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Abstract 
 
Mixed reality is different from the virtual reality in that 

users can feel immersed in a space which is composed of 
not only virtual but also real objects. Thus, it is essential 
to realize seamless integration and interaction of the 
virtual and real worlds. We need depth information of the 
real scene to synthesize the real and virtual objects. We 
propose a two-stage algorithm to find smooth and precise 
disparity vector fields with sharp object boundaries in a 
stereo image pair for depth estimation. Hierarchical 
region-dividing disparity estimation increases the 
efficiency and the reliability of the estimation process, 
and a shape-adaptive window provides high reliability of 
the fields around the object boundary region. At the 
second stage, the vector fields are regularized with a 
energy model which produces smooth fields while 
preserving their discontinuities resulting from the object 
boundaries. The vector fields are used to reconstruct 3D 
surface of the real scene. Simulation results show that the 
proposed algorithm provides accurate and spatially 
correlated disparity vector fields in various kinds of 
images, and synthesized 3D models produce natural 
space where the virtual objects interact with the real 
world as if they are in the same world. 

 
1. Introduction 

 
Mixed reality (MR) is an environment in which the 

virtual and real environments are composed [1, 2]. In a 
mixed reality system, users can feel immersed and 
interact in a space which is composed of not only real 
objects but also computer-generated objects. Thus 
seamless integration and natural interaction of the virtual 
and real worlds are essential for the mixed reality. 
However, in most conventional MR systems, virtual 
objects are simply overlaid on the image of the real ones 
as if the virtual ones are placed in front of real ones. 
When the real object is placed in front of the virtual one, 
the image of the virtual object should be pruned before 
display [3, 4]. Moreover, when a virtual object collides 

with real objects, it should react on the event properly [5, 
6]. We need depth information of the real scene to realize 
the interaction.  

Many active and passive methods have been proposed 
to recover depth information from real scene. Active 
techniques utilize ultrasonic or laser to illuminate the 
work space, so that they yield fast and accurate depth 
information [7, 8]. However, they are disadvantageous in 
a limitation of measurement range and hardware cost. 
Conversely, passive techniques based on computer vision 
are less sensitive to environments and typically require a 
simpler and less expensive setup for range sensing. They 
estimate the depth information from the correspondence 
of acquired images and camera parameters [3, 4, 9, 10].  

When two images are acquired by a stereo camera 
system, every physical point M yields a pair of 2D 
projections m1 and m2 on two images. If we know both 
the intrinsic and extrinsic parameters of the stereo system, 
we can reconstruct the 3D location of the point M from 
m1 and m2 [11, 12]. 

In the simple case of a parallel camera system as shown 
in Fig. 1, the depth of a point M can be simply calculated 
by: 
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Figure 1. Parallel stereo camera geometry 



 

 

where B is the baseline distance between two cameras and 
f is the focal length of the camera. We assume the parallel 
camera geometry in the following process of this paper 
for simplicity. 

One of the most important problems in depth 
estimation is to find corresponding points in the images, 
which is called disparity estimation. In this paper, we 
propose a two-stage algorithm to find smooth and 
detailed disparity fields with sharp object boundaries in a 
stereo image pair. The algorithm consists of dense 
disparity estimation using region-dividing technique and 
edge-preserving regularization. The estimated disparity 
fields are converted into depth information with camera 
parameters and the 3D model of the real scene is 
reconstructed. By synthesizing the reconstructed model of 
real scene with virtual models, seamless integration and 
interaction can be realized. Fig. 2 shows the overall 
process of the synthesis. 

 
2. Dense disparity estimation 

 
A lot of works have been done on the correspondence 

problem since the 1970’s. In the IEEE Workshop on 
Stereo and Multi-Baseline Vision 2001, numerous state of 
the art algorithms for the disparity estimation are 
presented and evaluated. Recently, D. Scharstein and R. 
Szeliski provided taxonomy of existing stereo algorithms 
in their paper [13], and a test bed for the quantitative 
evaluation of the algorithms in their homepage [14]. 

In this paper, dense disparity fields of stereo images are 
obtained hierarchically by using a region-dividing 
technique and shape-adaptive matching windows which 
we proposed in Electronic Imaging 03 [15].  

 

Region 1 Region 2 Region 3 Region 1 Region 2 Region 3Region 1 Region 2 Region 3 Region 1 Region 2 Region 3  
(a) Left scanline              (b) Right scanline 

Figure 3. Scanlines of stereo image pair 

The region-dividing technique is based on the ordering 
constraint [16]. The technique performs point matching in 
order of the possibility of correct matching and divides 
the region into two sub-regions at the true matching point. 
For example, the Fig. 3 shows corresponding scanlines 
extracted from a pair of stereo images. If (A, B) and (C, 
D) are matching pairs, the point E must be matched in the 
region between B and D according to the ordering 
constraint. We establish the matching order according to 
edge intensities, and employ a simple mean absolute 
difference (MAD) function as the cost function to select 
the best match from a set of displacement candidates. 
After the region splits into sub-regions, the search ranges 
of points in each sub-region are restricted to the 
corresponding sub-region. It means that if we make an 
error in dividing regions, the subsequent matching 
process in the false region produces wrong results. 
Therefore, true correspondence must be carefully checked 
in matching process. In order to reject outliers, we 
perform a bi-directional consistency check for the 
matching points. According to the uniqueness constraints 
and the consistency constraints of stereo images [11], the 
disparity vector dl(x) estimated from the left image to 
right image and the corresponding disparity vector 
dr(x+dl(x)) estimated from the right image to left image 
have the same scalar values with opposite directions. 
With this property, we can evaluate the reliability of the 
estimation, and increase the whole reliability by 
eliminating unreliable matching in the region-dividing 
process. If the matching condition satisfies Eq. (2), the 
disparity is authorized to the true disparity and the region 
is divided into two sub-regions. Otherwise, we categorize 
the point into occlusion and skip to the next points. ε is a 
matching threshold for bi-directional matching. 
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At the first step, we estimate initial disparity vectors in 

units of N×N block in low resolution images. The input 
stereo images are subsampled by a factor of two and split 
into N×N rectangular blocks. Then, disparity vector of 
each block is estimated from the images using the region-
dividing block matching. 
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Figure 2. Block diagram of the synthesis system 



 

 

At the second step, based on the initial vectors, dense 
disparity vectors are estimated using the region-dividing 
technique with shape-adaptive matching windows in full-
resolution images. The shape-adaptive window provides 
high reliability of the disparity fields around the boundary 
region by deforming its shape according to the flow of 
features so that the matching window does not cross 
strong features of the image. Starting from sufficiently 
small contour, the contour of the window expands to the 
direction of non-increasing magnitude of image gradient 
|▽I | until a maximum size N×N is reached. The shape-
adaptive window provides correct sharp object boundary 
of disparity fields as shown in Fig. 4, where white lines 
represent real edges of the object. 

Fig. 5 shows the estimated disparity maps of the left 
images from “Head and lamp” and “Man” stereo image 
pairs used in simulation. White regions represent 
occlusion, and in case of the “Man” images, we extracted 
a textureless background region from the image by a 
simple region-growing technique and unified vectors in 
the region with the smallest disparity. 

 

   
(a) Rectangular window         (b) Proposed window 

Figure 4. Estimation results around object boundary 

 

 
(a) “Head and lamp”                     (b) “Man” 

Figure 5. Estimated disparity maps 

 
3. Edge-preserving disparity regularization 

 
The disparity vectors estimated by the foregoing 

estimation method have highly reliable information. 
However, the spatial correlation of the estimated vector 
fields is not considered, so that false vectors can be 
yielded by wrong estimation or error propagation as we 
can see at the right side of the plaster figure in Fig. 5 (a). 

Therefore we propose to regularize vector fields by 
minimizing energy functional involving a fidelity term 
and a smoothing term such as: 
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where Ω is an image plane, λ is a Lagrange multiplier, 
and ),( lId ∇∇ψ  is a potential function whose gradient is 
given by: 
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We can solve the minimization problem by solving the 

associated Euler-Lagrange equation and the following 
corresponding asymptotic state of the parabolic system 
[17].  
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This PDE corresponds to the nonlinear diffusion 

equation with additional reaction term [18], and 
)|(| 2

lIg ∇  is a diffusivity function which takes a role of 
discontinuity marker as shown in Fig. 6. Therefore, the 
diffusion process makes the disparity vector map smooth 
on continuous surfaces and preserves its discontinuities at 
the object boundaries. 
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Figure 6. Diffusivity function 

 



 

 

In order to solve the Eq. (5), we discretize the parabolic 
system by finite differences. All spatial derivatives are 
approximated by forward differences as Eq. (6), and the 
computationally expensive solution of the nonlinear 
system is avoided by using the first-order Taylor 
expansion in an implicit discretization as shown in Eq. (7). 
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Then, we can find the regularized disparity field in a 

recursive way by updating the field with Eq. (8). 
 

4. Evaluation of the proposed algorithm  
 
Three stereo image pairs with different properties of 

contents and photographing environments are used to 
evaluate the performance of the proposed disparity 
estimation algorithm. A “Head and lamp” image pair 
shown in Fig. 7 (a) has maximum disparity of 16 pixels in 
the size of 384×288, and a ground truth disparity map is 
scaled by the factor of 16 in order to be shown in gray 
scale. A “Sawtooth” image pair shown in Fig. 7 (b) 
includes planar objects with much texture information. 
Their maximum disparity is 20 pixels in the size of 
434×380, and the ground truth disparity map is scaled by 
8. A “Man,” the third image pair shown in Fig. 8, is a 
video conferencing scene with low textured contents and 
captured with extremely large baseline distance of 80cm. 
The maximum disparity of the image pair is 65 pixels in 
the size of 256×256. However, the only subjective 
evaluation is performed for the “Man” image pair because 
the ground truth disparity map is not provided. Actually, 
the “Man” images were captured by toed-in camera 
system so that epipolar lines of them are not exactly 
parallel, but we applied the same horizontal scanline 
search for simplicity because the images are small and the 
main object is placed at the center of the image where the 
epipolar line distortion is not serious. 

The parameters used in simulation are listed Table 1. 
Most parameters are selected intuitively, but the same set 

of parameters is used for all the experiments conducted in 
this section. In the case of gradient step size, we applied 
different sizes for the gradient of an image and that of 
disparity maps, because the values of the disparity maps 
are more sensitive to results than those of images. Finally, 
iterations for solving the PDE in the regularization stage 
are 150 times for the “Head and lamp” and the “Man” 
image pairs, and 600 times for the “Sawtooth” image pair. 

Fig. 9 shows estimated disparity maps and differences 
to the ground truth disparity maps of the “Head and 
lamp” and the “Sawtooth” images. In the difference 
images, correct matches appear in medium grey (128), 
and brighter or darker pixels show the deviation from the 
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(a) Left image                (b) Right image(a) Left image                (b) Right image

Figure 8. "Man” stereo image pair 

(a) “Head and lamp” 

(b) “Sawtooth” 

Figure 7. Left images and ground truth disparity 
maps of test sets 



 

 

ground truth. The proposed algorithm results in so clean 
map with good discontinuity localization. However, the 
algorithm fails to find disparity in narrow background 
such as the area between arms of the lamp and give ride 
to errors around object boundaries because of the leakage 
of diffusion. 

Fig. 10 is disparity maps of the “Man” image pair 
estimated by the proposed algorithm. We can see that 
dense disparity vectors are estimated with high reliability 
in spite of large displacements. Although epipolar lines 
are not horizontally parallel in the “Man” images, 
horizontal scan provides satisfactory results. 

We compared the performance of the proposed 
algorithm with the following 4 algorithms by using root-
mean-squared error (RMSE) of the estimated disparity 
fields. 

 
   (1) Graph cut [19] – global optimization method 

based on 2D MRF  
   (2) Pixel-to-pixel stereo algorithm [20] – advanced 

scanline method  
   (3) Cooperative algorithm [21] – iterative method by 

diffusion  
   (4) MMHM [22] - correlation based method, fast 

approach 
 
RMSE between the estimated disparity field de(x,y) and 

the ground truth field dT(x,y) is calculated by: 
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The proposed algorithm does not deal with a boundary 

problem so that we exclude a border of 20 pixels in the 
image in the evaluation. 

Fig. 11 shows comparative performance of the 
algorithms. We can see that the proposed algorithm 
shows the best results.  

 
(a) “Head and lamp” 

 
(b) “Sawtooth” 

Figure 9. Disparity maps and difference images 

 

(a) Left map                       (b) Right map (a) Left map                       (b) Right map 
 

Figure 10. Disparity maps of the "Man" images 
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 Figure 11. Performance of the algorithms 

 
Finally, we check the computational efficiency of the 

algorithms by measuring operation time. The computation 
time of the proposed method on a Pentium IV machine 
running Windows XP operating system is listed in Table 
2. 

The MMHM algorithm is the fastest among the 
comparative algorithms that is near to realtime processing, 

Table 1. Parameters used in disparity estimation 

Stage Parameter Values
Block and window 
size N=8 

Bidirectional 
matching threshold ε=1 Disparity 

estimation 
Search range of 
dense disparity α=2 

Lagrange multiplier λ=2000 

Gradient step size δI=3 
/ δd=1 

Disparity 
regularization 

Time step size τ=0.0001 



 

 

and the processing times of scaneline methods are less 
than 10 seconds. In the case of graph cut algorithm, the 
processing time is varied from 20 seconds to 700 seconds 
according to the parameters and options. The running 
time of the proposed algorithm is acceptable, but it is not 
proper for real-time processing yet. Improving 
computational efficiency of the estimation algorithm is 
the perspective of our work. 

Table 2. Computation time 

Images Time (sec) 
Head and lamp 6.765 

Sawtooth 29.188 
Man 5.406 

 

5. 3D reconstruction and synthesis 
 
Dense disparity vectors can be converted into depth 

information with camera parameters. We assumed the 
parallel camera system so that the depth information can 
be easily acquired by Eq. (1). 

We reconstructed 3D model of the test image pairs 
with 3D MAX by using the estimated depth maps as 
displace maps and original images as diffuse maps. Fig. 
12 shows the scenes of the reconstructed models from 
several viewpoints. Stereo image pairs do not provide 
entire texture information of the model, so we diffused 
the texture of the foreground to the background in order 
to heighten the 3D effect. As we can see in the results, 3D 
scenes of the test sets are naturally generated. If this 

 
(a) “Head and lamp” 

 

 
(b) “Sawtooth” 

 

 
 

 
(c) “Man” 

 
Figure 12. Results of 3D reconstruction 



 

 

technique is applied to multi-view images, we can 
reconstruct the nearly complete 3D model by 
compensating for missing structure and texture 
information. 

We inserted virtual balls to the reconstructed model in 
order to show the interaction between real and virtual 
models. Fig. 13 shows snapshots of the synthesized 
animation. In Fig. 13 (a), two balls revolve round the 
foreground objects. When the balls move around to the 
back of the objects, they are gradually concealed by the 

real objects and disappeared into the space between the 
fore- and background. Fig. 13 (b) shows a similar 
situation. When the ball falls to the ground, it disappears 
naturally behind the front board. Fig. 13 (c) is the 
example of the active interaction between real and virtual 
world. The virtual ball is pitched to front board. When the 
ball strikes on the board, it bounces back to the mirror 
direction. The outgoing angle to the surface normal vector 
equals the incoming angle.  

By rendering the synthesized model with virtual stereo 
 

   

   
(a) Revolution around the “Head and lamp” 

 

   
(b) Hiding behind the “Sawtooth” 

 

   

   
(c) Bouncing back from the “Sawtooth” 

 
Figure 13. Interaction between real and virtual world 



 

 

camera and displaying on a stereoscopic display monitor, 
we verified that the rendered stereoscopic images 
reproduced a good depth sensation so that we could 
observe the mixed scene with considerably natural 
sensation. 

 
6. Conclusion 

 
In this paper, we proposed the depth estimation 

technique from a stereo image pair for 3D reconstruction 
in order to solve the mutual occlusion and interaction 
problem between real and virtual objects in MR system. 
The proposed two-stage disparity estimation algorithm 
finds smooth and precise disparity vector fields in a stereo 
image pair for depth reconstruction. The hierarchical 
disparity estimation using the region-dividing technique 
and the shape-adaptive window provides remarkably 
reliable disparity vectors, and the vector fields are 
regularized with energy-based edge-preserving 
regularization technique. As shown in the simulation 
results, our algorithm provides accurate and spatially 
correlated disparity vector fields in various environmental 
images. 

We synthesized virtual object models with the 
reconstructed model of the real world. Rendered scenes 
show that the real world and the virtual objects interacts 
each other as if they are in the same world.  

The perspective of work will be improving 
computational efficiency. The proposed algorithm was 
not integrated into an MR system yet, because the 
algorithm does not work in real-time. It can be used to 
reconstruct environment of real scene, but real-time 
estimation must be accomplished for applying to an MR 
system. For stereo image sequences, joint estimation with 
motion tracking can enhance the efficiency. We are also 
investigating the way to solve the PDE using finite 
element method (FEM) which can handle complicated 
geometry, general boundary conditions and nonlinear 
property more easily and efficiently [23]. Moreover, the 
FEM-based technique may be coupled to the 3D 
modeling technique.  

It is also planned to adapt the algorithm to the images 
captured in the non-parallel camera setup with camera 
calibration. The proposed algorithm only works on image 
pairs captured in a parallel camera system. We are 
researching a competent calibration technique and 2 
dimensional extensions of all algorithms and equations. 
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