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ABSTRACT

An essential aspect in the evaluation of Virtual Training Environ-
ments (VTEs) is the assessment of users’ training success, preferably
in real-time, e.g. to continuously adapt the training or to provide
feedback. To achieve this, leveraging users’ behavioral data has
been shown to be a valid option. Behavioral data include sensor
data from eye trackers, head-mounted displays, and hand-held con-
trollers, as well as semantic data like a trainee’s focus on objects of
interest within a VTE. While prior works investigated the relevance
of mostly one and in rare cases two behavioral data sources at a time,
we investigate the benefits of the combination of three data sources.
We conduct a user study with 48 participants in an industrial train-
ing task to find correlations between training success and measures
extracted from different behavioral data sources. We show that all
individual data sources, i.e. eye gaze position and head movement,
as well as duration of objects in focus are related to training success.
Moreover, we find that simultaneously considering multiple behav-
ioral data sources allows to better explain training success. Further,
we show that training outcomes can already be predicted signifi-
cantly better than chance by only recording trainees for parts of their
training. This could be used for dynamically adapting a VTE’s diffi-
culty. Finally, our work further contributes to reaching the long-term
goal of substituting traditional evaluation of training success (e.g.
through pen-and-paper tests) with an automated approach.

Index Terms: Human-centered computing—Human computer in-
teraction (HCI)—Interaction paradigms—Virtual reality; Computing
Methodologies—Machine learning—Machine learning approaches—
Feature selection

1 INTRODUCTION

Virtual Training Environments (VTEs) gained popularity due to
multiple reasons: i) they allow training personnel for hazardous
procedures in a safe environment [3], ii) they allow training under
fairly realistic conditions without the presence of trainers [18], iii)
they provide a cost-efficient alternative to training in reality, since no
real equipment and consumables are required [6], and iv) they allow
for better assessment of training success and individualization of the
VTE. This is important, since the performance of individuals varies
considerably, and accounting for the ability of individual trainees
might be helpful, as shown for Virtual Reality (VR) and other con-
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texts such as adjusting explanations to trainees’ competencies [26].
In our context, we aim to better understand how to assess training
success in a VTE. This would be helpful to dynamically adapt the
training and thus support trainees who are underperforming, e.g.
by providing more guidance, time, or encouragement. Addition-
ally, a traditional evaluation of training success (e.g. pen-and-paper
knowledge tests or practical examination) could be substituted or
enhanced by an automated approach. Aside from a few performance
related aspects such as task completion time or binary information
on training success (pass or failed), little is known without human
analysis of trainees. Due to this, interventions during training in a
VTE are often considered out-of-scope, i.e. it is difficult to adjust
the level of support during training to prevent excellent trainees from
getting bored or weak trainees from getting overwhelmed.

VTEs allow collecting a rich set of trainees’ behavioral data, e.g.
eye movements and velocities or accelerations of head movements.
Furthermore, VTEs allow accessing semantic information. That is,
detailed information readily available at any point in time for objects
a user is looking at. The abundance of information on users is valu-
able when assessing their behavior. Information on head movements
or eye tracking including the duration for which users focus on spe-
cific objects, as well as context switches and even other information
such as physiological signals (e.g. heart rate) are used in prior work,
e.g. for affective states [11], cybersickness [13], biometrics [24],
anxiety [30], or stress levels [8]. However, the number of studies
is rather limited. Furthermore, investigating the combination of
various information sources to assess performance such as training
success is limited to two data sources and also lacking combinations
of data, e.g. from the VTE’s objects in focus and Head-Mounted
Display (HMD). Thus, it is interesting to assess the usefulness of
combining low-level information extracted from eye and head move-
ments, with high level, semantically rich information from the VTE
such as relevant objects in focus. To gather this data, we conducted
a user study, wherein 48 participants trained an industrial task in
a VTE. We relate training success to eye tracking data, rotational
data of the HMD, and the relevant virtual objects within the VTE,
i.e. objects the trainees should focus on to understand the pressing
procedure. Through statistical testing, we establish relationships
between our measures and participants’ training success and we also
assess their suitability for predicting the final training success using
only behavioral data of the first half of the training.

The paper shows that: i) users’ eye gazes, head movements,
and objects in focus are related to their training success, ii) the
combination of these data sources increases the explainability of
training success, i.e., the data sources are complementary, iii) using
even less than 50% of the data (i.e., half of a training session) allows
predicting users’ training success significantly better than chance.
Our findings provide first steps towards dynamic VTEs that are
adjustable to trainees’ behavior and learning progress.

2 RELATED WORK

Training in VR and Tracking Data: Evaluation of VTEs and
mixed reality training environments in an authentic setting is rela-



tively uncommon [9, 10], since such an evaluation is a costly, time-
consuming, and a manual activity. Thus, automated evaluation has
gained traction recently. In a VTE for troubleshooting surgical
robots, Moore et al. [20] use tracking of head movements to train a
binary machine learning classifier to predict high and low learning
gains. Holzwarth et al. [11] use behavioral data to assess users’
affective states during training in VR. Orlosky et al. [23] collect a
variety of eye movement metrics to predict a trainee’s knowledge
obtained from a word recall task in VR. By combining pupil diame-
ter, eye movement, and other metrics, their support vector machine
can predict a trainee’s knowledge with an accuracy of 62%.
Head Movement Analysis: Head movements are among the most
important human behaviors in VR, as they indicate a user’s mo-
tion within a VTE [31]. This applies in particular to high fidelity
VR systems, where users are permitted to navigate freely (e.g. by
real walking [22]). In a VR classroom setting, a user’s increased
head movement indicates higher levels of social anxiety [30]. For a
surgery simulator, novice and professional surgeons’ head accelera-
tions significantly differ [28], since novices make more sudden and
unnecessary movements than experts. This observation is supported
by Moore et al. [20], who find that slower and abrupt movements
were associated with low learning gains in their VTE.
Eye Tracking Analysis: Eye movements are significant indicators
for learning and recalling vocabulary in VR [23]. Even more im-
portant is the possibility to use eye tracking to predict the learning
progress in serious games [17], in VTEs [25], and in instructional
videos [29]. A work in neurology shows that future decisions can be
predicted from pupil behavior [5].
Combining Behavioral Data Sources in VR: Hu et al. [12] ob-
serve a linear correlation between gaze positions and the head rota-
tion’s angular velocities. They implement a real-time gaze position
prediction model. Pfeuffer et al. [24] combine eye tracking and body
motion as behavioral biometrics, and investigate which behavior
is suitable to identify a user. This work is extended by Liebers et
al. [19], who show that behavioral biometrics is also possible based
solely on user movements. Mu et al. [21] analyze users’ eye gaze
positions and body movements in VR. They find strong indicators
that some of the interpersonal differences in these two metrics are
related to users’ backgrounds such as personality and related skills.

3 METHODOLOGY

3.1 User Study
Participants: The user study included 48 male participants, as
there were no female participants available at the vocational school
where we conducted the study. All participants were sanitary trainees
in their 1st to 3rd year of apprenticeship. Their mean age was 19.65
years with a standard deviation (Std) of 4.84 years. While 18 partici-
pants had no prior VR experience, 25 had experienced VR at least
once but less than five hours, and five had more than five hours of
prior VR experience. Further, six participants never played video
games, 11 occasionally played video games (less than one hour on
average per week), 19 regularly played video games (between one
and seven hours per week), and 12 often played video games (more
than seven hours per week). All had normal or corrected to normal
vision. All participants had already learned the process of pressing
pressfittings with small diameters as part of their education in the
vocational school. However, the participants had no prior knowledge
regarding the specific task that they trained for in the VTE. All of
them were randomly assigned to either use a pressing tool emulated
by hand-held controllers (31 participants), or the real pressing tool
equipped with HTC Vive trackers 2.0 (17 participants).
Measures: The measures consisted of both self-reported question-
naires as well as behavioral data, which are shown in Table 1.

The behavioral data consisted of head movements, eye move-
ments, and objects in focus. Data was recorded at a sampling rate
of 40 Hertz using a Unity script, which is comparable to other lit-

erature [4]. Each sample consisted of the frame’s timestamp, the
rotation of the HMD, the combined eye gaze direction of both eyes,
and the currently focused object. The rotation of the HMD was
described by the rotation angles around the axes of the global coordi-
nate system, shown in the lower right corner of Fig. 1. The eye gaze
direction was described by a three-dimensional unit vector in the
local reference frame of the HMD as provided by the HTC SRanipal
SDK. Since eye gaze direction was described in the HMD’s local
reference frame, and thus head movements and eye gaze could be
measured independently. The focused object was given by a string
containing its name. The VTE was implemented such that only the
five objects “Demo Collar”, “Instruction Screen”, “Pressing Collar
on Pressfitting”, “Pressing Tool”, and “Buzzer” were recognized as
focused. These five objects were selected because they are essential
for learning the task at hand either by providing information on the
task (e.g. the instruction screen), or by being an integral part of the
task itself (e.g. the pressing tool). These five objects are marked in
red in Fig. 1.

The self-reported measures consisted of standardized question-
naires, i.e. the Simulator Sickness Questionnaire (SSQ) [16], SUS
Presence [27], and two items of the adapted Learner Satisfaction
Questionnaire [15]. These two items were “Participants’ satisfaction
with the content of the training system” as well as “Participants’
confidence that their answers in the knowledge test are correct”. The
assessment of training success was conducted through a knowledge
test consisting of eight single-choice questions with three response
options for each question (i.e. participants had to choose A, B, or
C). To ensure external validity, the knowledge test was developed in
collaboration with the pressing equipment manufacturer, as well as
the division “Building Technologies” at the vocational school.
Study Procedure: The user study was conducted in single-user
sessions. A session consisted of three phases and lasted 45 minutes
on average. In the first phase, the participant was welcomed and
informed about the study, and signed a consent form. He then com-
pleted a demographic questionnaire and the SSQ pre-questionnaire.

In the second phase, the participant was introduced to the VR
system and the eye tracker was calibrated using the standard HTC
Vive Pro Eye calibration procedure. The tutorial scene was started,
familiarizing the participant with the VTE and how to interact with
objects (e.g. grasping). The participant proceeded with the actual
VTE, which will be more closely described in Sect. 3.1. Two videos
containing the steps of the tutorial scene as well as the actual VTE
can be found in the supplementary material. While undergoing
training in the VTE, the participant’s body movements, eye gaze
and focused objects were recorded as described in Sect. 3.1. In
the third phase, the participant was asked to fill out another set
of questionnaires (SSQ post-questionnaire, SUS Presence, Learner
Satisfaction). Finally, the knowledge test was administered.
Virtual Training Environment: The task used in the VTE of
this study was the pressing of steel pressfittings using a hand-held
pressing tool. The pressing procedure had to be conducted in a
predefined sequence of four steps while utilizing special equipment.
The equipment consisted of a pressing tool with a stage 1 adapter for
pre-pressing collar, a stage 2 adapter for post-pressing collar, and a
pressing collar. All objects and the pressing process were provided
in the VTE (see Fig. 1). The VTE had an instruction screen where
assignments and instructions were presented to the participant in
written form, and a buzzer to be triggered in order to proceed to
the next step of the training. Further objects were a “Demo Collar”,
which is an enlarged version of the pressing collar used to clarify
procedural steps, and the pressfitting to be pressed.

Each VR training session starts with the participant standing
in front of the instruction screen reading instructions followed by
executing a work step and, finally, triggering the buzzer in order to
proceed to the next step. The four steps of the task were as follows:
1) Positioning the pressing collar on the pressfitting segment to be
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Figure 1: Overview on the VTE: Instruction screen, demo collar,
buzzer, task specific components (pressing tool, stage 2 adapter for
pressing collar, pressing collar), and pressfitting to be pressed.

Figure 2: Objects in the VTE. Left: Enlarged version of the collar;
Right: Pressing tool attached to pressing collar on pressfitting.

pressed.
2) Conducting the first stage pressing by hooking the pressing tool
with the stage 1 adapter on the pressing collar and initiating the
pressing process by either pushing the trackpad on the hand-held
HTC VIVE controllers or the start button on the real tool.
3) Changing the pressing adapter on the pressing tool, i.e. mounting
the stage 2 adapter. This step was animated since the sanitary trainees
were already been trained in changing pressing adapters.
4) Conducting the second stage of pressing (similar to stage 1),
which is also referred to as final pressing.

The training session ended with the participant pressing the buzzer
after having read the final instructions on the instruction screen.
Apparatus: We used the HTC Vive Pro Eye with two SteamVR
base stations 2.0, the HMD with the eye tracker, and the two con-
trollers. A group of 31 participants was trained with controllers only,
the remaining 17 participants were trained with Sensoryx VRfree
gloves, and a real Geberit ACO 203plus pressing tool with two HTC
Vive Trackers 2.0. Further, the SteamVR was set-up on a 6 × 3
meters space. The VTE was developed in Unity and the Tobii XR
SDK was utilized to extract the eye tracking data. The VR computer
had an Nvidia RTX 2080 GPU, an Intel i7-9700K CPU, and 32 GB
RAM to ensure a frame rate of 90 Hertz on the HMD.

3.2 Analysis
The analysis has two goals: (i) To understand the relationship be-
tween behavioral data and performance and, (ii) to assess the practi-
cal utility of using behavioral data for predicting training success.
To address the first goal, we extract meaningful characteristics from
sensor data capturing bodily movements and investigate whether
they exhibit a significant influence on training success. To this end,
we employ classical statistical hypothesis testing, i.e. multiple linear
regression. For the second goal, we apply machine learning models
that are known for good predictive performance but are less suitable
to prove the significance of an input variable to predict an output.

Statistical Analysis: To derive our features, i.e. input variables for
the multiple linear regression, we transformed and aggregated the
raw data (see Table 1). Then, we performed forward variable selec-
tion to improve interpretability by reducing the number of variables.
Raw Data: We consider three data sources as described in Sect. 3.1,
i.e. head movement (rotation), eye gaze, and objects in focus (OF).
Transformation: Absolute values, such as angles of the head rotation,
are strongly dependent on the experimental setup [20]. To be more
general, we computed our features from the magnitude of differences
of raw input values, i.e. we used |di| with di := valuei− valuei+1.
Absolute differences relate to change per time, i.e. velocity. We
also used the magnitude of differences between differences, i.e.
|d2

i | := |di−di+1|, which corresponds to acceleration. For objects
in focus, we computed the duration for each instance they were in
focus. Features related to gaze duration reflect the importance of
an object to the participant [2]. The transformed data consists of
a sequence of values, where one value indicates the timespan in
seconds the object was in focus.
Aggregation: The transformed data has a large number of values
for each variable, e.g. thousands for each head movement variable.
Thus, we aggregated further by computing the average (Avg) and
standard deviation (Std) for each variable. This leads to interpretable,
but interrelated measures. For example, features for different axes
are correlated. To give another example, high average velocity might
be seen as positive, since it indicates a person is moving quickly.
However, it might also indicate that a person is moving hectically. If,
in addition, the standard deviation is high, it indicates that a person
is more likely to have periods of high velocity, e.g. fast transitioning
between objects in focus, and periods of low velocity, e.g. focusing
on a particular object while remaining still.
Variables and Model Selection: Applying the proposed aggregation
measures on the transformed data yields a large number of variables,
i.e. more than 30 that could be used in a linear regression model.
However, given that we aim to predict only one value per participant,
i.e. 48 values, utilizing 30 parameters might result in over-fitting.
Interpretation is also difficult. Thus, we performed variable selec-
tions (Chapter 3 of [7]), i.e. we aim to find a subset of variables
that yields a balance between model complexity and fit to the data.
Following [7], we used Akaike’s Information Criterion (AIC) for
model selection. This criterion provides a trade-off between model
simplicity and data fit. The model selection was done separately for
each of the three data sources, resulting in the variables in Table 1.

Regression Analysis: Applying a linear regression analysis using
the chosen variables (last row in Table 1) is done using Python’s
Statsmodels package. Variables are first standardized to make their
regression coefficients more easily comparable. In total, we assessed
four models, i.e. one model for the features of each behavioral data
source (yielding three models), and one model using all features.
We added two control variables; one taking into account whether
trainees had previously been exposed to VR, and one taking into
account whether a participant used a real pressing tool (with trackers
mounted onto it) or only controllers. We investigated whether indi-
vidual features bore a significant correlation with training success by
investigating p-values. We assessed each model as a whole by dis-
cussing the adjusted R2 and AIC. The former quantifies the explained
variance of the training score taking into account model complexity,
i.e. the number of parameters (one parameter per feature).

Prediction Task: We trained classifiers using the same features
as for linear regression (see the last row in Table 1) to evaluate
their utility in predicting a user’s knowledge test performance. We
employed Python’s scikit-learn library. We divided our participants
into two groups based on their training success using the median
of the test scores. That is, participants who scored lower than the
median score were put into the low performance group (LP) and
those who scored equal to or higher than the median score were put
into the high performance group (HP). The median value was taken



Table 1: Overview of raw data, its transformation, aggregation and resulting variables.

Head Movement Eye Gaze Object in Focus
Raw Data Angles Hx, Hy, Hz Ray Direction Dx, Dy, Dz Pressing Tool Fpt , Buzzer Fb,

Pressing Collar on Pressfitting Fpc,
Instruction Screen Fis, Demo Collar Fdc

Transformations 1st order differences to get velocity (v) Duration (d)
2nd order differences to get acceleration (a)

Transformed Data 1st order diff.: Hv
x , Hv

y , Hv
z Dv

x, Dv
y, Dv

z Fd
pt , Fd

pc, Fd
dc, Fd

b , Fd
is

2nd order diff.: Ha
x , Ha

y , Ha
z Da

x , Da
y , Da

z
Aggregation Average (Avg),

Standard deviation (Std)
Variables for Avg(Hv

x ), ...,Avg(Ha
z ) Avg(Dv

x), ...,Avg(Da
z ) Avg(Fd

pt), ...,Avg(Fd
dc)

linear regression Std(Hv
x ), ...,Std(Ha

z ) Std(Dv
x), ...,Std(Da

z ) Std(Fd
pt), ...,Std(Fd

dc)

Chosen variables - Avg(Rv
x), Avg(Ra

y) Avg(Fd
pt), Avg(Fd

pc), Avg(Fd
dc)

based on AIC and Std(Hv
z ), Std(Ha

z ) Std(Rv
x), Std(Ra

z ), Std(Ra
x) -

forward selection

Table 2: Descriptive results per group (mean and standard deviation).

Measure Range Controller Real Tool Combined
No. of Participants 31 17 48
Training Duration 8.53± 2.08 9.87± 2.25 9.00± 2.18

(minutes)
Test Score [0,8] 5.16± 2.03 5.76± 1.35 5.38± 1.81

SUS Presence [0,8] 4.90± 0.89 4.66± 1.06 4.82± 0.94

Confidence [1,7] 5.00± 1.29 4.94± 1.27 4.96± 1.28

Satisfaction [1,7] 5.94± 0.86 6.29± 0.66 6.17± 0.81

∆SSQ [±235.62] -2.90± 11.41 0.88± 10.87 -1.56± 11.26

to obtain groups with balanced sizes.
To evaluate the trained classifiers, we used the leave-one-out cross

validation approach: We left one of n samples out, training a model
with the remaining n−1 samples, and test the model using the left-
out sample. This was done for each sample leading to n folds. The
cross-validation accuracy is the average accuracy of all n folds.

Our focus is on predicting training success of the entire training
session but using only parts of the entire training session, i.e. we use
the first four minutes for each user. Since the average duration of a
user is about nine minutes with a standard deviation of two minutes,
this corresponds to using about half of all data for a user. The
motivation is to assess the capability to predict final success to alter
training, e.g. in case performance is likely to be non-satisfactory.

4 RESULTS

4.1 Descriptive Results
We elaborate on the combined results of both conditions in terms of
mean and standard deviation (Std). All results are shown in Table 2.
The mean SUS presence score was 4.83 (Std=0.94) of 7, which
can be considered reasonable. The mean knowledge test score was
5.38 (Std=1.81) out of 8, indicating that most participants acquired
substantial knowledge. The overall effectiveness of the VTE is
underpinned by the mean satisfaction with the training content’s
quality of 6.17 (Std=0.81) of 7 and a mean confidence that their
answers would be correct of 4.96 (Std=1.28) of 7.

4.2 Statistical Analysis using Linear Regression
We first discuss the feature selection process as described in Ta-
ble 3.2, i.e. the step to reduce the number of features from above 30
to 10 (see last two rows in Table 1).
Variable Selection: For head movements, features for x, y, and z have
high correlations. Thus, only a single feature, i.e. z (corresponding
to head pitch) is chosen. The mean velocity is not chosen, since
moving fast on average is not a key factor to determine success.

Table 3: Regression models on knowledge test scores.

Features Head Mov. Eye Gaze OF Head + Eye + OF
Std(Ha

z ) -2.39* - - -1.86
Std(Hv

z ) 2.23* - - 2.35*
Avg(Rv

x) - -0.76 - -0.30
Avg(Ra

y ) - 1.31* - 0.74
Std(Rv

x) - 3.87** - 2.85*
Std(Rv

z ) - -1.81** - -1.32*
Std(Ra

x ) - -2.55* - -1.92
Avg(Fd

pt ) - - -0.60* -0.61*
Avg(Fd

pc) - - 0.65* 0.49
Avg(Fd

dc) - - 0.57* 0.52*
Intercept 4.32*** 4.20*** 4.41*** 4.29***
Real Tool 0.91 1.38* 1.27* 0.82
Used VR 1.17* 1.10* 0.83 1.27*

Metrics
R2 0.187 0.332 0.247 0.522
Adj. R2 0.111 0.216 0.157 0.358
AIC 193.3 189.8 191.6 183.8

Fast movements can be ambiguous indicating both hectic, error-rich
behavior as well as fast, focused behavior. For eye gaze, features
correlate between 0.6 and 0.92. Thus, only five out of twelve features
are chosen. The interpretation of standard deviation of a single
variable is qualitatively the same as for head movements.
The average focus duration on objects plays a role, indicating that
for some objects it could be good or bad to investigate them for
only a short amount of time on average. The standard deviation is
irrelevant, indicating that it does not matter how the total gaze time
at the object is distributed. For example, it is irrelevant whether one
stares at an object for a long time early in the study followed by
short periods of focus, or always looks at it for the same duration.
Linear Regression: Results of the linear regression analysis are
shown in Table 3. The models consisting of just a single behavioral
data source perform similarly. Eye gaze performs best in terms of
AIC. High standard deviation of velocity Std(Hv

z ) is an indicator for
success. It is large if people alternate between two extreme states, e.g.
standing still to focus on one object, and moving fast. Low Std(Ha

z )
is also an indicator of success. High Std(Hv

z ) and low Std(Ha
z ) can

characterize a person transitioning between times of moving fast and
moving fairly slowly with constant accelerations. That is, there is
no complete standing still but also only a few rapid transitions from
high velocity in one direction followed by the opposite direction.
Hectic and frequent movements, i.e. rotating the head quickly up



and down in an abrupt manner, are also indicative of large (and short)
accelerations. Since all users exhibit times of low accelerations, large
accelerations tend to cause large Std(Ha

z ), which is indicative of
lower training success. The interpretation of Std(Rv

x) and Std(Ra
x) is

as for head movements. When it comes to looking up and down, it is
preferable if people maintain their height or maintain an exploration
at constant low velocity, as indicated by the negative coefficient of
Std(Rv

z). Sequences of fast moving eyes (up and down) followed by
(short periods) of little movement can indicate uncertainty in terms
of handling the tool, e.g. double-checking.

For objects in focus, studying properly the demo collar as well as
the pressing collar correlates positively with training performance.
The demo collar is not needed to solve the task, but it is an indicator
whether exploring the non-mounted collar is beneficial to understand
the problem. Spending prolonged time per interaction with the
pressing tool is an indicator of poor performance. This is aligned
with the actual task: The key challenge is mounting the tool on the
collar, where the complexity is more in understanding the pressing
collar on the pressfitting rather than the pressing tool. Therefore,
the collar should be in focus more frequently and for a longer time.
Short interaction times with the pressing collar, i.e. short times the
object is in focus, typically indicate that the user did not actually
conduct any steps needed to solve the task but conducted a short
visual inspection during trouble shooting.

Finally, the model which uses all three behavioral data sources
is shown to be the best of all four models as hinted by showing the
largest adjusted R2 value and the lowest AIC value. Thus, the more
behavioral data sources are used, the better the model. Also, at least
one predictor from each data source remains significant in the model
with all data sources showing that data sources are complementary.

Table 4: Classifier performance for predicting knowledge test scores
using features computed using the first four minutes of a user.

Features Linear Regr. Logistic Regr. SVM
Head Movements .562 .667 .562
Eye Gaze .604 .604 .500
Object in Focus (OF) .479 .500 .458
Head + Eye + OF .625 .688 .646

Table 5: Correlation of features computed using the first four minutes
and the resulting data.

Features Correlation Features Correlation
Std(Rv

z ) 0.795 Std(Ha
z ) 0.627

Std(Ra
x ) 0.764 Std(Hv

z ) 0.662
Avg(Rv

x) 0.773 Avg(Fd
pt ) -0.104

Avg(Ra
y ) 0.822 Avg(Fd

pc) 0.411
Std(Rv

x) 0.736 Avg(Fd
dc) -0.299

The type of interface, i.e. whether people used hand-held con-
trollers emulating the pressing tool or the real tool was significant
for some models. The coefficient was also small, indicating a limited
dependence on performance whether the real tool or emulation is
used. Any variation in the training setup leading to more variance
in sensor values and, in turn, of extracted features is non-desirable
from an analytics perspective, since variance makes prediction more
difficult. The fact that results are significant despite variations in the
type of interface is an indication of the robustness of the relationship
between our proposed features and training performance.

An exemplary comparison of behavioral data of high and low
performing users is depicted in Fig. 3. It shows the duration for each
time one of the three considered objects of the VTE was in focus. It
can be seen that the average duration differs between them for each
object in alignment with our regression analysis. A high performance

Figure 3: Cumulative focus duration for objects for high and low
performing participants. A bar segment is an occurrence of focusing
on an object. The length of the i-th bar segment shows the duration
of the i-th time an object was in focus.

participant shows shorter focus times for the pressing tool, but longer
for the two objects than a low performance participant.

4.3 Prediction
In a study with 48 participants, each participant accounts for about
2.1%. Thus, we consider models that differ by two or fewer users,
i.e. about 4.2%, as not clearly distinct. Prediction results for three
different models are shown in Table 4. Overall logistic regression
performs best, outperforming the baseline of 50%. Aligned with the
linear regression analysis, more information leads to better results,
i.e. the model with all three data sources performs best. It seems
that objects in focus are not helpful in predicting training success.
This is expected, since these objects are mostly unused in the first
four minutes of the experiment, where workers focus on reading
instructions. Thus, the interaction with those objects is initially
nonexistent, which is different in the latter part of the experiment.
More generally, the question arises if the performance metrics are
stable over time, i.e. if the correlation between the values for the
first four minutes and the rest of the experiment is high (see Ta-
ble 5). For objects in focus, features computed using only the
first four minutes of all data are poorly correlated with those for
the remaining data. In fact, if only all data (except the first four
minutes, where interaction does not take place anyway) is taken into
account, predictive accuracy for all three methods is above 60%.
The results in Table 5 reveal that correlations for other measures
are high, explaining why these variables are suitable to predict the
overall success given the first four minutes.

5 DISCUSSION AND LIMITATIONS

In this paper, we propose interpretable metrics and techniques (linear
regression) as well as predictive models. While interpretability is
commonly at odds with performance in machine learning, we believe
that interpretable metrics and statistical analysis are favorable to
contribute to scientific knowledge aligned with [11, 23].

Our predictive results outperform the baseline of 50% by 10-20%.
This is comparable to other methods [11,20,23], though comparisons
are difficult since tasks and VTEs differ. Those applications that
require higher accuracy might still benefit from the current approach
by exploiting the recall-precision trade-off. That is, decisions, where
the model is highly uncertain (based on decision confidence scores
produced by many ML models) are deferred to humans. In practice,
when designing a dynamic VTE adjusting difficulty based on user
skills, this might mean that the VTE is adapted for users that are



very strongly under- or overperforming. Better accuracy is achieved
by increasing data, i.e. having more participants, or techniques such
as multi-task learning leveraging data from multiple experiments as
well as further increasing data sources. More data might make other
approaches like deep learning working on raw data more suitable.
More participants and higher sampling frequency likely also allows
to distinguish more diverse behaviors, e.g. see [1] for eye gaze.

It is preferable to balance the number of users in both conditions,
which would allow for a statistical analysis of differences between
both conditions. On the positive side, our models could predict
performance despite the additional variance stemming from these
two conditions. Another limitation comes from the authentic setting
the study was conducted in. Although the training task was not
part of the participants’ curriculum, our results might also still be
influenced by the expertise reversal effect [14]. Furthermore, the
population used in this study is male and young. An additional study
covering more age groups and both genders would help to generalize
our statements. Objects in focus provide means of analysis, but are
highly case-specific. They also require some effort to implement.
In contrast, head movement and eye gaze information are easier to
obtain and metrics are easy to compute. However, their interpreta-
tion also shows case dependencies, though we conjecture that our
findings generalize to similar settings, i.e. where careful and focused
interaction with various objects is required. Furthermore, since the
metrics such as velocity and acceleration are well interpretable, an-
alyzing them for different contexts should not be a major concern
though it would be preferable to identify general behavior that is
always associated with a desired property such as training success.

6 CONCLUSION AND FUTURE WORK

We show that users’ head movements, eye gaze and objects in focus
are related to training success in VTEs and that the combination
of these behavioral data sources is useful. Furthermore, we predict
users’ training success already after 4 minutes of training, outper-
forming the baseline by 10-20%. This performance could already
be sufficient for creating a system, which decides in real-time, if a
user receives an extended or shortened training session. Thus, future
work will focus on the implementation and evaluation of such a
system. Additionally, we will focus on strengthening the prediction
by considering additional sources of behavioral data (e.g. pupil-
lometry), larger user studies including more balanced samples and
improving our model, e.g. by partitioning data into segments [20].
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