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User-Perspective Rendering for Handheld Applications
Jing Yang* Shiheng Wang* Gábor Sörös*

Department of Computer Science
ETH Zurich, Switzerland

ABSTRACT

A problem of most handheld applications is that the digital con-
tent is not rendered from the user’s viewpoint, but rather from an
arbitrary perspective. In this work, we propose an easy-to-use user-
perspective rendering algorithm which can be applied to general
handheld mobile devices. We present a smartphone App that can
enhance the sense of presence when perceiving the virtual objects,
by adjusting the 2D projections, lighting conditions, and spatial
sound effects according to the user’s viewpoint in real time.

Keywords: User-perspective rendering, spatial sound, multimodal
output, handheld applications.

Index Terms: Human-centered computing—Sound-based in-
put/output; Computing methodologies—Rendering

1 INTRODUCTION

Handheld applications are very popular in entertainment, mainte-
nance, and educational contexts. In a typical scenario, the user holds
a mobile device (smartphone or tablet) to view virtual contents,
which are usually rendered from an arbitrary perspective (e.g., the
virtual player’s viewpoint in mobile games), or from the rear camera
of the device (e.g., in AR applications), then displayed on the device
screen. An apparent problem in the above scenario is that the virtual
content is not created from the user’s viewpoint. This results in a
lack of immersion, i.e., the feeling of holding a 2D display rather
than truly perceiving a 3D object.

In this work, we propose a user-perspective rendering approach
to overcome this problem by adapting both the camera view and the
rendered content to match the user’s viewpoint, which is achieved by
tracking the user’s face and eyes with respect to the handheld device
using its front-facing camera. Given such a user-perspective render-
ing system, more visual and audio cues can be added to enhance the
perception of virtual objects.

Our system consists of three modules, namely, front camera-
screen calibration, viewpoint estimation, and rendering, in which
the rendering includes 2D projection, lighting configuration, and
spatial sound creation. Our main contributions are twofold:

• While most user-perspective rendering methods are imple-
mented on platforms with specific hardware like depth camera,
head tracking sensor, etc., we develop an easy-to-use user-
friendly algorithm which can be applied to general commercial
mobile devices with simple RGB front camera.

• On top of our algorithm, we develop a mobile App that shows
the rendered scene with varying 2D shapes, lighting conditions,
and spatial sound effects based on the user’s viewpoint in real
time, which provides the user with more immersive experience
when perceiving virtual objects.
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2 RELATED WORK

In this section, we overview the literature related to each module of
our approach.

2.1 Front Camera-Screen Calibration
The external calibration of a mobile device aims at finding the rela-
tive pose between the front camera and the screen, which is rather im-
portant since all the following geometric poses are calculated based
on it. However, this step has not been well studied in some previous
user-perspective rendering algorithms [1, 3, 4, 6, 14, 16, 18, 22, 23].
They either use specifically designed systems of which the screen-
camera poses cannot be generalized out of their project con-
texts [1, 3, 14, 16, 18, 22, 23], or the poses are manually measured for
their mobile devices [4, 6].

To develop a more general calibration approach, Baričević et
al. [2] propose a calibration algorithm using the mirror-based method
developed by Matsuyama et al. [15]. Though applicable on many
devices, this calibration method requires measuring the device ge-
ometry in advance. Schöps et al. [19] calibrate screen-camera poses
using a marker on the device screen and a marker in the environment.
This approach is robust and easy, but it needs the markers and an
external camera.

In this work, we intend to develop an easy-to-use calibration ap-
proach which is supposed to rely on the external environment as little
as possible with minimal setup and extra hardware requirements.
The goal is to calibrate the relative pose from the front camera to
the screen, which is not directly visible for the front camera. In-
spired by [5], we propose a mirror-based calibration method with a
ChArUco1 marker displayed on the device screen.

2.2 Viewpoint Estimation
In order to render virtual objects from the user’s perspective, the
system is supposed to track the user’s viewpoint relative to the
display. Compared with other application situations, viewpoint
estimation in user-perspective rendering is special in a sense that a
user keeps the gaze direction consistent with the head orientation in
most cases, which means that the viewpoint can be approximately
represented by the user’s head or face orientation.

To this end, some previous works [14, 19] use predefined or
simulated head pose. Some systems [3, 18] track the user’s head
pose with head-mounted sensors and stream the tracking results to
the handheld devices. In our work, we propose a method based on a
more advanced facial landmark detection algorithm [9] to achieve
more accurate head pose and viewpoint estimation. Plus, we add a
primary user face tracker to deal with the drawback that the classifier
always tries to detect all faces appearing in the image while only one
of them belongs to the primary user. Like in the works [2, 16, 22],
we also track the user’s face using RGB front camera.

2.3 User-Perspective Rendering
There exist many works on user-perspective rendering [2, 3, 6, 11,
16, 18–21] for AR or entertainment applications. All of them only
focus on the visualization which renders correct geometric shapes

1https://docs.opencv.org/3.4.1/df/d4a/tutorial_

charuco_detection.html



Figure 1: Top view of a smartphone facing a mirror with an arbitrary
angle. C f and Ĉ f are the front camera and the virtual front camera
behind the mirror. The dash-lines mark the field of view of the front
camera with reflection. On the screen a ChArUco marker is displayed.

according to the user’s viewpoints. In our work, we also include
user-perspective lighting configuration and spatial sound creation to
further improve the sense of presence.

3 OUR APPROACH

To realize user-perspective rendering, we estimate the user’s view-
point relative to the front camera, and register it in the screen coordi-
nate system with the pre-calibrated pose between the front camera
and the screen of the device. Then, based on the user’s viewpoint,
we re-project the virtual object as well as model the corresponding
lighting and spatial sound effect. As described in previous sections,
the whole system consists of three modules, which will be elaborated
in the following sections.

3.1 Front Camera-Screen Calibration
We calibrate the pose between the front camera and the screen using
a mirror. As illustrated in Figure 1, we display a ChArUco marker
on the device screen, and place a planar mirror towards the front
camera, which can then capture the virtual screen in the mirror. As
demonstrated in the figure, the screen does not have to be parallel to
the mirror. However, we do assume that the screen is planar.

With Tf representing the relative pose between the real screen
and the real front camera, Si representing the mirror reflection ma-
trix, and Vi representing the virtual front camera pose, we have the
following equation

Vi = Tf Si (1)

Our target is to recover Tf and Si from Vi. This problem is known
in the literature as Images of Planar Mirror Reflections (IPMR).
To solve this problem and estimate the real front camera pose, we
utilize the approach described in [17]. Referring to the work [5], we
also implement a Bundle Adjustment (BA) method to optimize the
calibration result.

The calibration model is calculated on a PC offline, and then
loaded back to the mobile device for further rendering steps.

3.2 Viewpoint Estimation
We estimate the user’s viewpoint in real time using the following
steps.

We first detect the user’s face using the local binary patterns
(LBP) cascade classifier. This face detector can find all faces in
the frame but we only focus on the primary user. Therefore, we
introduce a primary face tracker to exclude all the other random faces
which happen to be in the frame. We assume that in most cases,
the primary user is the closest to the screen since the user views the
screen while holding it in hands. Therefore, at first, all detected faces
are evaluated based on their sizes, then we initialize the largest face
(the closest one) as the primary user, which will be tracked in the

Figure 2: From top-left to bottom-right: (a) the coordinate frame of the
screen space, (b) an on-axis perspective projection, (c) an off-axis
perspective projection, and (d) the left l, right r, bottom b, and top t
extents of the perspective projection [10].

following frame based on the previous location and appearance. In
our work, we employ a state-of-the-art kernelized correlation filters
(KCF) tracker as described in [7] to track the primary user’s face.
This tracker is fast and can also deal with changes of the tracking
target over time (e.g., when the face rotates in 3D).

Based on the previous two steps, we detect and track facial land-
marks in each frame. We utilize one of the state-of-the-art methods,
ERT Face Alignment [9], to extract 2D facial lndmarks, which are
then tracked using the Lucas-Kanade optical flow method [13].

So far, we can track the primary user’s face and extract stable
facial landmarks, which are then utilized to calculate the head pose
and approximate the viewpoint. We solve the pose by the means
of Perspective-n-Point (PnP) approach using the 2D facial land-
marks and their corresponding 3D points on a face model, which
is a lightweight 3D mean face model from a 3D morphable model
(3DMM) [8]. This face model can represent general face properties
of human beings. Considering the accuracy and efficiency on mo-
bile devices, we utilize the efficient PnP (EPnP) algorithm [12]. To
accommodate the head sizes of different users, during the implemen-
tation, we first scale the 3D mean face model according to the user’s
interpupillary distance (IPD). Once the head pose is calculated, the
viewpoint is registered to the screen coordinate system. From the 3D
face model, we can extract the position of the eye PE

l in its local face
coordinate system. The approximate viewpoint relative to the screen
PE

s is estimated by transferring the eye position to the screen coordi-
nate system by PE

s = T H
s PE

h , where T H
s is the head pose relative to

the screen and PE
h is the eye pose relative to the head.

If the facial landmark tracking fails, the viewpoint will be esti-
mated by a temporal smoothing filter, which calculates an average
pose of the latest five frames.

3.3 Rendering
Our rendering module includes three parts: 2D projection, lighting
configuration, and spatial sound creation.

3.3.1 2D Projection

As elaborated in [10], we employ off-axis projections to convert 3D
models into 2D images according to the user’s viewpoint. To under-
stand off-axis projection, one should first understand the concept of
view frustum, which is a pyramid that represents the region of visual
space. As demonstrated in Figure 2, the shaded plane represents the



projection plane (the screen). P is the projection of the viewpoint
pe on the plane. In Figure 2(b), the viewpoint projection is on the
center of the screen, which represents the on-axis perspective pro-
jection. Figure 2(c) demonstrates an off-axis perspective projection,
of which the viewpoint falls off the screen center.

Given the viewpoint coordinate on the screen space, the left, right,
bottom, and top extents (l,r,b, t) of the perspective projection can
be easily computed. According to [10], based on the plane extents
(l,r,b, t), the screen space basis (vx,vy,vz), the viewpoint position
pe, and the nearest and the farthest visible distance (n, f ) of the
view frustum, we can first calculate a standard projection matrix P
which refers to the view position on the original screen space, then
calculate a linear transformation matrix M to rotate the screen orien-
tation, and finally calculate a transformation matrix T to correct the
viewpoint offset. Based on P, M, and T , a generalized perspective
projection matrix P′ can be calculated using P′ = PMT T . With this
perspective projection matrix P′, the 2D projection according to the
user’s viewpoint can be calculated.

3.3.2 Lighting Configuration
To create a realistic viewing experience, we write shader scripts to
configure the ambient light, the diffuse light, and the specular light
in the virtual environment. While the ambient light is rendered at the
background, the diffuse light and the specular light are dynamically
placed at the position of the user’s head. This creates the effect of
wearing a head lamp when inspecting the object. When the user
approaches the screen from different directions and distances, the
part of the virtual object which is the closest to the user is lit most,
while the farther components gradually become dim. This design
helps to enhance the sense of exploration when the user views the
virtual objects.

3.3.3 Spatial Sound Creation
In our work, spatial sound effects are created by having the sound
source and the listener at different positions with a relative orien-
tation. To accommodate the head poses from varying angles and
distances to the screen, we localize the sound source at the centroid
of the virtual object, and dynamically register the listener’s position
at the user’s head position. When the user moves the head around,
the listener’s position is updated so to experience different spatial
sound effects, which are simulated based on the head-related transfer
functions (HRTFs) as implemented in the SDK we use.

4 IMPLEMENTATION & EVALUATION

In this section, we first introduce our hardware and software config-
urations, then we evaluate the performance of our user-perspective
rendering system on a smartphone.

4.1 Hardware & Software
The mobile device we use is a Google Nexus 6 smartphone. It is
equipped with a Qualcomm 2.7GHz CPU, an Adreno 420 GPU, and
a 3GB RAM. The screen size is 12.7cm×7.4cm and the display reso-
lution is 2560×1440 pixels. The Nexus 6 has two high-quality cam-
eras which support various resolutions at a high speed of 30fps. To
maximize the interaction region, we utilize the landscape layout as
the default posture. With this posture, the translation from the front
camera to the screen center is approximately (7.1cm,2.6cm,0.0cm).
We calculate the camera-screen calibration model offline on a Mac-
Book Pro, which is equipped with an Intel Iris Pro 1536MB GPU,
an Intel Core i7 2.2GHZ CPU, and a 16GB RAM. A pair of ordinary
earphones is needed to experience the spatial sound.

The system is developed under the Android environment. The
OpenCV library2 with extra modules is utilized for most algorithms
in the viewpoint estimation section. We render the 2D and 3D

2https://github.com/opencv/opencv

Table 1: Front Camera-Screen Pose

Translation Rotation

Ground truth (7.1cm,2.6cm,0.0cm) (0°,0°,0°)
Calculated results (6.931cm,2.461cm,−0.373cm) (0.17°,0.84°,−0.77°)

Figure 3: A user is viewing the car model from the right.

vector graphics with OpenGL ES 33 on the smartphone. The Google
Resonance Audio SDK4 is utilized to generate the spatial sound.

4.2 Evaluation
4.2.1 Front Camera-Screen Calibration
We set up the experiment environment according to the depiction in
Section 3.1. The mirror is set static. The smartphone is held facing
the mirror to capture the virtual screen at different positions with
arbitrary angles. Each time, we randomly select three pictures to
calculate the calibration model. The computation time is mainly
influenced by the Bundle Adjustment optimization process which
is dependent on the input pictures. The entire calculation takes
approximately 3∼ 10 seconds.

To evaluate our calibration algorithm, we first manually measured
the geometry of the smartphone as the ground truth, which was
compared with the calculated results from our algorithm. Table 1
shows the comparison of the smallest error. Considering that the
screen size is 12.7cm× 7.4cm, our algorithm correlates with the
ground truth with a translation error of 1.3% in length and 1.9% in
width. This result is comparable with the work of [5], in which the
error is 0.9% in length and 1.5% in width. This calibration model is
utilized in our mobile App.

4.2.2 Viewpoint Estimation
We implement the viewpoint estimation on Nexus 6 following the
steps in Section 3.2. To evaluate the real-time performance of our
system, we conduct experiments and calculate the mean fps every
100 frames. When the user moves slightly, an average rate of 30fps
can be achieved. A fast move will influence the utilized optical flow
method, which results in a lower rate of 23fps approximately.

4.2.3 Rendering
We implement the whole system as a 3D model reviewer App on
Nexus 6. In this App, we provide four virtual models: box, teapot,
car, and spaceship. The front camera has a field of view (FoV)
of around 60° horizontally and 40° vertically. As long as the user

3https://www.khronos.org/opengles/
4https://developers.google.com/resonance-audio/



Figure 4: The rendered virtual models from different viewpoints when the user moves around the screen. Please refer to the demonstration video.

views the virtual object within the FoV of the camera, the rendered
2D image, lighting condition, and the audio experience will change
according to the user’s viewpoint in real time. Figure 3 shows an
example of the user viewing the car model from the right.

Figure 4 demonstrates the rendered results from different view-
points and further results are in the accompanying video5. It can
be seen that even if only adjusting the viewpoint by a small angle,
the re-projection varies significantly in terms of the geometric shape
and the lighting. This car model is attached with a sound clip of an
engine. When perceiving the sound using the earphones, the feeling
corresponds to the expectation from the specific viewpoint6.

A study involving 5 people (2 female and 3 male, average age
of 26.6) was conducted to evaluate the user’s experience. They
reported that the system could run smoothly when they moved at a
normal speed. When they moved fast or around the border of the
front camera’s FoV, a slight sense of lagging could be experienced
at a few frames, but the overall viewing experience was smooth
in real time and the rendered objects met their expectation of the
geometrical shapes. The lighting and spatial sound effects were
perceived as anticipated, which enhanced the sense of realism.

5 CONCLUSION & FUTURE WORK

In this work, we developed a low-cost user-perspective rendering
system on general mobile devices with simple RGB front camera.
The system is implemented as a mobile App on Nexus 6. This App
improves the immersive experience when perceiving virtual objects
on handheld devices, which is achieved by real-time viewpoint
dependent 2D projection, lighting configuration, and spatial sound
creation.

One limitation is that our rendering is not stereo for two eyes.
Although the viewpoint is estimated for both eyes, the rendering
is only based on the dominant eye, which is the right eye in our
case. Therefore, like any other similar system, it only fits for one
eye. Another restriction is the position of the front camera when
we define the landscape layout as the default viewing posture. In
this case, the front camera is located at the side, which results in an
asymmetrical range of interaction with respect to the center of the
screen.

There are several interesting directions of exploration in the future.
First, we can also transfer the calibration computation to the mobile
end. Another possible future work is to extend the user-perspective
rendering to handheld AR applications, which not only requires the
front and the rear cameras at the same time, but also involves the
challenges with estimating the 3D world geometry on the fly.

5https://youtu.be/9AsvQJYbzpk
6There is a demonstration session at the workshop.
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