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ABSTRACT

For objected detection, the availability of color cues strongly in-
fluences detection rates and is even a prerequisite for many meth-
ods. However, when training on synthetic CAD data, this informa-
tion is not available. We therefore present a method for generat-
ing a texture-map from image sequences in real-time. The method
relies on 6 degree-of-freedom poses and a 3D-model being avail-
able. In contrast to previous works this allows interleaving detec-
tion and texturing for upgrading the detector on-the-fly. Our eval-
uation shows that the acquired texture-map significantly improves
detection rates using the LINEMOD [5] detector on RGB images
only. Additionally, we use the texture-map to differentiate instances
of the same object by surface color.

Index Terms: I.2.10 [ARTIFICIAL INTELLIGENCE]: Vision
and Scene Understanding—Modeling and recovery of physical
attributes; I.5.5 [PATTERN RECOGNITION]: Implementation—
Interactive systems;

1 INTRODUCTION

In recent years there has been great progress on the task of object
detection and 6D pose estimation by means of convolutional neural
networks (CNN) [15, 7]. Combined with a successive local refine-
ment method [10, 14], it is now possible to obtain a precise object
pose from a single RGB image only.

However, these methods take advantage of 3D scans of the target
objects to generate training data. The 3D scans not only provide ge-
ometry but also surface information. Although scans are reasonably
easy to acquire [11], the need of a 3D scan restricts the availability
of the methods.

For many use-cases only a model created with computer aided
design (CAD) software is available. Such models are coloured by
semantics (e.g. engine, wheel) instead of material appearance (e.g.
metal, rubber). Therefore, when using CAD reference geometry for
object detection, one can not rely on surface colour or texture. This
scenario is common in industrial environments or with 3D printing,
where a manifold of materials can be used to represent the same
CAD geometry.

In these cases depth-only variants of some algorithms [15, 7] can
be used — however at the cost of degraded performance.

This work therefore focuses on the real-time acquisition of sur-
face texture data and dynamic detection-model augmentation. This
allows capturing and using the surface color information on-the-fly.

In the context of real-time surface reconstruction there is notably
the work by Whelan et al. [17], who extends the Kinect Fusion
[11] algorithm to colors. For this, an additional 3D color volume
of the same size as the geometry voxel grid is used. This means
that the surface resolution is tied to the geometry resolution and the
memory consumption has cubic complexity. Furthermore, RGB-D
data is required. The mentioned 3D scans are typically acquired
by variations of [11] and consequently store surface information as
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Figure 1: Our extension of LINEMOD [5] is able to correctly detect
multiple instances of the same object based on surface color. The
corresponding 6D poses are visualized using the textured mesh.

vertex colors. Here, [18] improve surface resolution by subdividing
the scanned geometry. This is similar to using texture maps but
results in inhomogeneous sampling and inefficient storage.

On the other hand, in the context of 3D scanning [3], 2D tex-
tures are often used which only have quadratic storage complexity
and allow decoupling surface resolution from geometric resolution.
More specifically, structure-from-motion based methods [16] only
require RGB images to reconstruct both surface and geometry.

However, these methods operate on a-priori recorded data-sets
which prevents real-time operation. Notably, the global optimiza-
tion step alone, as employed by those methods, takes up to several
hours. Our method in contrast operates in real-time while only re-
quring RGB frames to incrementally generate a 2D texture. To this
end, we assume all geometry as fixed and given and only optimize
locally for color consistency. The closest method to our work is by
Magnenat et al. [9], who also map a 2D camera image to texture in
real-time. However, their work specifically only addresses a single
view and focuses on the in-painting aspect.

To employ our texturing method for object detection, we build
upon the LINEMOD detection framework by [5]. They employ
a two-stage, handcrafted feature descriptor, specifically tuned for
texture-less object detection. In the first step gradient templates
(DOT) are matched to the input image in a sliding window fashion,
which capture the contour of an object. In a successive outlier-
rejection step, surface color is used to filter implausible matches,
based on the interior color.

Even though this no longer provides state-of-the-art detection
performance [15, 7], the internal separation allows computing the
DOT features on CAD geometry only and add the surface color at
run-time. This is generally not possible with deep learning based
approaches, which rely on surface color being available during
training. Efforts to train on an abstract representation [12] to al-
low for different object appearances, typically result in a degraded
performance compared to training on real images. In contrast, our
extension of [5] improves its performance, while allowing to dif-
ferentiate several instances of the same geometric object by their
surface properties.

Based on the above, our key contributions are;

1. an incremental, real-time texture-map extraction pipeline and

2. efficient integration of texture-maps for object instance recog-
nition.
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(a) Image space (b) Texture space

Figure 2: We are mapping from image to texture space, which is
the reverse direction compared to rendering. Texture coordinates
are encoded as red-green.

This paper is structured as follows: in Section 2 we present
our texture extraction algorithm in detail. Section 3 then describes
the application of the texture-maps for object instance recognition,
while in Section 4 the use of texture-maps for object detection is
evaluated using the LINEMOD dataset [5].

We conclude with Section 5 giving a summary of our results and
discussing the limitations and future work.

2 TEXTURE EXTRACTION

In rendering, the process of ”texture mapping” consist of the fol-
lowing two steps

1. creating a mapping from a texture to the surface of a 3D model
and

2. projecting the model and simultaneously mapping the texture
into a 2D image.

The first step is also called ”texture atlas creation” and is typically
performed by an artist during mesh creation. In contrast, our fo-
cus is the reverse direction, namely mapping from a 2D image of a
projected 3D model back to the surface image as specified by the
texture atlas (see Figure 2).

Generally texture atlas coordinates are not included in CAD data
and therefore have to be generated. However, automatic texture
atlas generation is still an active area of research [8] and outside of
the scope of this work. Here, we just use the angle-based ”Smart
UV Project” algorithm implemented in the Blender toolset (v2.79b)
to generate the texture atlas and instead focus on the second step of
texture mapping.

In the remainder of this section we first discuss a simple expo-
sure normalization scheme, before we present our texture extraction
method in detail and finally turn to merging multiple views into one
texture. The full pipeline is illustrated in Figure 3.

2.1 Exposure normalization
As our method does not explicitly compensate for different ex-
posure times we pre-process the image stream to homogenize the
brightness. For this we use the first captured frame as reference and
modify the successive frames to match its brightness and contrast
levels.

Here we follow the idea of Reinhard et al. [13] of adapting an
input image I to match a reference image as

In =
σref

σI
· (I− µI) + µref (1)

where µI , σI and µref , σref are the mean and variance of the
input image and the reference image, respectively.

However, whereas [13] apply the transfer for all channels in the
Lab color space, we only apply it to the luma component Y in the
YUV color space as we explicitly want to preserve the chrominance
information.

This step is omitted if the exposure can be fixed during capturing.

2.2 Texture-space to image-space mapping
Texture mapping can be formalized as follows: given a triangulated
mesh, each vertex vi = [X,Y, Z, 1] with an associated texture co-
ordinate ti = [u, v] is projected into the current view by a world-
to-image transform P as pi = P · vi. Here p = [x, y, 1] is a
normalized pixel location in the image I.

On the interior of the triangle formed by (ti, tj , tk), a texture
coordinate t̂ is interpolated and used for lookup in texture T as

I(p) = T(t̂). (2)

This mapping is continuous in texture space and therefore allows
for bi-linear interpolation to avoid aliasing artifacts.

For texture extraction however we are interested in the reverse
mapping, namely

T(t) = I(p̂). (3)

Instead of iterating over the mesh topology as defined by vi in
3D, we now iterate over ti as defined by the texture-atlas in 2D.
Conversely, we now require a continuous value of p̂ in image
space for lookup. This is computed by interpolating in the triangle
formed by (pi,pj ,pk), of which each point is obtained as above
by pi = P · vi.

Here, visibility must be explicitly computed; with equation (2),
we implicitly assumed overlapping points to be resolved by a depth-
test, only retaining the points closest to the camera. This can no
longer be exploited, as points do not overlap in the texture space.

To handle visibility we therefore introduce an additional depth
buffer and render depth from the camera view. This allows compar-
ing the depth of an interpolated coordinate p̂ to the actually visible
depth value. However, this leads to aliasing; with non-planar ob-
jects the view resolution cannot be adapted to match the texture
space resolution.

To remedy the aliasing artifacts we apply techniques from the
shadow mapping domain [2] where the same problem occurs when
a scene is rendered from a shadow camera and an observer camera
view. Particularly, we

1. focus the camera on the object bounding box to increase the
sampling rate in image space and

2. apply a slope-scale depth-bias to account for the remaining
differences in sampling rates during visibility testing.

The latter is especially important; as the texture atlas has a higher
sampling rate than the depth buffer, several points p̂ , interpolated
in the texture space, map to the same point p in the image depth-
buffer. At steep angles p̂ has a strong depth variation and thus
neighboring points alternatively fail and pass the visibility test when
compared to a single reference value (see Figure 4b).

To account for this we store a biased depth that allows for a sam-
pling offset of 1px in image space. The bias b depends on the depth
slope dz per pixel dx and the minimal depth buffer resolution r as:

b =
dz

dx
+ r. (4)

The bias is large in steep regions while minimal for faces parallel
to the camera. This computation can be implemented efficiently on
the GPU by using e.g. glPolygonOffset. The effect can be observed
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Figure 3: Our texture extraction pipeline. Given a 3D model and its pose in a RGB frame, we first render the depth to determine visibility.
Image regions around depth discontinuities are discarded as they are unreliable. Next an texture-increment is extracted and a per-pixel score
is computed to decide whether to merge the visible pixels into the final texture. Only the following buffers are required on the GPU; ”final
texture”, ”increment” and ”discontinuities”.
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Figure 4: We store slope-scaled biased depth values to avoid alias-
ing errors during the visibility test.

by comparing Figure 4a and Figure 2b. This allows us to map each
visible pixel from a single image into the texture to record the object
surface. The resulting reconstruction can already be applied for
detecting the object in similar views (see Section 3).

2.3 Merging multiple views
Generally the object surface is only partially visible from a single
view and therefore multiple images are needed to reconstruct the
full texture.

Assuming that the same texture point t will be observed in dif-
ferent images as c0, . . . , cN where ci = Ii(p̂i), we discard edge-
pixels at object boundaries or strong depth discontinuities. These
measurements are unreliable as they might come from different sur-
faces due to pose imprecisions and limited camera resolution. In-
stead, we aim for a view where t is not at an observed edge. A pixel
is considered to be part of an edge if the depth change is larger than
10% of the object diameter. All points in a 5px neighborhood of an
edge-pixel are discarded as well (see Figure 6a).

To combine multiple valid observations ci of t, we define score

s that, inspired by [3], weighs each observation by the distance to
camera d and the angle α between surface normal and view direc-
tion as

s = cosα · (1− d), (5)
where d is assumed in normalized device coordinates ranged [0; 1]
and α is computed based on the interpolated surface normal, which
can be defined per vertex vi (e.g. for a sphere) and therefore is not
required to be constant for a single face.

Using s we implemented two merging strategies; a weighted
arithmetic mean

t =
s0 · c0 + . . .+ sn · cn

s0 + . . .+ sn
, (6)

and only retaining the best view

t = argmax
ci

{s0, . . . , sn} . (7)

Both equations can be efficiently implemented on the GPU using a
single RGBA buffer for accumulation, as RGBA = [c, s].

Figure 5 shows exemplary results. Eq. (6) produces a smooth
surface, while retaining more detail than vertex coloring. However,
the averaging over slightly inaccurate object poses results in a loss
of fine detail when compared to Eq. (7).

Using Eq. (7) on the other hand retains all details, but empha-
sizes inconsistencies in exposure or object pose as seams between
neighboring increment texture-patches.

To alleviate this problem we blend increment-patches at their
boundaries into the existing texture during accumulation. Instead
of simply overwriting the texture content with the new maximum,
we compute the distance transform to the patch boundaries over a
5x5px support using the L2 norm. Using the distance we then lin-
early interpolate between the old and the new color value c and
pixel score s.

Figure 6b shows an increment-patch for Figure 6a, projected
onto the object. Note the gradient at the edges, which is linear in
texture space.

The blending not only produces visually more pleasing results
(compare Figures 5c and 5d), but is crucial for computing the
LINEMOD descriptor which relies on local gradient orientation.



(a) Vertex colors (b) Weighted mean as in Eq. (6) (c) Best score as in Eq. (7) (d) Best score + blending

Figure 5: Exemplary surface color reconstructions of the ”Driller” object Texture merging strategies using (a) KinectFusion and (b, c, d)
variations of our algorithm.

(a) Initial view (b) argmax based update with blending

Figure 6: Merge-maps of two successive frames when using Eq.
(7). Valid pixels are colored blue.

3 OBJECT INSTANCE DETECTION

In this section we describe how to employ the extracted textures
for object instance detection i.e. differentiating multiple instances
of the same object. Here, we extend the color based outlier rejec-
tion of [5] to multiple color hypotheses to simultaneously perform
classification.

The idea of color based outlier rejection in [5] is to store the ex-
pected color of the object projection alongside the LINEMOD tem-
plate and at run-time count how many pixels in the camera frame
have the expected color.

To make the check robust against lighting variations, they con-
vert the images to the HSV colour space and compare only the hue
component. However, hue does not cover the colors black (V = 0)
and white (V = 1, S = 0). Therefore, these are mapped to blue
and yellow respectively, which completes the color based descriptor
(see Figure 7a).

To extend this scheme for object instance detection as well as for
on-the-fly recorded textures, we separate the expected color from
the expected surface visibility. To this end, we store the texture
coordinates of the object projection (compare Figure 2a) instead of
storing the expected color directly. The template surface-texture is
stored separately. At runtime we now use the texture coordinates to
perform a lookup into the template-texture to retrieve the expected
color, which gives us the same information as in [5].

However, it is now possible to easily swap the surface-texture to
globally change the expected colors. Here a live-reconstructed tex-
ture can provide more accurate template colors and notably multi-
ple template-textures can be used for object instance detection (see
Figure 7b).

(a) input image (b) candidate / white template / red template

Figure 7: Hue based instance detection. The input image (Figure 1)
is cropped based on the template bounding box and compared to a
set of hue templates.

Finally, the outlier rejection scheme needs a slight modification
for classification. Instead of returning the first inlier based on the
expected color, it needs to allow multiple matches without repeti-
tion. For this, after finding an inlier, only the corresponding texture-
template is removed and the remaining candidates are checked until
all template-textures are found or all candidates are rejected.

While this is an integral part of the LINEMOD pipeline, it can be
optionally integrated as a post-processing step to an CNN based ar-
chitecture that is capable to abstract the object appearance to some
degree. E.g. it can be exectued after non-maximum-suppression in
[15] to compute agreement with the color template.

4 EVALUATION

The presented method is evaluated in the context of object detec-
tion. To this end we train the LINE2D variant of the LINEMOD
detector on the corresponding dataset [5]. The dataset does not
contain views specifically for surface reconstruction and thus rep-
resents reconstruction during detection well. We use the publicly
available LINEMOD implementation in OpenCV.

There are 15 sequences for different objects, consisting of RGB-
D frames with ground-truth poses and recorded at distances of
65cm-115cm. We select a subset of 8 objects for which a 3D mesh
is available and that are large enough to provide a reasonable tex-
ture resolution. The meshes included in the dataset were recorded
using a variation of KinectFusion [11] and thus encode surface in-
formation as vertex-colors.

We apply our texturing algorithm on each sequence using the
ground-truth poses to merely simulate a tracking algorithm for bet-
ter reproducibility. Then we train LINEMOD on synthetic render-
ings using the generated textures as well as included vertex-colors
as a baseline. We parametrize training and testing as [5], particu-
larly;

• We use 89 views on the upper hemisphere around the object,



(a) LINEMOD [5] (b) ”Single shot pose” [15] (c) Ground truth

Figure 8: Qualitative results for on-the-fly surface color reconstructions of the ”driller” object in relation to different pose detection methods.

Table 1: True positive rates on the linemod dataset with different
training data. The ambient occlusion (AO) variant does not include
any outlier rejection.

Object AO vertexcolor texture (7) texture (6)
benchvise 0.54 0.75 0.82 0.82

driller 0.15 0.43 0.63 0.54
iron 0.53 0.71 0.67 0.68
can 0.38 0.67 0.78 0.83
glue 0.07 0.21 0.17 0.17
cam 0.1 0.28 0.62 0.55

eggbox 0.47 0.6 0.79 0.79
holepuncher 0.2 0.62 0.59 0.65

average 0.3 0.53 0.64 0.63

derived by subdividing an icosahedron twice recursively.

• For each view there are 7 in-plane rotations with roll angles
between −45◦ and 45◦.

• Furthermore 6 distances, with 10cm increments, between
65cm and 115cm are used.

• During color based outlier rejection we discard candidates
where less than 70% of the pixels have the expected color.
The threshold on per-pixel hue difference is set to 54◦.

This results in a total of 3738 templates per object for training.
However, in contrast to [5], we are only using RGB data without
depth — therefore we do not restrict the color gradient features to
the contour, but compute them on the interior as well.

For testing, we measure the true positive rate on the sequences.
As in [4] we consider an object successfully detected when it is
within a fixed radius r around the ground truth position. We glob-
ally set r = 11cm in our experiments to allow for depth mis-
classification by one step.

For keeping interactive performance we only consider the first
30 LINEMOD candidates for matching and outlier rejection.

To simulate the CAD data use-case without any surface infor-
mation available, we additionally perform training using a white
diffuse material for all objects. For generating gradient features on
the interior of the object, we use ambient occlusion (AO) [1] as a
lighting approximation. Ambient occlusion is a purely geometrical
method that is independent of actual light and surface properties.
We skip the outlier-rejection step as no color information is avail-
able.

Table 1 shows the true positive rates for the variants mentioned
above — as can be seen the texture based variants outperform the

vertex-color baseline of [5] by a margin of 10% on average. How-
ever, there are strong variations between the individual objects,
therefore it remains inconclusive whether variant (6) or variant (7)
of our algorithm is preferable.

Notably the AO variant cannot reach the performance of the
other methods. With some objects where it even becomes unusable
(e.g. driller, cam). This emphasizes the need of surface information
for object detection.

4.1 Using noisy pose data

To evaluate the applicability of our method for on-the-fly textur-
ing with noisy pose data, we additionally used the state-of-the-art
”single shot pose” (SSP) detector [15] instead of relying on ground-
truth poses.

Figure 8 shows qualitative results of texturing using ground-
truth, SSP and LINEMOD poses. While the LINEMOD results
only allow for for a rough color based outlier rejection, the results
using SSP poses are very similar to using the ground truth. To fur-
ther quantify this, we repeated the training of SSP using synthetic
renderings of the ”driller” object instead of using cross-validation
as in the original paper. At this, we measured the true positive rate
(TPR) using the 5cm, 5deg metric. Here, training with textured ren-
derings (Fig. 8c) resulted in a TPR of 0.37. Using the imperfectly
textured objects (Fig. 8b) resulted in a TPR of 0.34, which supports
the qualitative impression. When training with vertex colored ren-
derings only, the performance was significantly degraded, resulting
in a TPR of 0.14.

4.2 Speed

The evaluation was performed on a notebook with an Intel i7-
7700HQ CPU at 2.80GHz and an Intel HD 630 iGPU. The aver-
age time to accumulate one video frame into a 1024x1024 px sized
texture is 2.69 ms. This allows running the texturing algorithm in
parallel to tracking to reconstruct a texture on-the-fly.

The average time to perform a texture lookup as described in
Section 3 is 0.82 ms using the software remap implementation in
OpenCV. This step can be therefore applied generally without re-
quiring GPU usage.

4.3 Multi instance detection

For the multi-instance detection we performed a qualitative analysis
using a separate sequence where two toy cars are alternately and
simultaneously visible. The surface colors are white and red which
are adjacent in HSV space (white is mapped to yellow as described
in section 3). Furthermore, the surface exhibits specular reflection
which is not filtered during texturing.



Nevertheless, our method was able to robustly discriminate both
objects (see Figure 1 and supplemental material1).

5 CONCLUSION AND FUTURE WORK

We have presented a method for real-time texturing that can be
used to improve detection on-the-fly. At this we have shown that
texturing itself is crucial for detection of CAD data where no sur-
face information is available. However, even for meshes where
vertex-colors were previously available, our approach improves de-
tection performance significantly. Furthermore, we successfully ap-
plied the resulting textures to extend LINEMOD for object-instance
recognition. By interleaving detection and texture extraction it now
becomes possible to extend detection algorithms by color cues on-
the-fly.

Our method currently requires the camera exposure to be fixed or
relies on a global exposure compensation approach which is error-
prone. Here reading the actual camera exposure could be used for
accurate exposure fusion of the images. The surface specularity
could be explicitly considered during merging [6]. Currently we as-
sume diffuse reflection, which systematically over-brightens spec-
ular surfaces. At this a plausibility test during merging could be
used to reject implausible colors as caused by e.g. occlusion. As the
LINEMOD detector is no longer state-of-the-art and further investi-
gation is needed to similarly integrate our approach into an existing
CNN based method. This will require to breaking up the end-to-end
trained ”black-box” to make the color information explicit.
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