gap that makes it impossible to measure cross-modal data
each other directly, due to the different distributions of audio
and visual data. In recent years [1], [3], [13], [27], [29],
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the correlations between audio and visual information are the
key to solutions in this field. Previous studies [16], [18]]—
[23] focused on representation learning methods to bridge the
heterogeneous gap. These methods exploit the cross-modal
correlations between each other in a common feature subspace
to generate new representations of audio-visual data so that the
generated representations across modalities can be compared.

Traditional representation learning methods for cross-modal
retrieval such as canonical correlation analysis (CCA) tried
to find linear projections to generate common representations
by maximizing the inter-modality pairwise-based correlation
or classification accuracy. However, the correlation between
audio-visual data in the real world is too complex to be fully
learnt by using only linear projections. The great success of
deep neural networks (DNNs) has led to the advancement
of cross-modal learning in finding a common representation
subspace. DNNs have been utilized to improve CCA-based
methods [2f], [19] through learning complex nonlinear trans-
formations of cross-modal data. The current state-of-the-art
work [22], a triplet neural network with cluster canonical
correlation analysis (TNN-C-CCA) applies audio-visual loss
with a triplet neural network to improve the inter-modality
pairwise-based correlations in the above CCA-based methods.
The TNN-C-CCA model is trained in two steps, the first step
is to use the audio-visual shared label to increase the number
of audio-visual pairwises, where samples with the same label
will be clustered during the training. The second step solves
the issue where some samples were incorrectly clustered in
the first step by using triplet loss method. However, the triplet
loss is sensitive to those hard negative samples that will fail
to capture semantic similarity during the training. Because the
classification information (labels of samples) is not directly
applied in the deep neural network training but only for
preprocessing of the input data structure in the first step and the
construction of input data for optimization of neural networks
with triple loss.

In the above cross-modal retrieval models, the classification
information is underutilized in cross-modal representation
learning. Therefore, we propose a novel AV-CMR model,
which finds an effective common subspace based on fully
exploiting the classification information and measuring the
intrinsic correlation of audio-visual data. Specifically, our
proposed model projects audio-visual features into the label



space by minimizing the distance between predicted label
features after feature projection and ground label represen-
tations. Moreover, we adopt cross-triplet loss to optimize the
predicted label features by leveraging the relationship between
all possible similarity and dissimilarity semantic information
between modalities.

In summary, this work makes the following contributions:

« Heterogeneous data can be effectively represented by the
common representation in the label space by fully min-
ing semantic information with an optimized processing
method (cross-triplet loss) in an end-to-end manner.

o A linear classifier-based method is applied to learn pre-
dicted label features of audio-visual data. We utilize
the label space that consists of predicted label features
and ground label representations, where the classification
information is fully exploited during the model training.

o An optimized loss function in the label space is used
to learn the natural intrinsic correlations between audio-
visual data by pulling all the similar pairs together while
pushing all the dissimilar pairs apart.

« Extensive experiments on two audio-visual double-
checked datasets have been conducted. The results
demonstrate that our method surpasses current state-of-
the-art methods for the AV-CMR task, which indicates
that adopting the cross-triplet loss not only improves on
single cross-triplet loss but can also optimize the semantic
information in the label space.

II. RELATED WORK

In this section, we review the common subspace learning
and ranking loss for cross-modal retrieval, which are related
to our proposed model.

A. Common Subspace for Cross-modal Retrieval

Common subspace learning is a frequently adopted method
to bridge the heterogeneous gap to achieve the cross-modal
retrieval. CCA [7] is a typical statistical approach for finding
basis vectors for two sets of variables by optimizing the
correlation between the linear projections of the two sets
on basis vectors in the common space. To extend the linear
projections to a type of complex mapping way, KCCA [11]
introduces a “kernel trick” method to project the cross-modal
data into a high-dimensional space. However, it is hard to
decide what kind of kernel method to use. In pursuit of
more complex and flexible projections of multimodal data,
DCCA [2] adopts a deep learning mechanism to acquire the
nonlinear projection of two sets. DCCA can be viewed as an
extension of CCA. C-CCA [14] applies the label information
to cluster data across modalities by establishing all the possible
correspondences, then using CCA to learn the intra-cluster
correlation that can push the points of different labels apart
in the common subspace. C-DCCA [19] is derived from both
C-CCA and DCCA, projecting the cross-modal data into the
common subspace through deep neural network mapping so
that the data points within a cluster are highly correlated. The
TNN-C-CCA [22] model can be regarded as an improvement

over the combination of C-CCA and C-DCCA. It uses the label
information to consider both similar and dissimilar correlations
by applying audio-visual ranking loss to improve the pairwise-
based CCA methods. It can achieve the best result on the
VEGAS dataset we plan to use in this work.

Except for the CCA-based methods that aim at learning the
pairwise-based correlation across modalities in the common
subspace, some recent studies [9]], [[17], [26] utilize the label
information to design ranking loss to improve the semantic
information of multimodal data in common subspace. The
ACMR [[17] model applies label information to learn semantic
representations for each modality in the common subspace.
The DCMH [9] model uses label information to learn the
discriminative information between inter-modality samples
in a common subspace. The DSCMR [26] model employs
label information to learn discriminative representations in the
common subspace by minimizing the distance between the
label space and the common subspace.

+

B. Ranking Loss for Cross-modal Retrieval

The objective of the ranking loss function in cross-modal
retrieval is to predict relative distances between inputs from
inter-modalities. The most common ranking loss function
includes contrastive loss and triplet loss, which are applied
in many different applications with similar formulations with
minor variations. The XMC-GAN [24] model utilizes multiple
contrastive losses to capture inter-modality and intra-modality
correspondences to maximize the mutual information across
modalities. Triplet loss addresses an internal limitation in
contrastive losses push force. The CCAL [4] model adopts a
pairwise ranking loss (triplet loss) to optimize the projection
of deep CCA on the output of the last layer. It improves triplet
loss optimization by adding a CCA projection layer between
the dual deep neural network and the optimization target.
The DCIL [28|] model solves the less effective issue when
triplet loss is used in cross-modal learning with heterogeneous
features directly because it is difficult to select appropriate
triplets at the beginning of training. The model introduces
an instance loss to capture intra-modal data representation to
improve the triplets selection.

In summary, previous methods applied label information
to learn semantic information within modality or capture the
correlation between modalities with CCA-based method or
ranking loss in a common subspace. Nevertheless, no studies
have explored learning correlations across modalities and
capturing semantic information within a modality in a shared
semantic subspace. Therefore, our proposed method introduces
a label space, where the obtained semantic features of cross-
modal data and the original label representations are located.
Then, the learned semantic features are improved by applying
the intrinsic correlation between audio and visual features to
consider the similar and dissimilar semantic information.
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Fig. 1: Overview of our architecture. We project audio and visual representations a; and v; extracted by Vggish and InceptionV3
pretrained models into the shared label space by using a supervised learning function (D) (seen in Equation [[I]}) with labels
(events) information, the label is represented as one-hot encoding. Then, applying a new (2) complete cross-triplet loss as a
ranking loss to learn correlations between predicted audio and visual label features, A, P, N are the predicted samples, where
the similar data points (A and P) are pulled together and the dissimilar data points (A and N) are pushed apart. Where A
(with ”Baby crying” event) is selected audio sample as an anchor, P, and P, (also with "Baby crying” event) are respectively
positive audio and visual samples, N, and N, (with "Dog barking” event) are respectively negative audio and visual samples.

III. THE PROPOSED METHOD
A. Problem Formulation

We assume a collection of n instances of audio-visual pairs,
denotes as ® = {(a;,v;)},, where a; is the input audio
with 128-D and v; is the input visual with 1024-D of the i-th
example. Each (a;, v;) pair is annotated with a double-check
single label Y; € R where c is the number of labels. In
cross-modal retrieval, given a sample with its label from one
modality as a query, the system will rank all the samples in
the database from another modality based on the similarity
between the query and each sample. In the end, the similarity
of the samples from the same label as query is larger than
those samples from the different labels as query. Therefore,
the relevant samples from another modality in the database
can be returned to the query.

To ensure audio and visual can be directly measured, we
project them into a shared subspace by mapping the projected
features into label space, the overall projection functions
is represented as f,(a;) and f,(v;) for audio and visual
transforms, respectively. We aim at learning more effective
transform functions, i.e., to make both f,(a;) and f,(v;), and
the output distributions of them to be more semantically dis-
criminative and well maintain the intrinsic correlation between
both modalities.

B. Label Space Learning

Because common subspace learning focuses on capturing
correlations between modalities and applying ranking loss
to predict relative distances between projected features, this
will affect the learning of projected features used to directly

predict a label. The reason is that label information is not
directly used to map projected features to labels; therefore,
the semantic information of the final output representations
depends on the projected relative distance rather than the direct
label prediction. In this case, the semantic information is not
fully mined.

To preserve the discrimination of samples from different
labels after the feature projection through the deep neural
network, we add a linear classifier layer connected on top to
the audio and the visual sub-networks. This classifier takes
projected features as input and generates a predicted ten-
dimensional embedding label for each sample. The objective
function to measure the discriminative semantic information
in the label space is as follows.

Losstan = +\falas) =¥ (@) + L l1£u(w) = Y @) (1)

where ||-||r denotes the Frobenius norm, f(z) is the projected
feature of the linear classifier in the label space. The Y(...) is
a one-hot encoding that represents the ground-truth events of
the samples, and the events are annotated by double-checking
in the audio and visual modalities.

C. Cross-triplet Loss

Learn label space by adding linear classifier is not enough
for new representations generation, because it may overlook
the useful information from the intrinsic commonality of cross-
modal data. To explore the intrinsic correlation between audio
and visual features and further extract cross-modal semantic
features in combination with manually annotated events, all
audio and visual pairs in the label space can be divided
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Fig. 2: Overview of three kinds of cross-triplet losses when
selecting an audio sample with label 1 as an anchor (A) and
setting a fixed margin. With the change of data modalities used
as positive and negative samples, we list three kinds of cross-
triplet for the audio as anchor. The top sub-figure selects an
audio sample with label 1 as positive (P) and a visual sample
with label 2 as negative (N), the bottom left sub-figure select
a visual sample with label 1 as positive and audio sample
with label 2 as negative, the bottom right sub-figure selects a
visual sample label 1 as positive and another visual label 2 as
negative.

into internally related and unrelated at the semantic level. To
perform this task, we adopt triplet loss [[15] as the basis of our
pairwise-based ranking loss.

Triplet loss is the most commonly used loss function
for supervised similarity, which drives the distance between
dissimilar pairs and any similar pair up to a certain margin,
defined by:

Loss = max(0,d(A, P) — d(A, N) +margin)  (2)

where P, i.e., Positive, is a sample in one modality having
the same event/label as A, i.e., Anchor. N, i.e., Negative,
is another sample in one modality that has an event/label
different from A. Function d is to measure the distance
between the two samples. margin is used to ensure a negative
sample that is far apart from the positive samples.

In Fig. |2} when the anchor and positive are selected and
the margin is set, the negative boundary is where the cross-
triplet loss value of negative samples is zero, the loss value
of negative samples located outside the boundary is greater
than zero, and those inside samples which is zero, seen in
the solid outer circle of the three subplots in Fig. [2] So the
final cross-triplet loss depends on these negative samples that
lie outside the negative boundary. We can find in Fig. 2] that
where the positive is set as audio or visual, this will impact
the negative boundary and that will affect the effectiveness
of the triplet losses. In this case, we consider both audio and

visual as positive, as well as negative, and we ensure that the
three components in a triplet (anchor, positive, negative) are
not from the same modality. The final cross-triplet loss that
can capture all the possible cross-triplets are summarized as
the following formula.

AV .
Leross = maz(0, Z({i,j?k)}\v(i,j,k)e{A\V} d(A;, Pj) — d(A;, Ni) + margin)
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Where i,j,k € {A,V}, ie.,, Audio and Visual modalities.
(i,7,k)\V(i, j, k) € {A | V} denotes that the modality indexes
1, 7, k are not from the same modality. Finally the above cross-
triplet loss will be computed based on six combined cross-
triplets. Our final objective function of the proposed method
is as follows.

L = Lossjqp + L0SScross “4)

In the end, the final loss function is optimized by using the
stochastic gradient descent (SGD) algorithm.

IV. EXPERIMENT
A. Dataset and Features

To evaluate the effectiveness of our proposed model, we
conduct experiments with two audio-visual double-checked
datasets, i.e., VEGAS [22] and AVE [16]]. The VEGAS dataset
has also been adopted in several other studies [20]-[22] of
AV-CMR task. The VEGAS dataset is a subset of the Google
AudioSet ['| that applies Amazon Mechanical Turk for data
cleaning to ensure those manually annotated events appear in
both audio and visual tracks. The events are human voices
and natural sounds and each video contains only one event.
The length of a video ranges from 2 to 10 seconds with
an average of 7 seconds. In our experiments, we use 28,103
videos to evaluate our architecture, 80% for training with the
remaining 20% for testing. The AVE dataset contains 15 events
(clock, motorcycle, train horn, etc.) We select 1,955 videos
with audio-visual tracks to evaluate our model, 1,564 videos
as the training set, and 391 videos as the test set.

Following the work [22], we use the same pretrained model
extracted representations of audio-visual data. The audio is
extracted by a pretrained Vggish model and the visual is
extracted by a pretrained InceptionV3 model. Finally, each
audio sample is represented by a 128-D vector and each visual
sample is represented by a 1024-D vector.

B. Evaluation Metric

To leverage our proposed model, we employ mean average
precision (MAP) to evaluate the AV-CMR performance on
the VEGAS dataset, where a higher value of which indicates
that the model’s performance is better. In addition, to further
evaluate the performance of our model, we apply precision-
scope@K curves. In the process of model testing, given a
query in one modality, the model will produce a ranking list
in another modality for the query. We regard an item in the
rank list with the same event as the query as correct.

Thttps://research.google.com/audioset/



C. Experiment Setting

In model training, the inputs of the audio and visual
branches in the deep neural network are 128-D and 1024-D
extracted features. In our experiments, we set the parameters
of all models to be the same. The important parameters in the
experiment settings are as follows.

o The neural networks of both the audio and the visual
branches have 3 hidden layers. The number of units per
layer of audio and visual branches is 1024, 1024, 100. We
apply the Adam [[10] optimization algorithm for training
our models.

o The training batch size is 512 and the test batch size is
64. The number of training epochs is 100.

o The learning rate is set to 0.0001.

o We set the margin for cross-triplet loss at 1.0.

We implement our model using PyTorch 1.12.0 and conduct
training in the NVIDIA (42C) GeForce (P8) GPU with 10G
memory running the Ubuntu 22.04 LTS Operation System.

D. Comparison with State-of-the-art Models

To verify the effectiveness of our proposed model, in
the experiments, we compare our model with CCA-based
methods and other eight other deep learning-based state-of-
the-art methods in the experiments. These CCA-based methods
include CCA, KCCA, DCCA, C-CCA, and C-DCCA, their
central tasks are to find a common space so that the linear or
nonlinear projections of two sets of variables can be computed
and to ensure the correlations between them are mutually
maximized. The TNN-C-CCA [22] model adopts C-CCA
model and the outputs are mapped into a common subspace
via a triplet neural network such that the data points belonging
to the same label are highly correlated and the data points
from different clusters are rarely correlated. The UGACH [25]]
model applied GAN to capture the potential manifold structure
of cross-modal data by the k-nearest neighbors algorithm. The
AGAH [5]] model utilizes an adversarial attention model to im-
prove the discrimination of cross-modal representations. The
UCAL [8] and ACMR [17] models respectively apply unsu-
pervised and supervised adversarial learning for representation
learning of cross-modal data, respectively. The DSCMR [26] is
an advanced supervised cross-modal retrieval model and learns
a very effective discriminative representation of cross-modal
data. Three other recent models, CLIP [12]], BiC-Net [6], and
DCIL [28]] models are employed in the experiments.

Table [I| shows the MAP scores of our model in comparison
with the other methods on two audio-visual datasets (VEGAS
and AVE datasets). It can be observed that our model sur-
passes the previous best methods. The overall performance is
summarized as follows.

o Our model achieves an improvement of 1.5%, and 2.7%
in terms of MAP for audio— visual and visual— audio
respectively, and 2.1% in terms of average MAP on the
VEGAS dataset. We also used the AVE dataset to further
leverage our model. It should be noted that our model

can also achieve a competitive improvement in terms of
the audio— visual and visual— audio retrieval process.

o These supervised learning models (C-CCA, C-DCCA,
AGAH, DSCMR, ACMR, etc.) can achieve higher perfor-
mance than unsupervised learning models (CCA, KCCA,
DCCA, and UGACH) by using label information to train
AV-CMR models, e.g. C-CCA outperforms CCA by a
significant margin on the VEGAS dataset.

o The nonlinear projections in deep learning methods can
improve the performance of traditional methods, e.g. C-
DCCA and DCCA achieve a better performances than
C-CCA and CCA, respectively.

o The ranking loss method can improve the performance of
traditional CCA methods, e.g, using triplet loss in TNN-
C-CCA can improve the C-CCA model in audio—visual
and vice versa on both datasets.

e The cross-modal retrieval models applied to image-text
data can achieve a good results, but they can not guar-
antee their performances on audio-visual data can also
achieve high performance, e.g, the ACMR, CLIP, BiC-
Net, and DCIL models outperforms almost all other
models on some image-text data, but they all can not
achieve the best performance on the audio-visual dataset.
The best performing model, DCIL, still lags behind the
current best model by 4.2%.

Fig. [3 shows the precision-scope @K curves of the different
methods on VEGAS dataset, where K ranges from 1 to 1000.
We depict the curves of all compared models in Table
our model achieves higher precision than the other models at
the different levels of recall overall, which indicates that the
matched samples of our model appear more often in the top
of rank list and proves that our model convincingly achieves
the best performance in AV-CMR in Table

E. Further Analysis of our Model

To further investigate our proposed model, we analyze our
model in terms of four aspects: 1) visualization for the test data
by using our model, 2) impact of the label space, 3) impact of
cross-triplet combinations, and 4) audio-visual retrieval case
study.

1) Visualization of the test data using our model: To
visually leverage the effectiveness of our proposed model,
we select a pair of audio and visual samples by adopting
the statistical method t-SNE to reduce their high-dimensional
representations into a two-dimensional space. Fig. |4 (a), (b),
and (c) is visualizing the original 128-D audio and 1024-
D visual samples by providing each sample with a location
in a two-dimensional map, respectively. The distributions of
original audio and visual samples of the VEGAS dataset are
difficult to segregate and classify.

Fig. E] (d), (e), and (f) display the two-dimensional distribu-
tions of the audio and visual samples in the label space. We can
see that the output representations across the modalities of our
model are able to effectively segregates the representations into
their own semantic clusters. Even though some samples are



TABLE I: The MAP results of our model compared with other models on both audio-visual datasets (VEGAS and AVE

datasets).
M VEGAS Dataset AVE Dataset
ethods . - b - - - - -
audio—visual | visual—audio | Average | audio—visual | visual—audio | Average
Random 0.110 0.109 0.109 0.127 0.124 0.126
CCA [7 0.332 0.327 0.330 0.190 0.189 0.190
KCCA 11] 0.288 0.273 0.281 0.133 0.135 0.134
DCCA [2 0.478 0.457 0.468 0.221 0.223 0.222
C-CCA [14] 0.711 0.704 0.708 0.228 0.226 0.227
C-DCCA |]19 , [21] 0.722 0.716 0.719 0.230 0.227 0.229
UGACH [25 0.182 0.179 0.181 0.165 0.159 0.162
AGAH |[5 0.578 0.568 0.573 0.200 0.196 0.198
UCAL |[8 0.446 0.436 0.441 0.153 0.150 0.152
ACMR [17] 0.465 0.442 0.454 0.162 0.159 0.161
DSCMR T]2—6L 0.732 0.721 0.727 0.314 0.256 0.285
TNN-C-CCﬂZZ] 0.751 0.738 0.745 0.253 0.258 0.256
CLIP []12l 0.473 0.617 0.545 0.129 0.161 0.145
BiC—NeﬂB] 0.680 0.653 0.667 0.188 0.187 0.188
DCIL []ZQI 0.726 0.722 0.724 0.244 0.213 0.228
Our model 0.766 0.765 0.766 0.328 0.267 0.298
Audio-Visual Retrieval o8 Visual-Audio Retrieval
0.7 4 07 ]
c 061 c 0.6
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Fig. 3: Precision-scope curves of audio— visual and visual — audio retrieval experiments on VEGAS dataset, with K ranges

from 10 to 1000.

mixed together, it has been shown that our model is effective
in AV-CMR in accordance with the results shown in Table [II

TABLE II: The MAP results of our model using label space
compared with using feature common space on VEGAS
dataset.

Model Audio— Visual | Visual— Audio | Average
Baseline-I 0.698 0.692 0.695
Baseline-IT 0.718 0.716 0.717
Our model 0.766 0.765 0.766

2) Impact of the label space: To bridge the modality
gap that the different modality data has representations in
heterogeneity, previous studies focused on projecting modality
representations into the common subspace by learning pair-
wise correlations or other inter-modality correlation. To exploit

TABLE III: The MAP results of our model compared with our
baselines on the VEGAS dataset.

Model Audio— Visual | Visual— Audio | Average
Baselinel 0.175 0.174 0.175
Baseline2 0.674 0.666 0.670
Baseline3 0.675 0.663 0.669
Baseline4 0.736 0.732 0.734
Baseline5 0.679 0.684 0.681

Our model 0.766 0.765 0.766

semantic information during modality gap bridging, we take
the label information to learn a label space using a linear
classification-based method. We conduct some experiments
to verify the advantages of improving the performance by
utilizing label space instead of feature common subspace
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Fig. 5: Qualitative visual retrieved results using audio as a query on VEGAS testing set. The results are sorted from top to
bottom according to the similarity score between the retrieved visual and query. The visuals in green boxes are matched with
query as correct matches, and red boxes are mismatched as the wrong matches.

(Baseline-I and Baseline-II).

We set two baselines for the comparison experiments with
the same experiment settings and shared subspaces, Baseline-
I and Baseline-II use the same triplets as baseline 5 and
baseline 4, respectively, in Table m instead of label space,
they adopt feature common subspace where does not use the
classification-based method and the dimension of representa-
tions is also set as 10. For more details of baseline 4/5, referred
to subsection [[V-E3| In Table [l by using label space, we
can see our proposed model by using label space achieves
better performance than the other baselines, which indicates
the effectiveness of the label space learning for AV-CMR,

which is consistent with Table [Il
3) Impact of cross-triplet combinations: To demonstrate
the effectiveness of the cross-triplet function in improving
the performance of AV-CMR, we set three baselines (baseline
2,3,4) that are incomplete cross-triplet losses. Baseline 1 uses
the same modality to build the triplet, and baseline 5 that
combines all possible triplets regardless of whether the three
components are from different modalities or not. The details
of the five baselines (Table [IT) are described as follows.
o Baseline 1, consists of two triplets for the ranking loss
function, the components of each triplet are from the
same modality so-called sing-triple. The two triplets



about the modality format, i.e., (anchor, positive nega-
tive), which are: (audio, audio, audio) and (visual, visual,
visual)

o Baseline2, incorporates two cross-triplets, the modality
format is: (audio, audio, visual) and (visual, visual, au-
dio).

o Baseline3: includes two cross-triplets, the modality for-
mat is: (audio, visual, visual) and (visual, audio, audio).

o Baseline4: containing four cross-triplets, the modality
format is: (audio, audio, visual), (visual, visual, audio),
(audio, visual, visual) and (visual, audio, audio).

« Baseline 5: covers all possible triplets encompass single-
triplets and cross-triplets, like: (audio, audio, audio),
(visual, visual, visual), (audio, audio, visual), (visual, vi-
sual, audio), (audio, visual, visual), (visual, audio, audio),
(audio, visual, audio), and (visual, audio, visual).

o Our model: comprises six cross-triplets that is a combina-
tion of baseline 2 and baseline 3, the modality format is:
(audio, audio, visual), (visual, visual, audio), (audio, vi-
sual, visual), (visual, audio, audio), (audio, visual, audio),
and (visual, audio, visual).

As Table shows, our model with six cross-triplets can
achieve the best result compared with the other baselines. It
can also be seen that the single-triplet added in cross-triplet
loss can not improve the performance of AV-CMR; see the
baseline 5 compared with our model. Baselines 2 and 3 as
common triplet loss applied in many previous studies [4], [[17]],
[22] that only consider two types of triplets, which is also far
fewer than our model. Overall, the results suggest that our
complete cross-triplet loss in the label space is effective in
improving the performance of AV-CMR.

4) Case study: To find qualitative results that prove our
proposed model is the best of all, in Fig. [5] we cherry-picked
up an audio with ”baby crying” event as a query to obtain its
corresponding visual ranking list by using three models, i.e.,
the second-best model TNN-C-CCA, our baseline that uses
common space for our cross-triplet loss, and our best proposed
model. We only display the top five retrieved visual samples
with their own labels, and based on the shortened ranking
list to calculate the average precision (AP) which is AP@5
in our case. We can observe that our proposed model and
TNN-C-CCA can obtain three visual samples with the “baby
crying” event, our baseline can only get two visual samples
with the same event as the query, so it is less effective than
our proposed method. Our proposed model can achieve better
AP@5 than TNN-C-CCA because the correct match that these
visual samples contain the same event as the query appears
further up the ranking list. Our proposed model can achieve a
score of 0.7033 in terms of AP@5, outperforming the second
best model TNN-C-CCA by 11.66%. In this case study, we
found that our proposed model has more accurate retrieval
capabilities, identical to the conclusion drawn from Table
and Table [

V. CONCLUSION

In this work, we proposed a new AV-CMR model that
applies label information to learn semantic discriminative
features of audio-visual data in the label space and developed
a cross-triplet loss to consider all the possible triplets when
the candidate pairs are selected. The combination of cross-
triplet loss can improve the semantic feature in the label space
by capturing similar and dissimilar semantic information. We
employed two different audio-visual datasets with double-
check to evaluate the performance of our model with MAP
and precision-scope@k evaluation metrics. The experimental
results show that our model can achieve the best result
compared with other state-of-the-art AV-CMR models. In the
future, we would like to consider both common subspace and
label space to develop a more advanced model for the AV-
CMR task.
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