
AR Cloud: Towards Collaborative Augmented Reality at a Large-Scale
Nam-Duong Duong*

IRT b-com
Christophe Cutullic†

Orange
Jean-Marie Henaff‡

IRT b-com
Jérôme Royan§

IRT b-com

Figure 1: Real-time crowd mapping to create a global map at an office context and a construction site context.

ABSTRACT

Augmented Reality (AR) appears as one of the most promising tech-
nologies for the next decades with a lot of applications in Industry
4.0. Unfortunately, most of existing systems are limited to small
environments and running on a single device. To cope with these
limitations, we present in this paper an AR Cloud solution for real-
time crowd mapping. We propose an AR cloud service architecture
that is able to 1) continuously relocalize AR devices in relation to
the reference coordinate system of a common global 3D map in
order to estimate the initial pose of the AR device and to correct
tracking drift as soon as possible; 2) locally map in 3D the real envi-
ronment surrounding each AR device; 3) fuse these 3D local maps
with the global 3D map in order to keep it up-to-date, mandatory
feature when real environment changes over time. Finally, we show
experiments of our AR cloud platform at a large scale.

Index Terms: Augmented Reality—Spatial Computing; Crowd-
Mapping—Map Update

1 INTRODUCTION

Current back-end of most AR headsets and autonomous agents
(robots/cars/drones) implements a Simultaneous Localization And
Mapping (SLAM) which aims to jointly estimate the position of
an agent (localization) together with a representation of the scene
geometry (mapping). This is one of the fundamental problems
in computer vision, and there has been tremendous progress in
the last two decades. Most existing commercial AR systems (e.g.
ARKit, ARCore, or Hololens SDK) provide a highly accurate pose

*e-mail: nam-duong.duong@b-com.com
†e-mail: christophe.cutullic@orange.com
‡e-mail: jean-marie.henaff@b-com.com
§e-mail: jerome.royan@b-com.com

estimation based on a SLAM which performs a robust fusion in
real-time of measurements coming from multiple inputs, such as
cameras, odometry, depth and inertial sensors. Simultaneously,
these AR systems are able to create local maps corresponding to
the surrounding area observed by the vision sensors embedded in
AR devices. For multi-user AR, the user should also know the state
of other users and can be positioned in a unified coordinate system
such that 3D virtual contents can be seamlessly displayed at different
individual devices. Therefore, the local map created by a user can
be shared with other users to offer a collaborative AR experience.
However, this local map is limited to small-scale and is not updated
in real-time with observations captured by all AR devices.

Indeed, some collaborative SLAM [3, 28] in large environment
have been implemented to enable multi-agent AR applications. Nev-
ertheless, local changes (i.e. moving objects) are not detected and
updated over time to the global map. Several methods can exploit
a semantic knowledge of the scene to deal with this problem and
improve the quality of the map [2, 14]. However, these methods
mainly focus on the reconstruction from a single device.

To overcome above mentioned limitations, we present in this
paper an AR cloud platform to offer shared AR experiences any-
where, at anytime in real environment changing over time. By taking
advantage of 5G bandwidth and low latency, most of processing
is deployed in the cloud or at its edge. In our AR cloud platform,
a global map is shared with all AR devices for allowing them to
relocalize themselves in the relation to a common global coordinate
system, while this global map is also maintained up-to-date based on
local maps created in real-time by each AR device. We summarize
our contributions to this paper as follows: 1) The SolAR framework,
an open source AR cloud platform, allowing rapid creation and de-
ployment to the cloud of spatial computing services dedicated to
AR; 2) An AR cloud service architecture for real-time crowd map-
ping, which consists of three main services: relocalization service,
mapping service and map update service; 3) A robust relocalization
based on a submap extracted from the global map in order to ac-
celerate the localization of AR devices in relation to the common
coordinate system; 4) A real-time local mapping for each AR device



with drift correction based on the continuous relocalization in rela-
tion to the global map, that aims to detect and correct a tracking drift
of camera pose immediately; 5) A map update service consisting
of merging local maps created by multi-users into the global map
and updating the global map according to changes captured by local
maps.

2 RELATED WORK

Currently, the visual SLAM methods, aided with multi-camera
[10, 21] and inertial measurement unit (IMU) sensors [22, 25], have
developed rapidly to make a reliable method that achieves highly
accurate camera pose estimation and overcomes limitations of the
monocular visual SLAM such as pure rotation, texture-less scenes,
or lack of the scale information of scenes. This solution has been suc-
cessfully applied to several commercial products such as Hololens
headset to offer individual AR experience.

However, collaborative AR applications request camera pose
estimation of all AR devices relative to the common coordinate
system in order to enable sharing AR experiences for multi-user.
Some simple solutions build an initial map which is shared to other
AR devices. This map can be created by running an online SLAM
method or an offline Structure From Motion (SFM) [24] on a set of
collected images to achieve higher quality. Instead of performing
SFM on a single device as in [19], a distributed SFM proposed
by [23] applies a divide and conquer strategy to accelerate the map
creation by running multiple SFM processes on a CPU server to
build a set of submaps corresponding to each subset of images. Even
so, the pre-built global map of these methods cannot be updated
anymore, reducing its sustainability for environments changing over
time, which is relatively common in the real world.

Recently, multi-agent SLAM is a key solution to provide collabo-
rative tracking and mapping tasks based on a distributed computing
system that consists of decentralized and centralized architectures.
The former creates a local map for each agent instead of maintaining
a common global map and allows agents to exchange their summary
map to each other [6] in order to avoid double-counting measure-
ments [5]. Another approach [4] performs decentralised mapping
using object-based maps enabling co-localization of participating
robots and presents a collaborative pose-graph optimization. Even
though the decentralized approaches are robust to unreliable network
connections, they are much more difficult to deploy than the central-
ized one. Indeed, due to limited onboard computational resources,
they require efficient algorithms to synchronize data between differ-
ent agents and perform complicated tasks such as bundle adjustment,
loop closure detection. Currently, thanks to the development of net-
work systems with low latency and high reliability, most of existing
multi-agent SLAM systems adopt a centralized architecture to take
advantage of the computing power of central servers. The systems
consist of some client-side frontends and one server-side backend.
The frontends are usually responsible for the computation of the
real-time states of agents that are critical for online applications.
The backend takes care of time-consuming tasks concerning opti-
mization, map fusion. Such as in [26], only tracking task based on
PTAM [16] is performed on clients, all keyframes are sent to the
cloud server in order to compute the local map for each agent, and
fuse those maps. However, this approach requires these agents to
download regularly the global map from the server for pose estima-
tion and relocalization. Instead, CoSLAM [31] runs both tracking
and mapping tasks in the server, and copes with dynamic environ-
ments by grouping cameras with scene overlap. In spite of achieving
impressive results, the computation power on each agent is totally
unused since all processes are fulfilled by the server side. To take
advantage of the agent resources, another approach [28] maintains a
local map of limited size onboard each agent ensuring basic auton-
omy of the individual agent. Some other methods [13, 29] exploit
RGB-D sensor data for collaborative 3D dense reconstruction. In

this paper, instead of rebuilding full visual SLAM, we benefit from
the built-in SLAM based on multi-sensor of AR devices developed
by ARCore, ARKit, or Hololens SDKs to get directly accurate cam-
era poses. We only implement a crowd mapping in the cloud to
create a global map at a large-scale. This allows our system to
simply scale to multi-user.

In collaborative AR systems, all agents are localized in the com-
mon coordinate system expressed in the global map. Hence, camera
relocalization is necessary to initialize localization of new arrival
agents as well as to retrieve camera pose after tracking lost. The
camera relocalization leverages the global map which is built from
known information of a scene in order to infer camera pose from
each image independently. The geometric approaches first build
a 3D feature point cloud based on SFM [27] or SLAM [21]. The
camera pose can be estimated by directly matching 2D features from
the query image to 3D point cloud to define 2D–3D point correspon-
dences, and then running a PnP algorithm [17]. To accelerate the
feature matching, a Bag-of-Words (BoW) [11] or a learned-based
model [1] are used for retrieving the keyframes which have similar
appearance features to the query frame. Even so, the matching of
local features is unreliable on scenes with repeated patterns. How-
ever, these approaches simply scale to large environments. On the
other hand, the machine learning approaches learn an end-to-end
regression model [15] from whole images labeled with the camera
poses. The trained model then directly predicts camera pose from
each RGB image. To improve the accuracy, hybrid approaches [7,8]
compute camera pose by combining both the machine learning ap-
proach and the geometric approach. The machine learning part is
applied to learn and predict 3D positions of 2D features in the world
coordinate system, and the geometric part infers the camera pose
from these correspondences. However, the learned model must be
retrained from scratch when the global map is extended.

Dynamic environments with moving objects have always been
a difficult challenge in SLAM. Most existing approaches handle
dynamic region features as outliers and only use static background
for mapping [2]. Some other works [14, 18] detect, track, and
optimize the trajectory of dynamic objects e.g. people, vehicles, in
order to build a complete 3D map. [30] can detect any changes by
projecting the map feature into the current view, it then removes out-
of-date point cloud corresponding to previous positions of moving
objects. [9] proposes a dynamic random forest model, that is able to
update gradually predictive model in real-time following changes of
a scene.

3 AR CLOUD PLATFORM

The AR Cloud platform has been developed using the SolAR frame-
work 1. Indeed, SolAR is an open-source framework under Apache
V2 license allowing the creation of spatial computing pipelines ded-
icated to AR. Based on a C++ interface, it provides an API for
more than 50 low and high level components widely used in the
field of spatial computing. It also provides numerous component
implementations from open-source libraries integrated in modules
(e.g. OpenCV, g2o, FBoW, Ceres, OpenGV or PCL). The SolAR
framework allows the development of spatial computing pipelines by
assembling abstract components. Before starting the spatial comput-
ing pipelines, the instantiation and configuration of the components
are performed at runtime based on a description file defining the
implementation choices and configuration parameters. This provides
the ability to test different implementations and component configu-
rations without having to rebuild the pipeline. Finally, the SolAR
framework provides a tool to automatically generate, for each SolAR
abstract interface, a gRPC client and server. Thus, each component
can call another one remotely, which provides the communication
layer to easily create services from pipelines. These services are then
embedded into docker images, and are hosted in docker repositories.

1https://solarframework.github.io/



Figure 2: SolAR Framework concept: (1) Create spatial computing
components from existing libraries by wrapping SolAR API; (2) Pack-
age components into modules and publish them; (3) Assemble and
build spatial computing pipelines; (4) Set component implementations
and configurations; (5) Create services from pipelines, embed them
in docker images and publish them; (6) Deploy services at the edge
or in the cloud with Helm Charts.

Kubernetes is used to deploy spatial computing at the edge or in the
cloud, the deployment is then managed with helm charts to ease the
versioning, sharing, publishing and service upgrades. Fig. 2 presents
the concept of SolAR framework.

4 AR CLOUD SERVICES ARCHITECTURE

A SLAM consists of three main components running in parallel,
two related to device localization, and one to mapping. First, for
localization, two distinct components are needed. The first one,
called tracking, estimates the displacement of the augmented reality
device at a high frequency (∼ 60Hz). Due to error propagation,
the pose of the AR device can drift over time during tracking. The
second one, called relocalization, estimates the pose of the AR
device at a lower frequency (∼ 1Hz) by comparing an observation
captured by the AR device with the 3D map previously built by the
third component (mapping). This relocalization component is used
to estimate the first pose of the AR device, when the tracking is lost,
and to correct the drift of the tracking. Finally, the third component
maps the real environment in 3D for future relocalizations.

Fig. 3 shows the service architecture of our AR Cloud platform.
The tracking is provided by existing AR runtimes (e.g., Hololens
SDK, ARCore, or ARKit) and runs on the AR device due to very low
latency requirements. However, the relocalization and mapping com-
ponents are embedded into two distinct services and are deployed
at the edge or in the cloud. An instantiation of both components
is running for each AR device as a context (the map surrounding
the AR device) must be preserved over time. Also, to be able to
keep up-to-date a common 3D map of the real environment, a third
service, called map update, hosts a shared 3D global map of the real
environment and is able to update and extend it by fusing when AR
session end the local map produced by each mapping service captur-
ing changes in the real environment such as objects that have moved,
been added or removed. This map update service is also able to
extract a local map surrounding an AR device, subpart of the global
map, for each relocalization service instance in order to relocalize
a new AR device connected to the AR cloud platform. This local
map will be routed to the corresponding mapping service instance
to initialize its local map. Finally, a fourth front-end service routes
input and output data between the client, the relocalization and the

mapping services. Finally, to ease the integration of the AR Cloud
platform to AR applications, a Unity plugin has been developed.
This plugin, supporting the Hololens SDK and the AR Foundation
framework (for ARKit and ARCore), transmits the images captured
by cameras embedded in the AR device and the corresponding poses
estimated by the AR runtime (tracking), and receives back an offset
to apply to the poses estimated by the AR runtime. Thanks to this
AR cloud platform, it is now possible to develop AR applications
running continuously at a large scale, handling simultaneously dozen
of low resources AR devices, and running over time in high dynamic
environments through crowd-sourced updates of the 3D map when
changes in the real environment are observed. In the next sections,
we introduce each service in more details.

5 RELOCALIZATION SERVICE

The relocalization service allows AR devices to localize in the com-
mon coordinate system defined by the global map, without prior
knowledge of its location. Indeed, each AR device sends to the
frond-end service images, their corresponding camera poses in the
device coordinate system, TC

D , and intrinsic parameters, K. Then,
the relocalization service handles each requested image to estimate
its camera pose in the world coordinate system, TC

W . Based on both
of these camera poses, we can define the transformation from the
device coordinate system to the world coordinate system, called the
pose offset:

T D
W = TC

W · (TC
D )−1 (1)

This pose offset is sent back to the AR device and applied to the pose
estimated at a high frequency by the inboard tracking process of the
AR runtime before rendering virtual objects in the world coordinate
system. To compute TC

W , we implement a visual relocalization based
on fiducial markers or a sparse map. For the first approach, we
define in advance a set of fiducial markers such as ArUco [12] or
QR code, with knowing their relative transformation to the world
coordinate system. Once these markers are detected in a frame, we
can find a set of 2D-3D point correspondences of their corners. For
the second approach, this service requires a submap, including 3D
feature point cloud and keyframes, extracted from the global map,
that will be presented in Sect. 7. At first, each query image is used
for detecting nearest keyframes based on DBoW2 [11]. The use of a
submap instead of the global map allows us to accelerate this step as
well as to reduce data transmission time between the relocalization
and the map update services. The features extracted from the query
image are matched with keypoints of retrieved images. Note that
only keypoints of retrieved images that are associated with 3D points
are used for matching. From these matches, a set of 2D-3D point
correspondences is established. In both cases, the camera pose
is estimated by minimizing the reprojection error based on EPnP
algorithm [17]:

ε = ∑
i
∥pi −KTW

C Pw
i ∥2 (2)

Where pi and Pw
i are respectively coordinates of a 2D keypoint in

the image and a corresponding 3D point in the global map.
In addition, each AR device is continuously relocalized in the

global map in order to early detect and correct tracking drift that is
used for improving the local map created by the mapping service.

6 MAPPING SERVICE

Once the relocalization service has successfully determined the pose
offset, the front-end service forwards this pose offset, the image and
its associated pose from the AR device to the mapping service in
order to create a sparse local map for each AR device. Our mapping
service is based on ORB-SLAM [21] without the tracking step. The
camera pose in the world coordinate system is calculated by using
the pose offset T D

W and the camera pose TC
D in the device coordinate



Figure 3: Service architecture of the AR Cloud platform.

system as follows:
TC

W = T D
W ·TC

D (3)

If the relocalization service estimates the pose of the device based on
the markers, a 3D sparse map is initialized from scratch. However, if
the relocalization service is able to estimate a pose from the submap
returned by the map update service, this submap is sent back to
the mapping service to initialize the local map. Then this service
gradually adds new keyframes and triangulates new 3D points to
extend the local map. However, instead of inserting keyframes as
fast as possible to make the tracking more robust in ORB-SLAM, we
add a new condition comparing the candidate keyframe to neighbor
keyframes of the reference keyframe to avoid creating redundant
keyframes.

Although AR devices provide highly accurate camera pose, drift
error is still accumulated over time. Therefore, similar to [21], we
integrate the loop closure detection and correction into our mapping
service for the drift correction. Simultaneously, this allows this
service to refine the pose offset and to return the updated pose
offset to the AR device to improve the virtual objects registration.
Moreover, with the goal of detecting and correcting the drift as
soon as possible, we take into account a series of the pose offsets
estimated by the continuous relocalization. Basically, if no tracking
drift is observed, we achieve the similar offsets from Equation 1.
However, assuming at the time t, the tracking is drifting by ∆t , we

will obtain a drifted pose T̃C
D = ∆tTC

D . This drift transformation can
be detected based on two consecutive pose offsets as follows:

∆t = (T D
W )t−1 · (T D

W )−1
t (4)

Then, we apply the inverse of this drift transformation to current
neighbor keyframes and local point cloud. Finally, we run a local
bundle adjustment only on the keyframes and the point cloud created
between two times of these pose offsets. This process allows us
to immediately correct the effect of this drift error on the mapping
in real-time. At the end of the AR session, the mapping service
transfers the local maps to the map update service.

7 MAP UPDATE SERVICE

The map update service sequentially processes each local map sent
by the mapping service, in order to extend and update the global

map. This process consists of three steps: the map overlap detection,
the map fusion and the map update.

The first step tries to detect common areas between the local
map and the global map based on the place recognition algorithm
[11] and then find 3D points matching together between the two
maps. If the overlap area is sufficient to compute the transformation
between these two maps, the local map is transformed to the world
coordinate system defined by the global map. However, in our
proposed pipeline, each local map is initialized by a submap of the
global one and expressed in this common coordinate system. This
step is hence skipped.

The second step allows to merge the local map into the global
map. Firstly, to avoid duplication of 3D points in the map, given
each 3D point of the local map, we try to find candidate 3D points
of the global map in a radius around this point using the FLANN
library [20] to speed up the search. We then compare their fea-
tures to verify a correct match. All duplicated points are merged by
moving the visibilities of local map points to global map points. Sec-
ondly, we merge keyframes and update the covisibility graph. Each
keyframe of the local map is respectively added to the global map
and is assigned to a new identification. Simultaneously, new nodes
corresponding to these keyframes are inserted in the covisibility
graph of the global map while retaining weights of edges from the
local map. Furthermore, based on the duplicated points identified
above, we define new edges between new keyframes and existing
keyframes in the global covisibility graph. All BoW features of new
keyframes are also put in the global retrieval model.

The last step prunes outdated 3D points to keep the global map up-
to-date according to the local map created from recent observations.
Firstly, we define a confidence score model for each 3D point, that
is calculated by the inverse of the number of consecutive times
a 3D point is considered as an outlier, N−1

out . Once, this point is
determined as an inlier, this score is reset to 1. If this score is less
than a threshold τ (τ = 0.3 in our experiments), we remove this 3D
point because it is no longer accurate. To determine a 3D point is an
outlier or an inlier, inspired by [30], we project respectively every
existing 3D point of the global map to each new keyframes, and we
evaluate if this 3D point is projected into the keyframe and if the
angle formed by its normal vector and the view direction from the
keyframe is less than α (α = 30◦ in our experiments). In this case,



if there exists a feature of the keyframe at the projected position
matching with the feature of the 3D point, this point is defined as an
inlier. Otherwise, it is an outlier. To prune obsolete and redundant
keyframes, if a keyframe has the number of common features shared
with other keyframes greater than 90% of its total number of map
point visibilities, we remove this keyframe. Finally, we run a global
bundle adjustment after merging to optimize the whole global map.

In addition, the map update service can extract a submap concern-
ing the active zone of a user to transfer it to the relocalization service.
For each query image, we define a set of retrieved keyframes based
on [11] and use feature matching verification to find the nearest
keyframe. Then we extract a submap including local point cloud
and neighbor keyframes of the nearest keyframe.

8 EXPERIMENTS

Table 1: Mapping results of local and global maps for the two scenes.

Office scene Construction scene
Sequence Seq-01 Seq-02 Seq-01 Seq-02
#Images 1092 911 2258 1794

#Keyframes 200 165 349 270
#3D points 20447 11707 35760 23629

Global map 355 keyframes 598 keyframes
28776 points 56349 points

We evaluated our AR Cloud platform in an office scene (∼ 100m2)
and a construction site scene (∼ 200m2). For each scene, we cap-
tured two data sequences. The first one is to initialize a global map
and the second one aims to extend the global map. The services
have been deployed on an all-in-one edge infrastructure packaged
in a flight-case including the spatial computing server as well as the
5G RAN and Core servers, offering an autonomous solution easy to
deploy in various environments. A Microsoft Hololens 2 was used
for the experimentation. It was connected to a Wi-Fi/5G gateway
to transfer images and camera poses to our services. The origin of
the world coordinate system is initialized at the center of the fiducial
marker that is attached to each scene, as shown in Fig. 4.

8.1 Robust mapping using the drift correction

Figure 4: The drift correction for improving tracking and mapping.

For each sequence, as soon as the device is localized in the global
coordinate system, the front-end service forwards images, camera
poses and the pose offset to the mapping service to create a local
map. Details of the number of processed images, 3D points and
keyframes for each map are reported in Table 1. The first two
columns of Fig. 1 show the visualization of achieved local maps
consisting of 3D point cloud (green points) and keyframes (blue
pyramids). In the first column of Fig. 4, we also visualize a simple
virtual cube at the origin of the world coordinate system to verify

the tracking accuracy. Although the Hololens SDK achieves highly
accurate camera pose, after a few minutes of experimentation, the
drift error is accumulated leading to the virtual cube being shifted
about 5cm for the office scene and 20cm for the construction scene.
This is presented in the second column of Fig. 4. However, thanks to
our continuous relocalization and loop closure detection, these drift
errors are detected and corrected. Indeed, the third column of Fig. 4
shows images with the cube displayed precisely on the marker.

8.2 Map fusion and map update

Figure 5: The point cloud and keyframes overlap detection.

For each scene, we started the experiment by resetting the global
map from scratch. At the beginning, the first client scans a part of the
environment, then this local map is sent to the map update service to
initialize the global map. After that, the second client arrives on this
scene and requests the relocalization service to be localized in the
global coordinate system and to create an extended local map. At
the end of the experiment, this second local map is transferred to the
map update service for merging and updating the global map. This
process is illustrated in Fig. 1. To achieve a compact global map, the
map update service rapidly detects 3D points and keyframes overlap
(e.g. the red ones in Fig. 5) between the local map and the current
global map to merge them. The result of the final global maps is
presented in Table 1.

Figure 6: Map update. Removing outlier 3D points of moving objects
and adding new 3D points corresponding to their new position.

Moreover, the map update service is able to keep the global map



up-to-date by taking into account changes of the real environment
captured in local maps. For example, in the construction scene, there
are some wooden planks being shifted to the right in the second
sequence. This change creates 3D points corresponding to new
positions of these planks, while the old 3D points are detected as
outliers and removed. Fig. 6 shows results of the map update process.
The removed and added 3D points are marked by red ellipses.

9 CONCLUSION

We presented in this paper an AR Cloud platform for offering col-
laborative AR applications at the large scale on any AR devices. By
moving spatial computing services, including relocalization, map-
ping and map update, at the edge or in the cloud, our AR Cloud
platform is able to maintain an up-to-date global 3D map of the
real environment. It also supports a crowd-sourced mode, when
the 3D map is shared with multiple AR devices for allowing them
to localize themselves in real-time based on observations captured
by their vision sensors. We will continue the development and ex-
perimentation of the AR Cloud platform in order to optimize the
localization performance and to address additional AR use cases.

ACKNOWLEDGMENTS

Part of this work has been funded by the European Commission
through the H2020 project ARtwin (Grant Agreement no. 856994).

REFERENCES

[1] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. Netvlad:
Cnn architecture for weakly supervised place recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
pp. 5297–5307, 2016.

[2] B. Bescos, J. M. Fácil, J. Civera, and J. Neira. Dynaslam: Track-
ing, mapping, and inpainting in dynamic scenes. IEEE Robotics and
Automation Letters, 3(4):4076–4083, 2018.

[3] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and J. D.
Tardós. Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam. IEEE Transactions on Robotics,
37(6):1874–1890, 2021.

[4] S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. I. Christensen, and
F. Dellaert. Distributed mapping with privacy and communication
constraints: Lightweight algorithms and object-based models. The
International Journal of Robotics Research, 36(12):1286–1311, 2017.

[5] A. Cunningham, V. Indelman, and F. Dellaert. Ddf-sam 2.0: Consis-
tent distributed smoothing and mapping. In 2013 IEEE international
conference on robotics and automation, pp. 5220–5227. IEEE, 2013.

[6] A. Cunningham, M. Paluri, and F. Dellaert. Ddf-sam: Fully distributed
slam using constrained factor graphs. In 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 3025–3030. IEEE,
2010.

[7] N.-D. Duong, A. Kacete, C. Sodalie, P.-Y. Richard, and J. Royan.
xyznet: towards machine learning camera relocalization by using a
scene coordinate prediction network. In 2018 IEEE International Sym-
posium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct),
pp. 258–263. IEEE, 2018.

[8] N.-D. Duong, A. Kacete, C. Soladie, P.-Y. Richard, and J. Royan.
Accurate sparse feature regression forest learning for real-time camera
relocalization. In 2018 International Conference on 3D Vision (3DV),
pp. 643–652. IEEE, 2018.

[9] N.-D. Duong, A. Kacete, C. Soladie, P.-Y. Richard, and J. Royan. Dy-
naloc: Real-time camera relocalization from a single rgb image in
dynamic scenes based on an adaptive regression forest. In 15th Inter-
national Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications, VISIGRAPP 2020, 2020.

[10] J. Engel, J. Stückler, and D. Cremers. Large-scale direct slam with
stereo cameras. In 2015 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 1935–1942. IEEE, 2015.

[11] D. Gálvez-López and J. D. Tardós. Bags of binary words for fast
place recognition in image sequences. IEEE Transactions on Robotics,
28(5):1188–1197, October 2012. doi: 10.1109/TRO.2012.2197158

[12] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.
Marı́n-Jiménez. Automatic generation and detection of highly reliable
fiducial markers under occlusion. Pattern Recognition, 47(6):2280–
2292, 2014.

[13] S. Golodetz, T. Cavallari, N. A. Lord, V. A. Prisacariu, D. W. Murray,
and P. H. Torr. Collaborative large-scale dense 3d reconstruction with
online inter-agent pose optimisation. IEEE transactions on visualiza-
tion and computer graphics, 24(11):2895–2905, 2018.

[14] M. Gonzalez, E. Marchand, A. Kacete, and J. Royan. Twist-
slam: Constrained slam in dynamic environment. arXiv preprint
arXiv:2202.12384, 2022.

[15] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolutional
network for real-time 6-dof camera relocalization. In Proceedings of
the IEEE international conference on computer vision, pp. 2938–2946,
2015.

[16] G. Klein and D. Murray. Parallel tracking and mapping for small ar
workspaces. In 2007 6th IEEE and ACM international symposium on
mixed and augmented reality, pp. 225–234. IEEE, 2007.

[17] V. Lepetit, F. Moreno-Noguer, and P. Fua. Epnp: An accurate o (n)
solution to the pnp problem. International journal of computer vision,
81(2):155–166, 2009.

[18] P. Li, T. Qin, et al. Stereo vision-based semantic 3d object and ego-
motion tracking for autonomous driving. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pp. 646–661, 2018.

[19] S. Lynen, T. Sattler, M. Bosse, J. A. Hesch, M. Pollefeys, and R. Sieg-
wart. Get out of my lab: Large-scale, real-time visual-inertial localiza-
tion. In Robotics: Science and Systems, vol. 1, p. 1, 2015.

[20] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. VISAPP (1), 2(331-340):2, 2009.

[21] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras. IEEE transactions
on robotics, 33(5):1255–1262, 2017.

[22] R. Mur-Artal and J. D. Tardós. Visual-inertial monocular slam with
map reuse. IEEE Robotics and Automation Letters, 2(2):796–803,
2017.

[23] L. Platinsky, M. Szabados, F. Hlasek, R. Hemsley, L. Del Pero, A. Pan-
cik, B. Baum, H. Grimmett, and P. Ondruska. Collaborative augmented
reality on smartphones via life-long city-scale maps. In 2020 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR),
pp. 533–541. IEEE, 2020.

[24] F. Poiesi, A. Locher, P. Chippendale, E. Nocerino, F. Remondino,
and L. Van Gool. Cloud-based collaborative 3d reconstruction using
smartphones. In Proceedings of the 14th European Conference on
Visual Media Production (CVMP 2017), pp. 1–9, 2017.

[25] T. Qin, P. Li, and S. Shen. Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator. IEEE Transactions on Robotics,
34(4):1004–1020, 2018.

[26] L. Riazuelo, J. Civera, and J. M. Montiel. C2tam: A cloud framework
for cooperative tracking and mapping. Robotics and Autonomous
Systems, 62(4):401–413, 2014.

[27] T. Sattler, B. Leibe, and L. Kobbelt. Efficient & effective prioritized
matching for large-scale image-based localization. IEEE transactions
on pattern analysis and machine intelligence, 39(9):1744–1756, 2016.

[28] P. Schmuck, T. Ziegler, M. Karrer, J. Perraudin, and M. Chli. Covins:
Visual-inertial slam for centralized collaboration. In 2021 IEEE Inter-
national Symposium on Mixed and Augmented Reality Adjunct (ISMAR-
Adjunct), pp. 171–176. IEEE, 2021.

[29] P. Stotko, S. Krumpen, M. B. Hullin, M. Weinmann, and R. Klein.
Slamcast: Large-scale, real-time 3d reconstruction and streaming for
immersive multi-client live telepresence. IEEE transactions on visual-
ization and computer graphics, 25(5):2102–2112, 2019.

[30] W. Tan, H. Liu, Z. Dong, G. Zhang, and H. Bao. Robust monocular
slam in dynamic environments. In 2013 IEEE International Symposium
on Mixed and Augmented Reality (ISMAR), pp. 209–218. IEEE, 2013.

[31] D. Zou and P. Tan. Coslam: Collaborative visual slam in dynamic
environments. IEEE transactions on pattern analysis and machine
intelligence, 35(2):354–366, 2012.


	Introduction
	Related work
	AR cloud platform
	AR cloud services architecture
	Relocalization service
	Mapping service
	Map update service
	Experiments
	Robust mapping using the drift correction
	Map fusion and map update

	Conclusion

