
DISSERTATION

Ubiquitous Animated Agents
for Augmented Reality

ausgeführt
zum Zwecke der Erlangung des akademischen Grades eines

Doktors der technischen Wissenschaften

unter der Leitung von
Univ.-Prof. Dr. Dieter Schmalstieg

Institut für Maschinelles Sehen und Darstellen (ICG)
Technische Universität Graz

eingereicht
an der Technischen Universität Wien

Fakultät für Informatik

von
M.Sc. István Barakonyi
Rossauer Lände 41/18

1090 Wien
Matr.-Nr. 0326849

Wien, im Oktober 2006

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Ubiquitous Animated Agents

for Augmented Reality

István Barakonyi – Dissertation

Reviewers:

Dieter Schmalstieg
Andreas Butz

Abstract
A growing spectrum of Ubiquitous Computing (UbiComp) applications sug-
gests that interaction with computers should be as natural and effortless
as using pen, paper and language when writing. Unlike current computer
environments that require a considerable amount of adaptation from users
for smooth interaction, future digital interfaces are envisioned to act unob-
trusively and intelligently in our environment. This dissertation describes a
novel user interface approach combining Augmented Reality (AR), UbiComp
and Autonomous Animated Agents into a single coherent human-computer
interface paradigm that makes steps toward this vision.

A significant challenge for the UbiComp community is to create efficient,
natural and user-friendly interfaces since there are no standards and best
practices to follow yet. Typical UbiComp scenarios include numerous mo-
bile users roaming a large area while interacting with various stationary and
mobile devices. Since the location and behavior of users and devices change
rather frequently, an enormous amount of events describing changes gets gen-
erated in the environment. Processing such large data sets can be greatly
overwhelming for humans, therefore an interface to a UbiComp system is
expected to possess certain autonomy in order to filter and interpret relevant
events and react proactively without constant user guidance and explicit
instructions. By relieving users from dealing with low-level details and al-
lowing computers to make decisions by themselves, these interfaces appear
to be “smart”.

This thesis presents software solutions that employ reactive, autonomous
and social digital assistants in UbiComp environments. These systems rely
on software agent technology tailored to the needs of AR applications, where
system behavior is visualized by virtual animated characters appearing on
top of the real world. We discuss how autonomous animated agents can
be employed to mediate communication between humans and computers in
AR environments while exploiting real world attributes as input and output
communication channels. The agents maintain a model of the real world
by analyzing data coming from the sensors that measure physical properties
such as pose, velocity, sound or light, and autonomously react to changes
in the environment in accordance with the users’ perception. Autonomous,
emergent behavior is a novel feature in UbiComp, while awareness of real
world attributes is yet unexploited by autonomous agents.

This dissertation explores the requirements for context-aware animated
agents concerning visualization, appearance, and behavior as well as asso-
ciated technologies, application areas, and implementation details. Several
application scenarios illustrate design and implementation concepts.

i

Kurzfassung
Ubiquitous Computing (UbiComp, ubiquitäre Computertechnik) zielt darauf
ab, daß die Interaktion mit Computers so natürlich und mühelos sein soll wie
das Schreiben mit einem Stift auf Papier. Im Gegensatz zu derzeitigen Com-
putersystemen, die dem Benutzer Anpassung abverlangen, agieren zukünftige
digitale Benutzerschnittstellen unauffällig und intelligent im Hintergrund.
Diese Dissertation beschreibt eine neue Art von Benutzerschnittstellen, die
die Vorteile von Augmented Reality (AR, erweiterte Realität), UbiComp
und autonomen animierten Agenten vereinigt, um eine verbesserte Mensch-
Maschine Interaktion realisieren zu können.

Eine signifikante Herausforderung dabei ist die Erschaffung effizienter,
natürlicher und benutzerfreundlicher Schnittstellen für UbiComp-Systeme,
für die es derzeit keine etablierten Gestaltungsrichtlinien gibt. In typischen
UbiComp-Szenarien werden mehrere mobile Benutzer bedient, die sich in
einem weitläufigen Bereich frei bewegen und dabei mit verschiedenen sta-
tionären und mobilen Geräte interagieren. Da der Standort und das Ver-
halten der Benutzern sich laufend ändert, wird eine enorme Menge von Sta-
tusinformation über den aktuellen Systemstand generiert, die nicht mehr
mit manuellen Methoden verwertbar ist. Deshalb wird von zukünftigen
UbiComp-Systemen erwartet, daß sie autonom und ohne aktive menschliche
Hilfe arbeiten.

Diese Dissertation präsentiert eine Softwarelösung für die Implementierung
von autonomen und sozialen computergenerierten Assistenten für UbiComp-
Umgebungen. Das vorgestellte System benutzt eine Kombination von Metho-
den aus den Bereichen Software-Agenten und Augmented Reality, um virtuelle
animierte Agenten darzustellen, die mit dem Benutzer sowohl in der virtuellen
als auch in der realen Welt interagieren. Die Agenten benutzen ein in-
ternes Weltmodell, welches auf der Analyse von Sensordaten für Position,
Geschwindigkeit, Audio, Licht und andere Eigenschaften der realen Umge-
bung beruht, und reagieren selbständig auf die Änderungen. Die Neuigkeit
des Ansatzes liegt im autonomen, selbständigen Verhalten der Agenten, welche
die Attributen der realen Welt bislang noch nicht vollständig ausgenutzt
haben.

ii

Acknowledgements
The true winner of this dissertation is my wife, Rita. She was the one who
shared my joy at the “ups” and gave me energy when I felt deflated at the
“downs”. Without her I would have not succeeded and therefore I dedicate
this thesis to her. The image below is for everybody whose partner is working
on a PhD.

Dieter Schmalstieg, my PhD supervisor provided me with great ideas
to improve my research and a stable financial background to let me worry
only about scientific results. His continuous attention and guidance gave
me steady motivation for my work. I also want to thank him for accepting
my stubbornness in my choice of research topics. While working at the
Vienna University of Technology, I had a chance and great pleasure to work
with Christian Breiteneder, whose professional attitude to scientific work and
social competence have made a lasting impact on me. I also would like to
thank Mitsuru Ishizuka at the Tokyo University and Helmut Prendinger at
the National Institute of Technology, Japan for giving me the opportunity to
cooperate with them and for opening up the exciting domain of autonomous
agent research for me.

One of the most important values gained from my PhD studies was that
I was able to share the misery of tight deadlines and the delight of suc-
cess with numerous colleagues in the Studierstube team at the Graz and Vi-
enna University of Technology. A special honorary mention goes to Joseph
Newman (we has it, precious!), thanks, Joe, for being a perfect office and
roommate for such a long time! I am grateful to numerous people for their
continuous support (in alphabetical order): Alexander Bornik, Tamer Fahmy,
Markus Grabner, Denis Kalkofen, Michael Kalkusch, Hannes Kaufmann,

iii

Karin Kosina, Florian Ledermann, Erick Mendez, Judith Mühl, Thomas Pin-
taric, Thomas Psik, Bernhard Reitinger, Gerhard Reitmayr, Markus Sareika,
Gerhard Schall, Eduardo Veas, Daniel Wagner, and Albert Walzer. I will
miss the great group atmosphere! Circled Cube, Ulrich Krispel, Christoph
Schinko, and Markus Weilguny contributed precious work to some demo ap-
plications of mine.

The long way that led me to completing my PhD would have been im-
possible without the continuous and unconditional emotional and financial
support of my parents. I thank them for always being there for me.

iv

Contents

Abstract i

Kurzfassung ii

Acknowledgements iii

Table of Contents vii

List of Figures ix

1 Introduction 1
1.1 The World as User Interface 1

1.1.1 Augmented Reality . 2
1.1.2 Ubiquitous Computing 4
1.1.3 Software Agents . 5

1.2 Contribution . 7

2 Related Work 11
2.1 Adaptive User Interfaces . 12

2.1.1 Information Filtering 12
2.1.2 Adaptive User Interface Components 13
2.1.3 User Interface Migration 13

2.2 Software Agents in AR . 15
2.2.1 Animated Characters 15
2.2.2 Mobile Agents . 18

3 Augmented Reality Agents 21
3.1 Design Requirements for Agents in AR 21

3.1.1 Agent Representation 22
3.1.2 Agent Behavior . 25

3.2 The AR Puppet Framework 28
3.2.1 Puppet . 29

v

Contents vi

3.2.2 Puppeteer . 30
3.2.3 Choreographer . 32
3.2.4 Director . 33
3.2.5 Storyteller . 34

3.3 Integration with Applications 34
3.3.1 Example Application Scenario 36
3.3.2 Communication Flow between Components 39

3.4 Interaction between the Real and Virtual 42
3.4.1 Physical Input Affecting Virtual Output 43
3.4.2 Virtual Input Affecting Physical Output 43
3.4.3 Other scenarios . 44

4 Ubiquitous Augmented Reality Agents 45
4.1 Improving AR Puppet . 45

4.1.1 Increasing Mobility . 47
4.1.2 Expect the Unexpected 48
4.1.3 Multi-user Interface Adaptation 50
4.1.4 Beliefs, Desires, Intentions 51
4.1.5 Autonomic and Proactive Behavior 53

4.2 UbiAgent Components . 54
4.2.1 Shared Agent and Application Memory 56
4.2.2 Agent Migration . 57

5 Applications 59
5.1 AR Lego . 60

5.1.1 Application Scenario 61
5.1.2 Agent-Application Communication 62
5.1.3 LEGO robot agent . 62
5.1.4 Interaction . 65

5.2 Monkeybridge . 66
5.2.1 Motivation of AR Gaming 66
5.2.2 Application Scenario 68
5.2.3 Autonomous Game Characters 70
5.2.4 Domains of Game Experience 70
5.2.5 Game Setups . 72

5.3 Virtual Tour Guide . 75
5.3.1 Application description 75
5.3.2 Integration with the APRIL Framework 75
5.3.3 Hardware Setups . 78

5.4 Character Animation Studio 78
5.4.1 Application Scenario 79

Contents vii

5.4.2 Required UbiAgent Components 80
5.5 Ubiquitous Technician . 83

5.5.1 Application Scenario 85
5.5.2 Attribute Schema and Communication Flow 86

6 Implementation 87
6.1 Technological Foundations . 87

6.1.1 Requirements . 87
6.1.2 Open Inventor . 90
6.1.3 OpenTracker . 95
6.1.4 Studierstube . 96
6.1.5 Cal3D . 99
6.1.6 Muddleware . 101

6.2 AR Puppet Implementation 104
6.2.1 Puppets . 105
6.2.2 Puppeteers . 106
6.2.3 Choreographer . 112
6.2.4 Director . 115

6.3 UbiAgent Implementation . 116
6.3.1 Habitat . 117
6.3.2 Application control . 120
6.3.3 Agent brain and bodies 120
6.3.4 Database structure and queries 121
6.3.5 Integration of AR Puppet into UbiAgent 123

7 Authoring 127
7.1 Scripting with Inventor . 127
7.2 Scripting with APRIL . 130
7.3 Immersive Content Authoring 131

7.3.1 Personal Universal Controller 133
7.3.2 Keyframe Creation for Animated Characters 133
7.3.3 Immersive Music Composition 135

8 Conclusions 137

A UbiAgent XML Database Format 141

B AR Puppet-based APRIL components 147

Bibliography 153

Curriculum Vitae 165

List of Figures

1.1 Milgram’s virtuality continuum 3
1.2 Input and output modalities in user interfaces 4
1.3 Research domains AR Agents and UbiAgents are built on . . . 7

2.1 Examples of information filtering in AR 12
2.2 Examples for adaptive user interface components in AR 13
2.3 Application migration . 14
2.4 Examples for user interface migration 15
2.5 Example animated agents in VR 16
2.6 Example animated agents in AR 17
2.7 Example animated agents in AR entertainment 17
2.8 Examples for mobile animated agents 19

3.1 Occlusion issues and virtual sensors for AR agents 23
3.2 Autonomous agent behavior scheme 26
3.3 Water puppets . 28
3.4 Overview of the AR Puppet framework components 29
3.5 A virtual character and a real MIDI keyboard as puppet . . . 31
3.6 Communication schema between AR applications and AR agents 35
3.7 Decomposing the example scenario into AR Puppet components 37
3.8 Communication flow in AR Puppet’s example scenario 40
3.9 Animated character balancing on a tangible marker 42
3.10 Physical robot avoiding collision with a virtual character . . . 43

4.1 Application encapsulation and adaptive UI personalization . . 49
4.2 UbiAgent structure based on the BDI model 51
4.3 UbiAgent framework, communication and database structure . 55

5.1 Work environment in AR Lego 61
5.2 Communication between the agents and AR Lego 63
5.3 Path planning by the virtual repairman 64
5.4 Screenshots of typical maintenance steps in AR Lego 64

viii

List of Figures ix

5.5 Tracked PocketPC as a multi-purpose interaction device . . . 65
5.6 Concept image of the Monkeybridge game 67
5.7 Building a bridge in Monkeybridge 68
5.8 Virtual and physical building blocks in Monkeybridge 69
5.9 Autonomous game character behavior 73
5.10 Optical marker tracking-based game setup 74
5.11 Magnetic tracker and HMD-based game setup 74
5.12 Signpost user wearing a backpack-based mobile AR system . . 76
5.13 Communication between AR Puppet and Signpost within APRIL 76
5.14 Screenshots from the Virtual Tour Guide application 77
5.15 Enhancing the character animation pipeline with UbiAgents . 80
5.16 UbiAgent components in the Character Animation Studio . . 81
5.17 Communication scheme between UbiAgent components 81
5.18 Screenshots from the Ubiquitous Technician application 83
5.19 Inter-application communication flow 84
5.20 Communication flow between UbiAgent components 84

6.1 Software stack supporting AR Puppet and UbiAgent 90
6.2 Example agent-application communication scenario in OIV . . 92
6.3 Event flow between OpenTracker and agent-enabled applications 96
6.4 Toolkit services for Studierstube and agent-enabled AR apps . 97
6.5 Effects of field value changes in SoCal3DPuppet 100
6.6 Application scenarios of the XMLLogger component 103
6.7 Scene graph communicating with the Muddleware database . . 103
6.8 Inheritance tree with AR Puppet’s Inventor classes 104
6.9 Replaceable puppeteers in a navigation application 111
6.10 Choreographer functionalities 114
6.11 Screenshots of configuration and monitoring tools for UbiAgent119
6.12 The hierarchical structure of the UbiAgent XML database . . 122
6.13 Integrating UbiAgent components into AR Puppet 125

7.1 Integrating UbiAgent into an application’s Inventor scene graph128
7.2 Integrating AR Puppet into an OIV application scene graph . 129
7.3 A part of the APRIL-based Virtual Tour Guide’s storyboard . 131
7.4 Overview of the PUC-based agent configuration pipeline . . . 132
7.5 PDA-based PUC client as a GUI and TUI 132
7.6 Immersive keyframe creation for animated characters 134
7.7 Screenshots from the AR Piano Tutor application 135

8.1 Some users do prefer to employ digital butlers 139

Chapter 1

Introduction

1.1 The World as User Interface
More than half a century ago the first large-scale computers were created to
improve human work performance by accelerating and automating tasks pre-
viously carried out manually. The interface between human users and these
room-sized computing devices was designed to be manipulated by specifically
trained operators.

Several decades later the computational power of heretofore room-sized
computers has been largely surpassed by that of palm-sized computers, and
the previously many-to-one user-computer ratio has gradually become one-
to-many with the boom of the embedded computer industry [96]. High-
resolution displays and a wide range of novel input devices have gradually
replaced formerly physical man-machine interfaces relying on buttons, sliders
and levers by virtual interfaces composed of 2D and 3D graphical elements.

Although the computational power offered by commercial off-the-shelf
devices and the steep decrease in the price of digital devices have opened up
new horizons in user interface technology, a new set of problems has emerged:

• Despite significant advances in display technology, a steep increase in
processing power, and a dramatic decrease in the size of computing
devices, the seam between the physical and digital world has not been
mitigated to a degree desirable for a more widespread use of computers.
Most human-computer interfaces have been so far computer-centered
instead of human-centered, requiring users to map their intention to
explicit commands easily understandable by computers. These virtual
interfaces demand a significant amount of user training, preventing
computers from becoming simple enough to penetrate our everyday
life beyond the domain of office automation tasks.

1

1.1 The World as User Interface 2

• Users are getting overwhelmed by the growing number and bewildering
complexity of computing devices they need to operate. Computers
demand more and more user attention, which renders former interfaces
solely based on direct manipulation techniques [88] unsustainable.

This thesis describes steps made towards solving the aforementioned prob-
lems by applying design principles and interaction techniques from the fol-
lowing three research areas:

• Augmented Reality

• Ubiquitous Computing

• Software Agents

The framework presented in the thesis demonstrates that an effective
combination of advantageous features of the above three research domains
yields a closer integration of computers into the physical user environment,
which makes the seam between human and computer less apparent. This
chapter makes a brief overview of the individual domains and summarizes
contributions made by the thesis.

1.1.1 Augmented Reality
Paul Milgram introduces the Virtuality Continuum [61] between the real and
the virtual world. Augmented Reality (AR) [6] and Augmented Virtuality
(AV) user interfaces lie in the middle of this continuum as they rely on a
mixture of real and virtual interface elements and thus are jointly referred
to as Mixed Reality. This thesis focuses on AR applications, where virtual
objects are aligned with and superimposed onto the real world. AR appli-
cations enable the preservation of the real user environment that provides a
reference frame for user actions, thus making human-computer interaction
more natural. Figure 1.1 illustrates the position of AR-based interfaces in-
side the virtuality continuum by showing a real, an augmented, and a virtual
representation of a LEGO Mindstorms R© robot later appearing in application
scenarios.

In Virtual Reality (VR) environments synthetic worlds inhabited by vir-
tual objects act as an interface between applications and users. During the
application development process the most effort is usually put into creating
a faithful model of physical objects so that users have the “illusion” of seeing
the “real thing”. This model not only includes an accurate representation

1.1 The World as User Interface 3

Figure 1.1: Milgram’s virtuality continuum illustrated by a real, an augmented, and
a virtual representation of a LEGO Mindstorms R© robot

of the objects’ visual appearance but a careful depiction of the respective
objects’ behavior as well.

A significant advantage of AR systems over their VR counterparts is the
exploitation of the physical world. Application developers do not need to
consider and model every single detail since these details are already phys-
ically present with infinite resolution and accuracy. The sensitive task of
modeling appearance and behavior can be reduced to superimposing only
meaningful, application-specific virtual information over real world objects.
This reduction enables a better focus on efficient information visualization.
Moreover, AR environments allow users’ facial and body gestures and physi-
cal objects in the surrounding environment to remain visible, therefore users
feel more comfortable while working with virtual interface objects.

Despite the obvious advantages AR environments offer, only few applica-
tions take full advantage of real world features. Besides traditional desktop-
based virtual input data from a mouse, keyboard or speech recognition mod-
ule, classic AR applications track and exploit real world attributes as well
such as position, orientation, sound, light, or temperature as input modali-
ties. These attributes are measured and processed by various sensors. Based
on the sensor data an internal world model is built up serving as a virtual
representation of the real environment, which is then rendered as computer

1.1 The World as User Interface 4

Figure 1.2: Input and output modalities in user interfaces

graphics images and synthesized sound on top of its real world counterpart.
Typical examples are tangible AR applications [76], where the user manipu-
lates virtual objects by physically manipulating real, tangible props.

As shown in Figure 1.2, AR systems have been relying on various virtual
output modalities typical in VR applications. However, they have been so
far lacking output modalities within the real world, although actuators and
control systems have been used for a long time as output communication
channels in various engineering fields such as robotics or industry automation
processes. For instance the QRIO robot from Sony [90] transforms user voice
commands and gestures into anthropomorphic movement by manipulating
a complex network of motors. Other examples are ambient displays [108],
which are physical devices that transmit information on the periphery of
human perception using light, sound or movement. However, neither QRIO
nor ambient displays combine physical and virtual output as AR systems do.

This thesis presents several AR applications taking full advantage of the
physical world by using it both as an input and output modality simultane-
ously, which is a hitherto unexploited concept in AR.

1.1.2 Ubiquitous Computing
Ubiquitous Computing (Ubicomp) systems [104] pursue goals similar to those
of AR environments: decreasing the seam between real and virtual, human
and computer. Ubicomp systems aim to achieve these goals by distribut-
ing processing power previously associated with computer workstations into
the real environment. By embedding digital devices into mundane objects,

1.1 The World as User Interface 5

heretofore passive everyday items can be turned into “smart” entities that
the American writer Adam Greenfield [33] calls “Everyware”. Computers
and sensors designed to act as Everyware disappear in the background en-
vironment, making digital resources as accessible and ubiquitous as power
sockets in the wall.

Beside their invisible and ubiquitous nature, Ubicomp systems are also
prepared to opportunistically exploit dynamic resources offered by various
mobile and stationary computing devices and a heterogeneous network of
sensors. In contrast, most of today’s AR systems operate as passive infor-
mation browsers relying on a predefined, static set of hardware and software
components. The only dynamic element of such systems is usually the world
model (see Section 1.1.1), updated manually to store information about the
physical environment and thus offer an interface between the real and virtual
world. These world models are finite and deterministic, requiring application
developers to exhaustively enumerate of its possible elements and states.

In contrast, Ubicomp systems maintain a flexible and indeterministic
world model by enabling the seamless and automatic integration of diverse
hardware and software components, thus making these disparate resources
easily accessible as standard services. One important goal of this thesis is
therefore to complement AR systems with Ubicomp techniques to exploit
distributed and dynamic resources such as software services, sensors, and
output devices in an effective and invisible way.

1.1.3 Software Agents
Help desk statistics and recent user studies [94] indicate that a significant
number of people encounter serious problems during the installation and op-
eration of technical devices in their home such as central heating controls,
network routers or hi-fi systems. The bewildering complexity of user inter-
faces often intimidate customers from buying or using technical appliances.
The boom experienced in the number of digital devices and available func-
tions is likely to be soon reflected in the complexity of AR systems as well.
Direct manipulation interfaces will become so saturated with controllable
parameters that users will have no other choice than delegating interface
manipulation tasks to autonomous software components, elevating users to
a supervisory role.

These autonomous software components or autonomous agents are proac-
tive software entities facilitating informed decision-making. Agents are able
to proactively act on the user’s behalf and carry out delegated tasks being
uninteresting or time consuming to the user while making decisions without
constant guidance. These decision-making capabilities are not necessarily

1.1 The World as User Interface 6

based on a deep understanding of the problem semantics, yet allow the agent
to deliver a useful function in a complex, heterogeneous environment such as
AR and Ubicomp applications. It is important to note that UbiAgents are
not claimed to be intelligent in the classic artificial intelligence sense; this
work is more influenced by what is generally described as Ambient Intelli-
gence [67].

According to Reeves and Nass [77], users assign human characteristics to
computers suggesting that the human brain has still not assimilated the huge
array of 20th and 21st century technologies. By bolstering this illusion, AR
user interfaces of this thesis rely on interface agents [46] possessing visual,
often anthropomorphic representations that operate as assistants for direct
manipulation interfaces. The framework presented in this work combines the
advantages of interface agents and autonomous agents into an autonomous
interface agent that acts parallel with the user without constant attention
and explicit commands, and carries out tasks while monitoring the user’s
environment and actions.

In AR environments autonomous interface agents may be embodied by
virtual and physical objects. Virtual objects are typically animated charac-
ters but are not necessarily anthropomorphic, as in some AR applications a
fully fledged virtual human can be more distracting than a simple animated
arrow communicating the same amount of information. Therefore, various
character forms are examined. A novel and exciting new aspect of autono-
mous interface agents (or AR agents in short) is that physical objects such
as a printer, a digital piano or an interactive robot can be turned into intel-
ligent, responsive entities that collaborate with virtual characters. Several
application scenarios will demonstrate such a collaboration.

Although interface agents and “smart” autonomous software components
generate much controversy in the HCI community [89], AR and Ubicomp
systems can benefit from software agent technology. Agents are designed to
be independent from applications they are embedded into, enabling their em-
ployment in diverse application environments without reprogramming their
core functionalities. Moreover, the incorporation of flexible high-level context
elements such as application goal and user interest may more efficiently cope
with the indeterministic nature of augmented physical environments than
explicit direct manipulation techniques. Agents constantly monitor their en-
vironment and reevaluate the effectiveness of their currently executed actions,
thus autonomous interface agents add flexibility and adaptivity to AR user
interfaces.

Kotz and Gray [43] use the term mobile agent for autonomous software
components that have the ability to transfer and reproduce themselves on
various networked computing devices. By equipping interface agents with

1.2 Contribution 7

Figure 1.3: Research domains Augmented Reality Agents (AR Agents) and Ubiqui-
tous Animated Agents (UbiAgents) are built on

mobile characteristics, they are no longer bound to a single, statically con-
figured application and output device but may opportunistically migrate to
and take advantage of other platforms more favorable for the agent’s current
needs. The extension of the aforementioned AR agents with mobile features
yields ubiquitous AR agents (or UbiAgents for short) that enable exploiting
concepts heretofore unexplored in AR such as adaptive user interfaces and
massive user interface customization.

1.2 Contribution
The contribution of this dissertation is the design and implementation of a
software framework that makes steps towards solving user interface problems
described in the problem statement of Section 1.1. As Figure 1.3 illustrates,
this thesis combines the aforementioned research domains of AR, Ubicomp
and software agents yielding a novel, coherent human-computer interface
paradigm called UbiAgent. UbiAgents offer the following fresh perspectives
and novel features for AR environments:

1.2 Contribution 8

• UbiAgent is the first general framework for autonomous animated agents
that has been developed specifically for AR applications. The frame-
work has been built on a powerful AR framework called Studierstube
[85], which allows experimentation with a wide range of applications,
tracking technology, platforms and displays.

• The framework examines agent-specific aspects of AR. New modali-
ties enabled by the physical environment are exploited in animated
agent behavior, and autonomous and emergent behavior is added to
AR applications at low cost. By marking relevant input and output
application attributes agents can easily monitor and thus react to user
interaction and changes in the application state.

• The framework contains useful wrapper classes that can turn physical
objects to intelligent, responsive entities and use them as input and out-
put devices in AR environments. A unified command interface allows
physical and virtual objects to be scripted in the same way.

• UbiAgents are dynamically configurable; their attributes and command
fields can be intuitively controlled through various stationary and mo-
bile devices.

• UbiAgents are able to monitor their environment through a network of
diverse physical and virtual sensors and adapt to the current context
derived from sensor measurements. Thus AR interfaces can dynami-
cally adapt to user preferences and application history by accumulating
a profile stored in a database. This database represents agent memory,
adding persistency to agents.

• UbiAgents are migratable. They can opportunistically exploit dynamic
resources such as multiple computing devices and displays, a diverse set
of sensors, and various output devices by identifying the environment
that is most optimal to achieve their current goals and leverage their
capabilities. In case the ideal environment is different from the current
one, UbiAgents are able to migrate to the new, desirable environment
to more effectively exploit current system resources. Migration enables
new features for AR systems such as load balancing and survival be-
havior as well.

This thesis is organized as follows. Chapter 2 provides an overview of
related work on the combination of AR and software agent technologies as
well as adaptive user interface technologies in AR. Chapter 3 and 4 discuss
the evolutionary design of UbiAgents including implications of AR scenarios

1.2 Contribution 9

on animated agents concerning their appearance, behavior, application areas
and associated technologies. Framework design principles are illustrated by
several example applications in Chapter 5. Chapter 6 presents frameworks
forming the technological foundation for the agents’ software implementation,
followed by implementation details. Chapter 7 presents authoring concepts.
Chapter 8 concludes the thesis with a summary, a discussion on the usefulness
of UbiAgents in AR environments, and future work.

The work presented here contains material previously published and pre-
sented at several conferences:

• I. Barakonyi and D. Schmalstieg. Ubiquitous Animated Agents for
Augmented Reality. To appear in Proc. of the IEEE and ACM Interna-
tional Symposium on Mixed and Augmented Reality 2006 (ISMAR’06),
Santa Barbara, CA, USA, 2006.

• I. Barakonyi and D. Schmalstieg. Augmented Reality in the Character
Animation Pipeline. Sketch at SIGGRAPH 2006, Boston, MA, USA,
2006.

• J. Newman, G. Schall, I. Barakonyi, A. Schürzinger, and D. Schmal-
stieg. Sentient Environments for Augmented Reality. In Advances in
Pervasive Computing, Adjunct Proceedings of the International Confer-
ence on Pervasive Computing (Pervasive 2006), Dublin, Ireland, 2006.

• F. Ledermann, I. Barakonyi, and D. Schmalstieg. Abstraction and
Implementation Strategies for Augmented Reality Authoring. Book
chapter in Emerging Technologies of Augmented Reality: Interfaces and
Design (M. Haller, B. Thomas, M. Billinghurst eds.), Idea Group Pub-
lishing, to be published in 2006.

• I. Barakonyi and D. Schmalstieg. Augmented Reality Agents in the
Development Pipeline of Computer Entertainment. In Proc. of the
4th International Conference on Entertainment Computer (ICEC’05),
Sanda, Japan, 2005.

• I. Barakonyi, M. Weilguny, T. Psik, and D. Schmalstieg. Monkey-
Bridge: Autonomous Agents in Augmented Reality Games. In Proc.
of the ACM SIGCHI International Conference on Advances in Com-
puter Entertainment Technology (ACE’05), Valencia, Spain, 2005.

• I. Barakonyi and D. Schmalstieg. Exploiting the Physical World as
User Interface in Augmented Reality Applications. In Proc. of the
IEEE Virtual Reality 2005 Workshop on New Directions in 3D User
Interfaces, Bonn, Germany, 2005.

1.2 Contribution 10

• I. Barakonyi, T. Psik, and D. Schmalstieg. Agents That Talk and Hit
Back: Animated Agents in Augmented Reality. In Proc. of the IEEE
and ACM International Symposium on Mixed and Augmented Reality
2004 (ISMAR’04), pp. 141-150, Arlington, VA, USA, 2004.

• I. Barakonyi and D. Schmalstieg. AR Puppet: Animated Agents in
Augmented Reality. In Proc. of First Central European International
Multimedia and Virtual Reality Conference, pp. 35-42, Veszprém, Hun-
gary, 2004.

Chapter 2

Related Work

This thesis deals with an interdisciplinary topic combining multiple research
domains. The result of this combination is a framework employing embod-
ied autonomous agents to implement adaptive user interfaces for augmented
reality applications. This chapter covers related work in research areas con-
tributing to the design principles of the framework. These areas can be
divided into two main categories:

• Adaptive user interfaces: This area provides an overview of techniques
how AR systems in related research projects facilitate adaptive behav-
ior by tailoring their user interface to dynamically changing context
information. These techniques include information filtering based on
current application context, adaptive user interface components, and
user interface migration.

• Software agents: Software agents are “smart” software components
based on principles of autonomic [37] and proactive computing [96].
The presented framework employs mobile and autonomous agents em-
bodied by real and virtual objects as an interface and interaction meta-
phor, where agent bodies are able to opportunistically migrate between
multiple AR applications and computing platforms to best match the
needs of the current application context. The overview examines how
related projects have exploited animated agents – in particular anthro-
pomorphic animated characters – in AR applications and discusses how
mobile agent technology increases the mobility of interface agents.

11

2.1 Adaptive User Interfaces 12

2.1 Adaptive User Interfaces

2.1.1 Information Filtering
The simplest form of automatic adaptation of AR content to current appli-
cation context is information filtering based on a spatial or semantic world
model. The primary objective of information filtering is to avoid clutter-
ing displays by an unnecessarily large number of visual elements, and thus
overwhelming and confusing users with unimportant information.

Classic computer graphics applications [3] apply spatial filtering based
on simple context elements such as distance and visibility. These filters re-
duce computational and cognitive workload by culling away irrelevant visual
objects or reducing their level of detail. A typical AR example for this ap-
proach is the work of Bane and Höllerer [9] (see Figure 2.1a), who developed
interactive tools to enhance building visualization in a mobile AR setup.

While spatial filters are efficient tools for enhancing spatial tasks such as
indoor/outdoor navigation, AR applications often need to consider a larger
and more diverse set of context elements. The KARMA system [27] (see
Figure 2.1b) employs a rule-based illustration generation system to exploit
user viewpoint, object pose and communicative goals for efficient informa-
tion visualization in an AR-based machine maintenance scenario. Although
KARMA proved to be suitable for replacing manuals for a small-scale re-
pair task, rule-based generation of visual augmentations for larger and more
complex systems suffers from scalability problems. Julier et al. developed a
hybrid approach [38] for their mobile AR system: a spatial model is used to
prefilter visual elements to reduce input information for a rule-based filter
component.

Figure 2.1: a) Virtual x-ray vision in an outdoor AR environment [9], b) Repairing a
laser printer with the KARMA system [27]

2.1 Adaptive User Interfaces 13

Figure 2.2: a) Disambiguating multimodal interaction in an immersive AR environ-
ment [39], b) Cross-dimensional interaction in an archaeology scenario [14]

2.1.2 Adaptive User Interface Components
Besides the rendering engine filtering out data, other system components
may also actively adapt their behavior to dynamically changing context in-
formation. A typical example is the UbiTrack project [64], which eliminates
dependencies on specific sensors by dynamically incorporating data arriving
from a heterogeneous network of distributed sensors. Kaiser et al. [39] devel-
oped an immersive AR environment (see Figure 2.2a) that retrieves context
information on demand to disambiguate multimodal interaction by estimat-
ing user intention from deictic speech utterances and 3D gestures.

The hybrid user interface developed by Benko et al. [14] (see Figure 2.2b)
uses 2D and 3D gestures to switch between interaction contexts to determine
the target display and privacy factors in a multi-display environment. The
properties of the current target display impose dimensional constraints onto
the available interaction methods in the user interface; for instance, a touch-
screen panel permits only 2D gestures, while the immersive work environment
of a head-mounted display demands 3D gestures.

2.1.3 User Interface Migration
A cross-dimensional interface is a notable example for a special type of adap-
tive component: the user interface migration controller. This component is
responsible for the migration of user interface elements between computing
platforms with different characteristics. Full or partial user interface migra-
tion between devices and displays allows the selection of the most suitable
environment for presenting application information [59]. For instance, a PDA
or mobile phone offers only limited rendering and interaction capabilities, but

2.1 Adaptive User Interfaces 14

Figure 2.3: Application migration in the Studierstube framework [86]

enables users to roam a large area without interruption in their workflow.
Monitors and projection screens are stationary but support a shared view
and richer presentation tools. The possibility to move application elements
or entire applications between multiple devices eliminates the need of mak-
ing a compromise as applications can dynamically select the hardware and
software environment that best matches their current needs. The capability
of making smooth transitions between platforms mitigates the seam between
platform boundaries and thus increases productivity.

Further migration examples in AR include the playful SHEEP application
scenario [55] that employs 3D gestures and tangible interaction to initiate
the transfer of a virtual sheep model between multiple stationary and mobile
displays. Schmalstieg et al. [86] created a shared collaborative workspace
based on a distributed shared scene graph that enables the migration of
applications between hosts (see Figure 2.3). Their work addresses ad-hoc
collaboration and load balancing for AR environments. Rekimoto’s pick-and-
drop technique [80] extends the drag-and-drop direct manipulation technique
already familiar from the classic WIMP world, and creates an interaction
metaphor to move digital information physically between computing devices
using a real stylus. Newman et al. [65] created the Speakeasy recombinant
computing framework that provides an infrastructure through which device
and service user interfaces can be delivered to users on multiple platforms
dynamically and asynchronously.

The Augmented Surfaces project [81] (see Figure 2.4a) applies user in-
terface migration techniques in a spatially continuous augmented physical
workspace spanning multiple portable computers and fixed displays. Devices
are identified by 2D fiducial markers, the relative pose of which triggers the
migration of application objects. A new device can be added to the work-
space if it implements an object serialization interface and is tagged by a
unique marker.

2.2 Software Agents in AR 15

Figure 2.4: a) Interaction in the Augmented Surfaces project [81], b) Screenshot of
the EMMIE framework’s hybrid user interface [16]

The EMMIE framework [16] introduces a hybrid user interface for AR
systems (see Figure 2.4b) enabling information management using a wide
range of hardware devices. EMMIE’s environment manager component ad-
dresses the needs of Ubicomp by providing techniques such as mixed reality
interaction and privacy management to organize virtual information on sev-
eral displays shared by multiple users. Augmented Surfaces and EMMIE
implement ideas in a way that is conceptually closest to our work; however,
neither EMMIE nor the Augmented Surfaces framework includes concepts
such as proactive interface adaptation, persistent preference storage, and re-
source discovery.

2.2 Software Agents in AR

2.2.1 Animated Characters
Body and facial gestures as well as speech are familiar and widely accepted
means of human communication. Animated characters, often with autono-
mous and affective behavior, have proved to be useful in man-machine com-
munication since they are able to exploit and deliver information through
multimodal channels and thus engage the user in a natural conversation.
Autonomous agents have been actively researched in recent years as an in-
terface to computerized systems bridging the communication gap between
man and computer, and the real and virtual world. Augmented Reality
(AR) applications share the same goal through the enhancement of the real
environment with useful virtual information, where virtual objects appear to
coexist with the real world.

2.2 Software Agents in AR 16

Figure 2.5: a) Jack animation system [69], b) STEVE animation system [84]

Virtual Reality (VR) is a more mature field than AR and has con-
sequently already explored new interaction techniques involving animated
agents, therefore it provides many useful ideas. One of the outstanding VR
examples is the Jack animation system (see Figure 2.5a) from Noma et al.
[69] that allows animated virtual human figures to be used in a wide range of
situations from military trainings to virtual presentations. The Improv sys-
tem [70] creates a novel interactive theater experience with real-time virtual
actors on a virtual stage. The autonomous pedagogical agent of Rickel and
Johnson [84] called Steve operates as a virtual trainer in an immersive VR
environment (see Figure 2.5b) presenting complex interactive, educational
machine maintenance scenarios.

Although users of these VR systems may have a strong sense of coexis-
tence with virtual objects, they lack a connection to the real environment,
as provided in AR systems. An early AR application providing character
support is the ALIVE system [56], where a virtual animated character com-
posited into the user’s real environment responds to human body gestures
on a large projection screen. This type of display separates the user’s phys-
ical space from the AR environment, which demands carefully coordinated
user behavior. As illustrated by Figure 2.6a, the Welbo project [4] features
an immersive setup, where an animated virtual robot assists an interior de-
signer wearing an HMD. Although the virtual robot character appears to
be an integral part of the real user environment, it lacks a tangible physical
representation and can only interact with virtual objects. The idea of the
Steve agent recurs in an AR setting in the EU project, STAR [101], which
aims to enhance service and training in real factory environments using vir-
tual humans (see Figure 2.6b). Their robust machine maintenance scenario

2.2 Software Agents in AR 17

Figure 2.6: a) The Welbo interior design assistant [4], b) The STAR factory training
assistant [101]

Figure 2.7: a) Virtual and real human playing checkers [8], b) The AR Quake game
[71]

is a similar idea to our demo application, however, their system acts as an
animated guided presentation, not a responsive interactive system.

AR has started to step beyond the usual instructional and presentational
domain and is now being used to explore new application fields, for which an-
imated agents open new perspectives. MacIntyre et al. [52] make the point
that a new medium, such as AR, starts to gain wider public acceptance
once it enters the game, art and entertainment domain. Their interactive
theater experience places prerecorded video-based actors into an AR envi-
ronment. The characters do not possess any autonomy, as their behavior is
scripted, and interaction is limited to changing viewpoints and roles in the
story. Cheok et al. [21] also experiment with Mixed Reality entertainment
with live captured 3D characters, which enable real persons’ telepresence in

2.2 Software Agents in AR 18

a Virtual or Augmented Reality setting but without any control of the envi-
ronment. Cavazza et al. [19] place a live video avatar of a real person into
a Mixed Reality setting, and interact with a digital storytelling system with
body gestures and language commands.

Balcisoy et al. [8] experiment with interaction techniques with virtual hu-
mans in Mixed Reality environments, which play the role of a collaborative
game partner (see Figure 2.7a) and an assistant for prototyping machines.
ARQuake [71] recreates the famous first-person shooting game in a real cam-
pus setting using a mobile AR setup, where the user has to shoot virtual
monsters lying in ambush behind real buildings (see Figure 2.7b), and uses
a tangible interface to fire virtual weapons. Both systems above exploit real
world properties to control the virtual world, however, physical objects al-
ways serve as a passive background, rather than active performers.

With the exception of the DART system by MacIntyre et al. [54], which
is an authoring framework for AR applications enhancing a commercial mul-
timedia authoring tool, all of the related researches are bound to a single
application and technology, and lack a general approach to create a reusable
framework. Moreover, none of them consider physical entities as equal, active
partners of virtual characters in dialogs, as they were predominantly used as
passive objects like 3D pointers, tracking aids or interaction devices.

One of the main goals of this thesis is to create a set of software com-
ponents that allows easy enhancement of AR applications with animated
agents. Additionally, these components should allow physical objects like a
robot, a printer or a digital piano to act as context-aware, interactive respon-
sive agents that perform various tasks with digital actors, virtual presenters
and other synthetic visual elements.

2.2.2 Mobile Agents
Unlike desktop agents that are limited to operate in the 2D world of a com-
puter screen, agents in AR may move in the user’s physical environment using
all 6 degrees of freedom. With the simultaneous use of various stationary and
mobile devices AR environments offer not only the freedom of a single three-
dimensional physical space mapped to a display but several interconnected
spaces. Moreover, the portability of a PDA or a mobile phone offers dynamic
characteristics that enable agents to step out from their previously static en-
vironments and exploit mobile features such as current location and context.
Thus autonomous interface agents increase their mobility and gain another
output modality, as the current pose and choice of display may both carry
an important message for users.

Kotz and Gray [43] use the term mobile agent for autonomous software

2.2 Software Agents in AR 19

Figure 2.8: a) Mobile agents in the early C-MAP system [58], b) Mr. Virtuoso, an
animated character as art history consultant in a handheld AR system [102]

components that have the ability to transfer and reproduce themselves on
various networked computing devices. By equipping AR agents with mobile
characteristics, they are no longer bound to a single, statically configured
application and output device but may opportunistically migrate to and take
advantage of other platforms more favorable for the agent’s current needs.

Recent advances in hardware and software technology for portable de-
vices such as PDAs and smartphones have eliminated the hitherto serious
constraints on the visual representation of migratable agents. An early ap-
pearance of context-aware interface agents on mobile devices can be found
in the C-MAP system of Mase et al. [58]. They employed simple 2D charac-
ters as tour guides (see Figure 2.8a) to deliver location-based information on
portable PCs and PDAs. While C-MAP visualized its context-aware virtual
museum guide as a sequence of static 2D images, Wagner et al. [102] presents
a similar scenario in AR with a full-fledged virtual 3D character (see Figure
2.8b) exhibiting reactive behavior on a consumer PDA. Their Mr. Virtuoso
character acts as a consultant in art history in a collaborative educational
game.

The embodied mobile agents of the Virtual Raft project [99] appear to
“jump” between tablet PCs carried by participants of a playful museum
exhibition. Similar character behavior was implemented by Kruppa et al.
[44], whose PEACH system experiments with visualization techniques using
an animated cartoon character to preserve the continuity of an animated
presentation spanning multiple displays. The system introduces a “multi-
device” presentation agent that is able to move between devices (e.g. transfer
from a PDA to a large display) to draw attention to a certain feature within
the presentation.

2.2 Software Agents in AR 20

Gutierrez et al. [34] use a PocketPC device to control the appearance and
body posture of animated 3D characters of a large VR framework through
standard MPEG-4 parameters. As described later, the UbiAgent framework
enables the use of PDAs as multi-purpose interaction devices that serve si-
multaneously as platforms for agents to appear as well as an interface to
dynamically control their behavior.

Besides our work, the Agent Chameleons framework [25] has been the
only project to date allowing agents to seamlessly travel between real and
virtual bodies while being controlled by a central control logic. Similarly to
UbiAgents, Agent Chameleons are also based on a BDI agent architecture
(see Section 4.1.4 for details), however, their system design lacks essential
properties of ubiquitous AR systems such as application encapsulation, per-
sistency, and dynamic agent platform management.

Chapter 3

Augmented Reality Agents

3.1 Design Requirements for Agents in AR
Our main goal is to create a set of software components that allow easy
enhancement of AR applications with animated agents. Additionally, we
want to turn physical objects like a robot, a printer or a digital piano into
context-aware, interactive responsive agents that perform various tasks with
digital actors, virtual presenters and other synthetic visual elements. There-
fore an animation framework supporting animated agents in AR spaces needs
to address the following major issues:

• A high-level command interface is needed where virtual and physical
objects are treated as equal and active entities. This interface should
also relieve authors and developers from the burden of working with
low-level details such as absolute 3D coordinates or internal commu-
nication and synchronization mechanisms among agents, and thus rely
on abstract entities and references to object attributes to let the frame-
work resolve their current value internally.

• As AR applications typically consist of a complex network of software
modules, it is not desirable to modify their internal structure to prepare
them to work with animated agents. Therefore applications need to be
encapsulated as black boxes that communicate with external software
components – including AR agents – via relevant input and output
attributes. Output attributes enable agents to monitor and deduce
internal application status. Based on this status information, agents
are able to make decisions and execute actions that provide feedback to
applications through their input attributes that thus serve as a control
interface.

21

3.1 Design Requirements for Agents in AR 22

• Agents should not be bound to a single hardware and software envi-
ronment. They should be reusable in multiple AR environments and
exploit dynamic resources offered by multiple stationary and mobile
devices and AR applications.

This and the next chapter present design principles for an animation
framework meeting the above requirements. For the sake of clarity, we
present an evolutionary design that first tackles the issue of a uniform com-
mand interface for real and virtual objects and application encapsulation
by AR agents, then an improved design to support the general requirement
of Ubicomp systems about avoiding dependency on a single technology and
application and exploiting multiple hardware and software environments.

3.1.1 Agent Representation
AR agents are embodied as three-dimensional virtual or physical objects.
They share users’ physical environment, in which they can freely move using
all 6 degrees of freedom. Virtual agents in AR scenarios appear to have a
solid, tangible body that can be observed from an arbitrary viewpoint, thus
becoming integral parts of the physical environment. Virtual objects are
typically animated characters but are not necessarily anthropomorphic. In
some AR applications a fully fledged virtual human can be more distracting
than a simple animated arrow that may communicate more information.
Therefore, we experiment with various character forms.

A novel and exciting new aspect of AR agents is that physical objects
such as a printer, a digital piano or an interactive robot can be turned into
intelligent, responsive entities that collaborate with virtual characters. If
we track and monitor relevant physical attributes and process this data,
attribute changes can generate events that can be interpreted by other agents
and application logics. Using network packets, infrared messages, MIDI code
sequences or other means of low-level communication, physical objects can
not only be queried for status information but can also be controlled by
external commands that trigger actuators. Therefore physical objects act as
input and output devices in AR spaces.

The combination of the real and virtual representation yields the aug-
mented representation. This assumes the presence of a physical representa-
tion and only superimposes necessary virtual information on top of it. Vir-
tual agent representations may have an associated tracked physical object,
which serves as a tangible control interface, while this is a prerequisite for
augmented agent representations. Screenshots in Figure 1.1 in Section 1.1.1
illustrate three different representations of a LEGO Mindstorms R© robot.

3.1 Design Requirements for Agents in AR 23

Figure 3.1: a) An augmented real LEGO robot occludes a virtual cartoon character,
b) Virtual sensors for an animated character: yellow bounding box = touch sen-
sor, purple frustum = virtual eye viewport, green sphere = virtual hearing volume,
yellow arrow = velocity visualization

As AR uses physical objects as first-class entities, certain constraints im-
posed by the limitations of our human sensors are introduced that were for-
merly unknown in VR applications. We are unable to look through opaque
physical objects or examine their internal structure, see in dark or foggy
places, or hear distant sound sources. We also have difficulties in selecting
relevant information in too much or too noisy data. The augmented represen-
tation may use several visualization techniques to overlay virtual information
on top of physical objects to overcome these limitations. Without making an
exhaustive enumeration, we describe a few examples from various potential
application scenarios how the capabilities of our senses can be enhanced by
AR techniques:

3.1 Design Requirements for Agents in AR 24

• Labels and icons: Virtual labels and icons placed next to parts of a com-
plex factory machine can explain functionality or display information
about the current internal machine state to aid a technician’s work,
e.g. labeling relevant buttons in a workflow stage, display of valves’
pressure levels, or explanation of an engine’s operation.

• Wireframe overlay: Instead of showing a fully detailed virtual model in
a simulation, a simple wireframe model often yields better emphasis of
certain features, such as marking suggested doors in a building leading
to a selected navigation target, or enemy localization in a battle on a
fighter pilot’s head-up display.

• Zooming: Zooming onto some fine details draws the user’s attention
to information otherwise easily over-looked, such as problematic areas
during an AR-aided surgery session on the patient.

• X-ray vision: This often quoted “superman”-like feature of AR allows
the observation of opaque objects’ internal structure by adjusting the
transparency of the virtual objects rendered on top or in place of phys-
ical parts. Possible applications include displaying hidden components
of a complex machine for explanation purposes or showing occluded
rooms or doors in an indoor navigation system to aid identification of
the navigation target.

• 3D fisheye: A 3D version of the well-known 2D fisheye technique would
prove useful when emphasizing a certain part in a highly complex spa-
tial structure such as a car engine. The 3D fisheye tool can temporarily
reorganize the virtual model by enlarging the parts around the center
of focus while suppressing others further from the center to help a car
mechanic identify potential erroneous areas in the real engine.

• Anticipation with animation: During the design phase of a critical work
procedure for a factory it is useful to play animations to demonstrate
what would happen before a button was really pressed or a lever was
pulled, e.g. animating a network of engines revealing design or con-
struction errors before damaging the actual device or injuring the user.

• Gestures: Virtual animated agents are able to perform human-like ges-
tures over meaningful physical locations. These gestures can be used
to visualize assembly steps for instance for DIY furniture, which would
be the animated 3D version of the static explanation images often seen
in assembly and maintenance manuals like that of IKEA.

3.1 Design Requirements for Agents in AR 25

The augmented representation also helps overcome the problem of cor-
rect visual occlusion. This means that we should ensure that physical objects
placed between the user’s viewpoint and virtual agents appear to cover parts
of the virtual objects behind. This issue can be easily supported by tracking
the occluding object’s pose and associating it with an augmented represen-
tation that only renders an approximate virtual model into the depth buffer
at the right location. Figure 3.1a provides illustration.

Autonomous AR agents may proactively choose the visualization tech-
nique most appropriate for the current context. They can recognize the appli-
cation they are embedded into, critical stages within the workflow, uncertain
user behavior calling for help, or occlusion conditions when visualizing dy-
namic information. Although most of the visualization techniques used in our
demo have been previously presented individually by others [7][9][24][50][51],
their use and combination with the augmentation of physical objects and
autonomous agents is novel.

In a collaborative AR setting the attributes of visible virtual information
depend on user location and orientation (e.g. only annotating objects cur-
rently visible to the user), and profile (e.g. novice users receive more basic
explanation information than experienced ones). Therefore, virtual objects
can be rendered in a user-specific way. The attributes of the information
must be synchronized and shared among the users. The collaboration with
physical objects is obvious, no technology is required.

In AR scenarios users are mobile, traveling between different physical
locations and hardware setups, therefore they require cross-platform, mobile
assistants. AR agents can “live” on several devices and displays such as
HMDs, projection screens, PDAs or more recently mobile phones. Each has
its own local coordinate system placed into the global coordinate system of
the user’s physical environment. As we describe in detail in Section 4.1.1, AR
agents are able to smoothly travel between devices and coordinate systems.

3.1.2 Agent Behavior
An AR agent interacts in real-time with other agents in shared local or
remote AR spaces, with users working with collaborative applications, and
the applications they are embedded into. In addition to their capability of
executing scripts, they possess certain autonomy, which means that they
watch and automatically react to changes in the properties of AR spatial
objects.

The scheme represented in Figure 3.2 depicts the interaction flow of au-
tonomous agents within AR scenarios. The agent monitors the physical and
virtual world by means of physical and virtual sensors. While processing

3.1 Design Requirements for Agents in AR 26

Figure 3.2: Autonomous agent behavior scheme

the information from light, push, angular, temperature, and other physical
sensors is obvious, a rich research corpus [13][82][45] indicates that imple-
menting a perception capacity for virtual entities is non-trivial. Examples of
virtual sensors include the following:

• Visual sensor : Agents “see” users or other agents when their bounding
box intersects with the viewing volume associated with the agent’s
virtual eyes, which may be a single frustum or several frustums, a
box, or even partially unbounded space. Once in the viewport, agents
start observing the position, orientation and hence velocity of users,
interaction devices, agents and other physical and virtual objects. AR
applications are also associated with a physical position and orientation
since their working volume usually augments only a subspace of the real
environment.

• Audio sensor : The agent can “hear” a sound object if the sound
source’s propagation volume intersects with the agent’s hearing vol-
ume (typically represented by spheres).

• Tactile sensor : Touching is modeled by collision detection, therefore
we need to properly calculate bounding volumes for both physical and
virtual items. Some physical entities such as displays may not make
use of a precise bounding box but instead a predefined “hotspot” area,
which is not related to actual physical boundaries and triggers events
once an object has entered it.

3.1 Design Requirements for Agents in AR 27

Figure 3.1b shows the visualization of a virtual touch sensor for a real
object (see the bounding box of the LEGO robot), the virtual eyesight of a
virtual cartoon character (a wireframe viewing frustum) and its virtual ears
(a sphere around the character). Agents can be equipped with object and
application-specific sensors as well that examine application attributes, GUI
input, and internal state information of virtual objects (e.g. the emotional
state of a virtual human) and physical objects (e.g. an error message of a
printer).

Perception is followed by processing incoming information. With the
assistance of an internal simulation model, the agent performs actions in
response to input events. Traditional multimodal output channels can be
opened between users and agents such as non-verbal communication (facial
and body gestures), speech synthesis and recognition. However, AR offers
novel, compelling modalities involving pose, velocity and status information
of objects. The physical location agents inhabit, the direction they are look-
ing into and the objects they control all convey important context informa-
tion. These new modalities enable a wide range of new behavioral patterns
such as the following:

• The user places a character into the physical working volume of an
application. The character receives an event with the identity of the
user and the application, and loads the user’s application-specific profile
and the state in which she last left the application. The character
continues to work with this application.

• A virtual presenter is working with a user in an immersive AR setup
and wears an HMD. She decides to work in another room with a pro-
jection screen suitable for a larger audience. She takes a pose-tracked
PDA, moves it close to the character and “picks it up”. The charac-
ter continues to “live” on the PDA screen until it is carried over to
the projection screen in the other room. It then becomes aware of the
new environment and jumps to the projection screen, where the same
application is running, maintaining the state of the user’s work.

• A machine in a large PC cluster starts malfunctioning. A virtual re-
pairman character identifies the computer in the cluster room, then
leads the human operator to the computer’s physical location. Once
in the vicinity, the repairman points out the possible sources of error
on the machine itself. An explanation is only begun once the operator
looks at the repairman, in order to ensure appropriate attention and
focus. The machine sends feedback to the repairman when it is back
to its normal state.

3.2 The AR Puppet Framework 28

Figure 3.3: Water puppets

3.2 The AR Puppet Framework
The author of this thesis had the chance to admire the famous water puppet
theater (“mua roi nuoc”) in Hanoi, Vietnam [28], where exceptionally skilled
puppeteers animated a group of puppets using hidden, underwater controls
while performing Vietnamese legends (see Figure 3.3). Although the pup-
peteers focused only on their own controlled puppets, they always stayed
perfectly synchronized since they followed well-prepared instructions from a
choreographer. The choreographer received instructions from the director,
who actually breathed life into the legends told by storytellers.

In digital storytelling it is common to use a hierarchical structure similar
to that used in a theater [91] since these terms, which often represent complex
system components, are familiar even to non-technical people. Although
the comparison is not novel, we found that tasks to control AR agents can
be divided into discrete groups that closely match the layers of a puppet
theater’s multilevel structure. We therefore borrowed the stage metaphor for
AR spaces, story metaphor for applications, puppet metaphor for AR agents,
and the puppeteer, choreographer and director metaphors for various control
logics. User interaction and other external events influence the director’s
behavior, while interaction is mediated by the storyteller assuring that the
story proceeds in the desired direction. These components build up our
hierarchical animation framework (see Figure 3.4), which we call AR Puppet.
Each component’s role in controlling our agents is now briefly explained.

3.2 The AR Puppet Framework 29

Figure 3.4: Overview of the AR Puppet framework components

3.2.1 Puppet
The bottommost component is the puppet level. A puppet stands for one rep-
resentation of an AR agent, which can be physical, virtual or augmented, and
may appear on various platforms ranging from an HMD to a PDA. Various
puppets may require different code implementation, support for connection
management and communication protocols with mobile and remote devices
(e.g. open/close/recover connection, send/receive data with TCP/IP, IrDA
or MIDI), and visualization methods (e.g. level of detail). Despite the di-
verse low-level implementation details, puppets of an AR agent belong to the
same logical entity, namely the puppeteer visualizing a particular type of AR
agent in various forms.

We created several embodiments for animated AR agents that are used
in example applications of our framework:

• Agents based on physical objects:

– an augmented LEGO Mindstorms R© robot

– an augmented MIDI keyboard [11]

– an augmented UbiSense ultra-wideband tracking system [63]

• Virtual agents:

– a skeleton-based animated virtual character built on the open
source library Cal3D [18]

3.2 The AR Puppet Framework 30

– a virtual character based on the Quake2 game’s MD2 format

– a PDA-based virtual character built on the FPK library from
Daniel Wagner’s handheld AR software suite [35]

– an affective talking head

Most of our example applications rely on the Cal3D-based character that
is capable of the import and display of high-quality animation exported from
3D Studio MAX’s Character Studio [1], allowing for unlimited animation
possibilities. It also allows direct access to bones, which permits inverse
kinematics and the linking of objects to joints, for example to pick up and
carry objects. Figure 3.5a illustrates how a Cal3D-based virtual character
can be integrated into AR Puppet as a puppet component.

Using physical objects as puppets implies a bigger challenge as a bidi-
rectional communication channel needs to be constantly maintained between
the AR application’s virtual control logic and the real object. This channel
is used for activating the physical object’s actuators to execute actions asso-
ciated with the puppet’s current state, and for querying the object’s sensors
to update internal object status in the AR application’s world model. Figure
3.5b shows the integration of a MIDI keyboard into the AR Puppet frame-
work. The associated puppet component contains a MIDI handler module
that transforms puppeteer commands into MIDI messages and sends them
to the keyboard. The same module is responsible for querying the keyboard
again with MIDI messages to provide feedback about the internal status of
the keyboard. This status will be reflected in the puppet’s attributes. Besides
low-level communication with the physical object, a virtual 3D representa-
tion is provided for the augmented keyboard representation, accompanied by
registration information for a correct overlay.

3.2.2 Puppeteer
On the next level the puppeteer is the component that groups puppets to-
gether and controls a selected set of agent representations at the same time.
It knows exactly “which strings to pull”, that is how to implement higher-
level instructions for each puppet to obtain a desired effect. The puppeteer
has the following responsibilities:

• Providing a unified command interface, which enables scripting of phys-
ical and virtual objects simultaneously. A default implementation is
provided for a predefined set of commands including common loco-
motion and presentation functions. These default commands can be
overloaded by derived objects.

3.2 The AR Puppet Framework 31

Figure 3.5: a) Using a Cal3D library-based virtual character as a puppet in AR Pup-
pet, b) Integrating the augmented representation of a real MIDI keyboard as puppet

3.2 The AR Puppet Framework 32

• Customization of default parameters of virtual sensors (e.g. viewing
frustum parameters, hearing sphere radius, bounding volume).

• Support for new tracking modalities such as pose and internal status

• Support for idle behavior

• Command adaptation

Command adaptation means that high-level puppeteer commands need
to be tailored to the capabilities of its puppets. This is necessary in the
following cases:

• Switching between representations: If one agent representation becomes
unavailable, it needs to be turned off while some other representations
have to be turned on. For instance, if the physical representation of a
machine is broken or malfunctioning, we can switch to its virtual rep-
resentation simulating the appearance and behavior of the real object.

• Device adaptation: A character has more freedom to move around when
it appears on an HMD than on the screen of a mobile device, therefore
certain motions cannot be performed. Instead of moving and pointing
to a 3D location, a PDA-based agent could just give a visual or audio
hint about its whereabouts.

• Animation parameter adaptation: A high-level motion command re-
quires adaptation of animation parameters. For instance, if a character
has to move to a distant location but a walking animation would ap-
pear unnatural within the allowed time interval, a running or flying
animation sequence should be triggered.

• Motion constraint adaptation: The puppeteer facilitates the puppets’
adaptation to motion constraints such as terrain and path following.

3.2.3 Choreographer
While puppeteers focus only on their respective puppets, the choreographer
has a general overview of all puppeteers and their attributes. This level
does not deal with character-specific details but uses high-level commands
such as “go to my printer and point at the paper tray that has become
empty” in a printer repair task. In a highly dynamic environment such
as AR users move around and work with different applications, objects are
displaced and devices may malfunction, low-level information (e.g. absolute

3.2 The AR Puppet Framework 33

position coordinates or internal object status information) constantly change.
Consequently these dynamic information elements need to be hidden from
users and applications as these high-level entities deal solely with abstract
names and spatial references.

The tasks of the choreographer component are the following:

• Resolving spatial and object attribute references in commands: The
choreographer parses high-level director commands for spatial and ob-
ject attribute references in an “object type(name).attribute” for-
mat and substitutes them with the current attribute value to create
commands that puppeteers having only a local view of the application
understand. Revisiting the aforementioned printer maintenance exam-
ple the director command sequence “goNear trackedObject(printer)

.position, pointAt trackedObject(printer).errorPosition” for
a virtual repairman character would be translated into locomotion and
animation commands containing exact 3D coordinates as targets for
the character’s puppeteer.

• Path planning: The choreographer is aware of all objects between the
source and target of a moving agent, therefore it is able to plan its
locomotion to avoid obstacles. For instance, the virtual repairman
character would be guided to avoid walking through a computer moni-
tor located between the character’s current position and the printer it
wants to move to.

• Feedback for synchronization: If feedback is sent whenever a group of
puppeteers finishes command execution, multiple agents in the same
application can wait for one another, thus maintaining synchroniza-
tion. For example the virtual repairman stops drawing attention to the
printer’s paper tray once it gets refilled.

3.2.4 Director
The director represents the application logic and interaction, and serves as
the behavior engine of AR agents. The director’s behavior can be decomposed
into distinct elements associated with important “story” (that is application)
parts: meaningful application states and attribute values. Switching between
behavior elements drives the application forward based on events in the ap-
plication environment, user interaction, and scripted behavior. Behavior
states trigger animation commands passed on directly to the choreographer
that lower-level components gradually transform into user interface actions
executed by puppet actuators in the real and virtual world.

3.3 Integration with Applications 34

The director behavior can be well represented by a finite state machine
(FSM). FSM states correspond to individual behavior elements, while appli-
cation events, user interaction, and script commands are mapped to transi-
tions between states. Application events come from real and virtual sensors
deployed in the real and virtual application environment. While choreogra-
pher and puppeteer functionalities have been designed mostly to be accessed
through a scripting language, the current implementation of the director
component is based on parameterized C++ code controlling the behavior
engine’s FSM. The director’s code parameters can be dynamically adjusted
by external components, offering some flexibility for the agent control logic.

The choreographer and puppeteer components encapsulate general func-
tionalities of a 3D animation engine. However, the director component must
be tailored to specific applications to prepare the agent for application-
specific events and actions. This constraint and the somewhat limited flexi-
bility of the parameterized FSM code decrease reconfiguration and reusability
of agent framework components in diverse AR environments. Chapter 4 in-
troduces an additional level of complexity by incorporating the hardware and
software environment of AR spaces and presents solutions to overcome the
aforementioned problems.

3.2.5 Storyteller
The highest-level component is the storyteller, which is a meta-component
representing the author creating the application or story. It has only an
abstract view of the components and the story flow, and contains instructions
for the storyboard.

3.3 Integration with Applications
It has always been a challenge for interface agents to monitor the current
state of the application in which they are embedded, and the behavior of
the users they are interacting with, without modifying the application itself.
One of the most powerful aspects of the AR Puppet framework is the easy
way current applications and users can be monitored, which is grounded in
the architecture of the Studierstube AR framework [85], which enables a wide
range of distributed collaborative multi-user AR applications.

Both Studierstube and AR Puppet have been built on a scene graph
database, where all entities are scene graph objects interacting with one
another via input and output attributes called “fields”. AR applications,
users and components of AR Puppet are all parts of the same hierarchical

3.3 Integration with Applications 35

Figure 3.6: Communication schema between AR applications and AR agents

scene graph, therefore they can monitor one another’s fields and immediately
respond to changes. Numerous existing AR software frameworks [53][100][72]
represent their components and applications by a distributed, hierarchical
scene graph. AR Puppet is designed not only for use with Studierstube but
can also be easily adapted to other scene graph-based frameworks that base
their data representation and intercomponent communication on scene graph
nodes and fields.

AR Puppet can also be tailored to AR frameworks that do not follow
a scene graph-based approach. For instance, AR Puppet can be encapsu-
lated as a component in the component-based DWARF framework [12] by
adding an extra wrapper class transforming input and output attributes of
AR agents and applications as needs and capabilities as specified in the frame-
work model. A disadvantage of our scene graph-based AR platform is the
lack of support for legacy applications. Interfaces to legacy applications must

3.3 Integration with Applications 36

be implemented on a case-by-case basis.
Figure 3.6 illustrates how AR applications can be encapsulated as black

boxes by communicating only through input and output attributes with the
agent framework. The internal decomposition of typical AR applications
into modules has been described by Gerhard Reitmayr in his PhD thesis
[78]. When an AR agent built on AR Puppet is to work with an AR appli-
cation, sensors need to be attached to relevant output attributes of the AR
application by making field connections in the scene graph. These sensors
enable constant monitoring of the field values. Attribute value changes gen-
erate events inside the agent’s behavior engine that may trigger a transition
in the internal finite state machine. Whenever the state machine switches to
a new state, behavioral actions such as animation sequences, playing sounds,
etc. associated with the current agent state are executed. The agent is able
to interact with the AR application by setting its input attributes.

Similarly to AR application, users also have fixed, standard attributes
such as current tracked pose and display type to infer state and general pro-
file information. User actions can be monitored through tracking user pose
(e.g. by head tracking), biometric parameters (e.g. eye tracking, biosensors,
etc.), and interaction devices and props. Animated agents in the AR Puppet
framework are thus always aware of the application users’ behavior.

Applications and agents should be prepared to interact with one another.
If an application is to have the possibility to host agents, then it must supply
them with functionality to exist:

• Dynamic addition and mobility of agents: A choreographer component
has to be added to the scene graph, which can dynamically add/remove,
enable/disable agent representations supporting mobility.

• Monitoring the application’s current state: Agents need to be aware of
the current state of applications. This internal state has to be mapped
to a vector of attribute values, which can be easily observed by agents
and the director component. Therefore we need to mark relevant at-
tributes in the application’s scene graph with a special tag, which is a
quick and mechanical task in Open Inventor. When placed into an ap-
plication, the agent can easily retrieve and query the marked attributes.

3.3.1 Example Application Scenario
Machine maintenance problems similar to the early work of Feiner et al. [27]
are traditional AR scenarios. Let us imagine that a complex machine breaks
down in a factory. Well-trained technicians are not always available due

3.3 Integration with Applications 37

Figure 3.7: Decomposing the example scenario into AR Puppet components

to spatial, temporal or financial constraints, therefore lengthy manuals are
supplied with the machine, full of illustrations concerning which button to
press or which container to refill. Existing systems like the STAR project
[101] provide an animated presentation by displaying a virtual manual su-
perimposed on the real machine, however, they neither verify nor provide
feedback whether the actual maintenance step has been executed correctly.
A desirable feature involves continuously querying the physical system state
and comparison with the demanded application state that should have been
reached by the correct execution of instructions.

AR provides the overlay of virtual icons, images and animated models
on top of the physical machine explaining what should be done and playing
synthetic sound besides the original sounds of the machine. Simultaneously
with the virtual information physical actions can be executed on the actual
machine. With physical actions machine behavior simulation becomes un-

3.3 Integration with Applications 38

necessary since the real machine does exactly what it is expected to do in
real life, and gives feedback through its own engines, instruments, control
displays, LEDs, etc.

A further notable issue rarely tackled by AR-based maintenance appli-
cations is industrial safety. If an untrained operator could see what would
happen if he pulled the wrong lever before the actual execution of the action,
accidents could be avoided and industrial training would be more efficient by
preparing trainees for the results of possible failures.

A possible implementation of the aforementioned scenario with the AR
Puppet framework employs two agents to educate an untrained user to as-
semble, test and maintain machines composed of active (engines and sensors)
and passive (cogwheels, gears, frames) parts. The two agents are a real robot
and a virtual animated repairman. Figure 3.7 shows how this example sce-
nario can be decomposed into AR Puppet components. This diagram serves
only as illustration for AR Puppet as the actual application and implemen-
tation of this application scenario is described in detail in Section 5.1.

Both agent embodiments (agent representations in the machine mainte-
nance application) are controlled by two puppeteers that are responsible for
the robot and for the repairman character respectively. The robot puppeteer
controls three robot representations or puppets: a virtual, a real, and an
augmented representation. The three puppets stand for three different vi-
sualization modes, all controlled by the same control logic and behavioral
model residing in the puppeteer component.

In case the real robot is available and a bidirectional communication
channel can be established with it, then the real representation’s puppet is
preferred and activated. In case we are able to track the robot’s pose (e.g.
with a fiducial marker attached to the robot body), additional virtual infor-
mation can be overlaid on top of the physical body that visualizes important
status information such as remaining battery power and robot sensor state,
and highlights internal hardware structure elements for explanation purposes.

The registration of virtual information with the real robot results in the
augmented representation. The real and the augmented representation com-
municate with the robot via an infrared communication channel, through
which they send commands to control the attributes of the active parts (e.g.
engine voltage and direction, or type of the sensors) and query the current
robot state (e.g. sensor configuration, current sensor values, communication
channel failures, and battery level).

While the augmented representation does not render a full virtual replica
of the real robot, the virtual representation contains a detailed and accurate
model of the original machine’s appearance. The puppeteer’s internal behav-
ior model is constantly updated to reflect the current status of the real robot.

3.3 Integration with Applications 39

In case the robot becomes unavailable due to breaks in the infrared channel
or low battery power, or it is simply not physically present, the puppeteer
detects the lack of communication with the real/augmented representation
and automatically switches to the virtual robot puppet while deactivating
the real and augmented puppet.

After the switch the virtual puppet’s appearance reflects the last known
status of the real robot and imitates real robot behavior by animation se-
quences triggered by the puppeteer. If the physical robot becomes available
again, the puppeteer switches back to the real representation after issuing
robot commands to synchronize the current status of the real and virtual
model. The constant synchronization of representations ensures that the
cognitive gap between the different representations is mitigated by maintain-
ing a consistent and continuous visual appearance and behavior.

3.3.2 Communication Flow between Components
The director decomposes abstract story (i.e. application flow) elements into
actual choreographer commands that are passed on to individual puppeteers:
the robot puppeteer and the repairman puppeteer. The choreographer is
aware of all public attributes of the puppeteers, therefore it is able to resolve
abstract object attribute names and spatial references inserted into choreog-
rapher commands by the director.

The repairman’s puppeteer has only a single virtual puppet to control.
It provides a standard animation command interface for the choreographer
component that is independent from the type of puppet used for visualizing
the repairman character. As the puppeteer is the component that makes the
translation into low-level, puppet-specific commands, it is transparent for the
choreographer whether its high-level animation commands are executed by
a skeleton-based anthropomorphic character, a 3D object relying on frame-
based vertex animation, or just a simple animated arrow.

The robot puppeteer keeps pinging the real robot and automatically
switches between real, augmented, and virtual representations. The cur-
rent representation determines whether the puppeteer commands should be
translated into low-level infrared robot commands controlling physical parts
or animation commands manipulating a virtual 3D model. The augmented
representation includes robot instructions as well as animation commands
that are executed synchronously.

Figure 3.8 visualizes the communication flow between AR Puppet frame-
work components in the example scenario of Section 3.3.1, which is described
in detail in the following list:

3.3 Integration with Applications 40

Figure 3.8: Communication flow in AR Puppet’s machine maintenance example
scenario

1. Storyteller:

Tell the repairman to explain the user how to turn on the robot’s engine

2. Director:

Send command sequence to choreographer:

(a) Tell the repairman to walk to the location of the robot button that
turns the engine on and to play a button press animation over it

(b) Tell the robot to turn its engine on

3. Choreographer:

(a) Send command sequence to repairman puppeteer:

i. Walk along a calculated path(P1,P2, ... ,Pn) to avoid obstacles

3.3 Integration with Applications 41

ii. Perform button press gesture

(b) Send command sequence to robot puppeteer:

Reset and turn engine on

4. Repairman puppeteer:

Call low-level character functions in the virtual puppet:

(a) Walking:

i. Start walk animation

ii. Move between (P1,P2) with velocity v1

iii. Move between (P2,P3) with velocity v2

...

iv. Move between (Pn−1,Pn) with velocity vn−1

v. Stop walk animation

(b) Play button press animation

5. Robot puppeteer:

Call low-level robot functions and process messages from robot:

(a) Send an infrared command to ping the real robot puppet

(b) If the ping has been acknowledged, send a compound infrared
command to set engine direction to “forward”, set engine power
to “medium”, and finally turn the robot engine on

(c) If ping has not been acknowledged within a certain timeout, acti-
vate the virtual puppet by displaying the full virtual robot model
and play an appropriate animation sequence visualizing the work-
ing engine

(d) If the real puppet is active and pose tracking is available, display
animated arrows above the engine’s cogwheels to visualize the
direction they rotate in

6. Virtual repairman puppet:

Render mesh based on current animation keyframe sequences

7. Real robot puppet:

(a) Receive and execute infrared commands

3.4 Interaction between the Real and Virtual 42

(b) Send command feedback and status information via infrared mes-
sages

8. Virtual robot puppet:

Render mesh based on current animation keyframe sequences

9. Augmented robot puppet:

The actions of the real and virtual puppet together

3.4 Interaction between the Real and Virtual
Agent communication with the augmented environment includes four infor-
mation channels to sense and affect the physical and virtual environment.
The implementation of these channels is usually not a straightforward task.
We provide some examples to demonstrate how the real and the virtual world
can influence each other’s behavior through various input and output com-
munication channels.

Figure 3.9: Animated character balancing on a tangible fiducial marker

3.4 Interaction between the Real and Virtual 43

Figure 3.10: Defensive physical robot avoiding collision with a virtual character

3.4.1 Physical Input Affecting Virtual Output
Figure 3.9 illustrates a simple example how a virtual animated agent is able
to respond to attribute changes of the real world. A tangible, physical fiducial
marker acts as a platform for a virtual monster artiste to stand on. The user
holds and tilts around the marker in front of a webcam, while the artiste
agent appears to be struggling to maintain its balance on top of the real
marker. If the angle of the marker becomes too steep, the monster falls
down with a roar.

The application retrieves the current pose of the marker relative to the
webcam using a fiducial marker recognition module [5]. The pose of the
marker is directly mapped to the pose of the virtual platform of the artiste in
the agent’s world model. The webcam and the marker recognition library act
as the agent’s sensor to perceive changes in the physical marker’s attributes.
The agent’s control logic then checks whether the platform orientation is still
within bounds and decides whether to play the “fall down” or the balanc-
ing animation. The balancing animation is a blended motion interpolating
between the neutral center and four extreme points in the animation space
with factors calculated from the platform’s pitch and roll rotation angles.

3.4.2 Virtual Input Affecting Physical Output
Sensing events generated by virtual objects is usually not a complicated
task since virtual sensors such as vision, hearing or touching can be imple-
mented in software. However, using physical objects as output communi-
cation modalities has several constraints. Our entire physical environment
cannot be affected by virtual control logics, only by specially prepared objects
that require communication channels and actuators to be set up.

3.4 Interaction between the Real and Virtual 44

The screenshots shown in Figure 3.10 depict a sample scenario imple-
menting defensive behavior for the aforementioned physical robot that tries
to avoid collision with a virtual character. The pose of the robot and the
character is again tracked with a fiducial marker. If the character enters the
virtual “safety” area around the robot, a command is sent to the robot from
the PC via an infrared link, instructing it to move away.

Some researchers have made some efforts to create standard physical hard-
ware components that are able to communicate with their virtual software
counterparts such as the “phidgets” of Greenberg and Fitchett [32]. However,
despite these efforts creating sophisticated responsive physical application
objects still requires considerable electronics skills from developers.

3.4.3 Other Scenarios
In the case of physical input affecting the real world (e.g. two physical robots
interacting with each other), the hard part of both previous scenarios is
taken: sensors need to be installed in the real world again to monitor changes
in addition to communication channels and actuators producing physical
output. Generating virtual output based on virtual input is a trivial Virtual
Reality (VR) problem that we do not discuss here in detail.

Chapter 4

Ubiquitous Augmented Reality
Agents

4.1 Improving AR Puppet
With the AR Puppet framework we have shown how to construct animated
agents in AR (AR agents), which have a physical as well as a virtual part in
their input and output modalities. AR agents are able to monitor context
information independently from the augmented environment they are em-
bedded into and make decisions without constant user guidance. They can
thus autonomously bridge the gap between the real and virtual part of mixed
reality. However, the AR Puppet design described in Chapter 3 suffers from
some limitations:

• The agent’s brain is represented by a finite state machine that is hard-
coded and not programmable on the fly. As a consequence, the agent
operates with a static world model. While sensor information and user
input provides live updates to the attributes of the world model, the
structure of the world has to be defined in advance. The agent is thus
programmed to work with a specific application and setting, and unable
to adapt to new scenarios or react to unforeseen situations. In other
words, the AR agent lacks typical capabilities of Ubicomp.

• The agent’s behavior is mostly driven by the runtime system’s flow of
events and has only limited autonomy. The agents can respond to user
input and other activities observed in the system but cannot derive any
higher-order strategies that truly qualify as autonomous behavior. In
combination with the static world model mentioned above, the set of
different behaviors that agents can exhibit is limited and deterministic.

45

4.1 Improving AR Puppet 46

This chapter presents an improved design for a ubiquitous augmented
reality agent (or UbiAgent for short), which overcomes most of these limita-
tions. The UbiAgent works similarly to the AR agent, however, its behavior
is not only event-driven but also proactive. Its decisions are based on a self-
contained reasoning engine relying on a knowledge base that is externalized
in a persistent XML database. Thus it becomes easy to influence the agent
at runtime by updating its knowledge base.

The knowledge base is designed as a shared memory area, so that multiple
UbiAgents and other distributed software components representing applica-
tions and real world objects can exchange messages. New software compo-
nents can be dynamically added to this knowledge base, and the UbiAgent
can learn to communicate with them through a standardized interface.

The persistency of the knowledge base allows the UbiAgent to preserve
its state and preferences over time, so that it can opportunistically migrate
from one networked AR environment to another, following a user around.
Since the UbiAgent can also change its appearance in response to the current
environmental conditions and these changes can be stored and retrieved on
a per-user basis, it is capable of a behavior that we call multi-user interface
adaptation.

The AR Puppet project integrated interface agents with autonomous
agents to form AR agents, which are “smart” software components embod-
ied by real and virtual objects operating in the user interface of AR systems.
Section 3.3.1 demonstrates the capabilities of AR agents by a machine main-
tenance application, where a virtual animated repairman assists an untrained
user to assemble and maintain a real robot. The behavior engine of AR agents
relies on a finite state machine, where states represent sets of behavior el-
ements (animations, sounds, etc.) and transitions are triggered by events
coming from sensors deployed in the real and virtual world.

The virtual repairman agent operates independently from the robot main-
tenance application. It relies only on its own observations of application
attributes and user input to generate an animated presentation of robot fea-
tures without explicit user guidance. However, the state machine and the
world model cannot be reconfigured at run-time. States and transitions in
the agent-enabled application’s control logic (the director component) are
hard-coded, and the structure of the world model is manually configured
before application start-up.

The manual, static configuration prevents the AR application from recon-
figuring itself at run-time in case a more suitable environment appears for
executing a maintenance step. The static approach hinders agent reusabil-
ity and consequently increases software development efforts: the AR agent’s
rigid choreographer and director components need to be reprogrammed to

4.1 Improving AR Puppet 47

support another AR application the agent has not been previously “trained”
to work for.

4.1.1 Increasing Mobility
To highlight key differences between UbiAgents and AR agents, we revisit the
robot maintenance example in the following sections. UbiAgents enhance AR
agents with mobile agent technology and migration capabilities by extending
the previous finite state machine approach. Each state in the UbiAgent’s
state machine is now associated with certain requirements on the current
software and hardware environment.

In the robot maintenance scenario the current construction step may re-
quire a minimum screen size and display resolution if it involves subtle visu-
alization details of a complex engine. Other agent state preconditions may
set a minimum CPU speed and maximum memory load for resource hungry
animations. Portable computing devices may frequently demand agents to
check the battery level and the wireless network status to avoid abruptly
losing important application data.

If the requirements are met, the agent proceeds with the execution of
the behavioral action sequence assigned to the current state in the state
machine. However, if the capabilities of the current agent platform prove
inadequate, the agent searches for another environment providing more fa-
vorable conditions to complete its job. If such an environment is found, the
agent opportunistically migrates to it and executes actions in its new “home”.
Returning to the maintenance example, the virtual repairman may move to
a bigger screen located near the user and continue to explain the robot’s
internal structure there, if the agent finds the current display too small for
the current construction step.

Migration is signalized by a special behavioral sign such as an animation
sequence, text warning or sound alert to make the user aware of the migra-
tion action or to instruct the user to prevent migration within a certain grace
period. In case of the preventive scenario, the agent proactively suspends its
current activities and advises the user to charge her PDA or set the screen
resolution of the PC monitor to match minimum requirements. After the
grace period expired without appropriate changes in the local workspace,
the agent migrates to its new preferred environment and resumes its actions.
Although migration causes an interruption in the application flow, this tem-
porary break in the continuity of user interaction is invoked in favor of a
more efficient work environment, shortening overall interaction times and
increasing the quality of information visualization.

Migratable user interfaces demand that dominant interface properties are

4.1 Improving AR Puppet 48

preserved during and after migration to bridge the spatial and cognitive gap
between disjoint workspaces. The user has to create a mental link between
the old and new workspaces, thinking that the same virtual assistant con-
tinues to aid her work with the augmented robot, even if it migrated to a
projection screen from a local display to increase its public exposure.

The agent should appear to continue its task exactly at the point where it
left off before migration. Beside temporally continuous agent behavior, visual
agent appearance also frequently needs to remain unchanged across multi-
ple agent environments by migrating respective 3D models, textures, color
schemes, spatial arrangement etc. together with the mental state. Never-
theless this is not a general requirement since in some cases the agent may
deliberately choose a different visual representation. For example, a simple
arrow may replace the pointing gesture of the full-body animated repairman
of the robot maintenance application to avoid occluding subtle details of tiny
mechanical robot parts. Similarly, the agent may choose to occupy a physi-
cal body taking advantage of sensors and actuators affecting the real world.
For instance, the robot maintenance scenario can manipulate the real robot
instead of a virtual robot model simulation, if the physical counterpart is
available.

Agent migration and the preservation of agent attributes and mental state
during migration necessitate the use of a central control logic that supervises
agent embodiments. We call this component the agent brain being in charge
of controlling multiple agent representations or agent bodies. The agent
brain relies on a persistent information storage, where agent and workspace
attributes can be saved and recalled.

4.1.2 Expect the Unexpected
Let us imagine that we buy a new microwave oven for our kitchen and want
to employ an AR system to explain its operation. With current classic AR
software design we would use a standalone application tailored to the ex-
planation of our specific microwave oven model. We cannot get the already
familiar animated repairman to introduce us our new household item instead
of our robot, as this AR agent has never “seen” a microwave oven before and
thus it does not know how to present it.

The UbiAgent framework teaches the old dog new tricks: we equip AR
agents with capabilities to adapt to and work with hitherto unknown appli-
cations. Consequently, if we enhance the aforementioned household scenario
with UbiAgent components, the microwave oven application becomes part of
the dynamic world model of the new UbiAgent-based repairman character.
If the application generates a request calling for an animated presentation

4.1 Improving AR Puppet 49

Figure 4.1: Application encapsulation with schema and adaptive user interface
personalization

of its typical features, the repairman agent migrates to the new environment
and starts the explanation.

UbiAgents encapsulate AR applications as black boxes hiding implemen-
tation details and communicating via relevant input and output attributes
with the outside world. The black box interface maps private, internal appli-
cation state to public attributes based on a well-defined schema. Any agent
“understanding” this schema is able to automatically establish communica-
tion with the application, deduce application state information by monitoring
these attributes, and influence application behavior by modifying attribute
values. Figure 4.1 provides illustration for the concept about schemas and
application encapsulation.

4.1 Improving AR Puppet 50

The diversity of AR application domains demands the creation of multi-
ple schemas. Systems acting in the fashion of digital manuals need a schema
enabling the presentation of a range of household devices, computing equip-
ment and furniture, while indoor and outdoor navigation systems necessitate
a schema for the encapsulation of parts of the physical environment such as
floors, offices, streets, and buildings.

Multi-purpose agents need to understand several schemas to let the same
agent work as a virtual tour guide or animated technician on demand. When
a hitherto unknown application appears in the system and a UbiAgent wants
to communicate with it, the agent first checks its schema. If the agent “speaks
the language” of the schema, it includes the application in its control loop
and reacts accordingly to attribute changes.

4.1.3 Multi-user Interface Adaptation
Users favor customizable interfaces over fixed ones. People have diverse pref-
erences for the color, size, spatial arrangement, and numerous other style
elements of user interface components, including accessibility features for
the disabled.

Present AR systems offer offline tweaking of variables in parameterized
user interfaces to dynamically change interface appearance, however, cus-
tomization information is only considered in the current session without be-
ing stored in a persistent memory, ignoring adaptive and multi-user concepts.
As illustrated by Figure 4.1, the UbiAgent framework includes a persistent
database to store user preferences observed and accumulated by a learning
module for future application sessions. The learning module captures typical
patterns in the way users set interface customization parameters and stores
them in a personal user interface profile in the database. This personalization
profile follows users around while they are working with multiple distributed
applications running on various computing devices.

A nearsighted user working with the previous section’s machine presen-
tation scenario would always enlarge objects to notice small details in the
robot’s mechanical structure. The learning module perceives this personal
customization pattern and stores it in the database. The next time this
particular user runs the robot maintenance application, all objects would be
automatically enlarged based on the previously observed and stored pref-
erences. When switching over to the microwave oven application, the user
would find the virtual objects’ default size already scaled up, saving hitherto
efforts to tailor application interfaces to the user’s taste and convenience.

The UbiAgent framework is based on a fast and robust database that en-
ables storing and recalling preferences on demand for a large number of users,

4.1 Improving AR Puppet 51

Figure 4.2: UbiAgent structure based on the BDI model

thus enhancing AR systems with multi-user interface adaptation capabilities.
Identification of individual users relies on a unique user ID associated with
personal devices such as PDAs or tablet PCs, or based on user accounts for
shared public computers.

4.1.4 Beliefs, Desires, Intentions
Our framework follows the belief-desire-intention (BDI) model [15] for the
implementation of the agent’s reasoning mechanism. This model is not only
one of the most well-known approaches for practical reasoning agents with
a substantial research corpus, but is also highly suitable for dynamic and
uncertain environments such as AR systems. Figure 4.2 depicts the BDI
model-based structure of UbiAgents.

Beliefs represent the agent’s current knowledge of the real world (such as
the estimated pose and internal attributes of application objects) mapped to
an internal world model. Since the world model represents only a potentially
imperfect local view of the physical and virtual world, it needs to be regu-
larly updated by measurements coming from sensors in the real and virtual
environment. The database caches the current world model state between

4.1 Improving AR Puppet 52

measurements and stores persistent information such as user preferences, ap-
plication attributes, and agent properties.

Desires stand for agent goals associated with a desired end system state.
They represent high-level concepts in the UbiAgent’s brain subordinating
user interface components to adapt their behavior to achieve goals as quickly
as possible. UbiAgents work towards their goals by carrying out tasks or
Intentions using actuators in the real and virtual world. The currently exe-
cuted tasks are constantly reevaluated to verify whether they are efficiently
advancing the system towards the end state. The system may reconsider
its decisions in case of inadequate progress, and kill suboptimal tasks while
starting new, more promising ones.

According to Georgeff et al. [31] adaptive, goal-oriented systems offer a
superior performance compared to task-oriented systems in dynamic envi-
ronments requiring automatic recovery from erroneous situations. In task-
oriented systems each task strives to achieve a local optimum without remem-
bering the purpose of its execution. In ubiquitous AR environments, where
failures and suboptimal working conditions are inevitable due to the simul-
taneous use of multiple interconnected hardware and software components,
a flexible and adaptive software architecture is needed to effectively tackle
issues such as computer crashes, load balancing, and resource discovery.

In UbiAgents, goals represent a combination of desired application and
agent states, for instance “the repairman presents the operation of the robot’s
light sensor”. This high-level goal is decomposed into subgoals or plans equiv-
alent to application attribute changes and animated agent action sequences
such as “proceeding the maintenance application to the step where the light
sensor is activated on the real robot, and superimposing sensor measurement
values over the real sensor while the agent explains the sensor’s operation”.

Plans are converted into concrete agent tasks that are executed by ac-
tuators available in the current agent environment. In AR actuators can
be physical as well as virtual. Typical examples for virtual actuators in-
clude animation engines controlling 3D models and virtual characters, 2D
text messages, sound players, and text-to-speech engines. Common physi-
cal actuators involve stationary and mobile computers with limited resources
such as CPU speed and memory size, fixed and portable displays with a pre-
defined size and resolution, audio speakers, and electric motors and control
systems of mechanical engines.

Before task execution, the UbiAgent framework checks whether actuators
required for the next task are available at the current agent platform. For
instance, the light sensor scenario requires that the agent has access to an
infrared communication port to exchange messages with the physical robot
to let the repairman agent turn on the real light sensor during explanation.

4.1 Improving AR Puppet 53

This step also requires a PC with a fast CPU and a large display for 3D
visualization purposes, and a 6DOF tracking system to facilitate the correct
overlay of virtual information on top of the real world. If the desired sensors
and actuators are missing or fail to meet the minimum requirements of the
current agent context, the UbiAgent consults its beliefs (persistent knowl-
edge) in the database about all available agent platforms, and looks for a
more suitable environment to migrate to and complete its current job.

4.1.5 Autonomic and Proactive Behavior
As AR systems grow more complex, we need to reduce their perceived com-
plexity to sustain usability by automating certain system tasks. Autonomic
computers in IBM’s system vision paper [37] mimic the human body’s ner-
vous system by taking over low-level maintenance jobs such as self-monitoring,
self-healing and self-configuring without constant human guidance. The Ubi-
Agent framework contains an autonomic “caretaker” component dedicated
to low-level tasks such as resource management of agent platforms, garbage
collection and integrity checks in the database, and repairing broken connec-
tions between UbiAgent components.

While autonomic systems are sufficient for typical office automation tasks,
current trends in the embedded computer industry’s growth rate and the ac-
celerated expansion of the application domain of Ubicomp systems suggest
that today’s AR systems need to feature characteristics of proactive com-
puting [96]. Autonomic systems deal with challenges of complexity but rely
on a predefined finite set of system components enumerating all problematic
situations and appropriate system reactions.

To effectively exploit novel resources offered by Ubicomp environments,
AR systems need to dynamically reconfigure themselves to incorporate mul-
tiple stationary and portable devices, distributed software applications, and
a heterogeneous network of sensors [41]. Due to the large number of possible
system components, this reconfiguration task would be overwhelming to hu-
man users, which calls for a high-level supervisory role instead of a constantly
alert manager.

UbiAgents constantly monitor relevant attributes of the real and virtual
environment, and store their observations in the database. This persistent
knowledge empowers UbiAgents to proactively make decisions about their
own reconfiguration, leaving only a supervisory job to the user to intervene
in case undesired agent actions are announced. If autonomic systems can be
compared to the human nervous system, the organic counterpart of proactive
systems would be symbiotic life-forms searching for a host they can exploit
to live, while offering services for the host’s benefit.

4.2 UbiAgent Components 54

4.2 UbiAgent Components
In this section we present the components of the UbiAgent framework and
explain their functions with references to the design principles described in
the previous section. Figure 4.3a shows a diagram with all UbiAgent entities
and their relationships.

Each UbiAgent consists of an agent brain and one or more agent bodies.
The agent brain serves as a control logic and reasoning engine controlling
global agent behavior. The agent body is a local representation of the agent
brain and an embodiment of the agent. As UbiAgents operate in AR envi-
ronments, they are allowed to possess real as well as virtual bodies, and thus
appear to be integral parts of the user’s physical surroundings. The agent
body contains sensors observing the agent’s real and virtual environment,
and actuators affecting the physical and virtual world.

UbiAgents do not exist on their own. Referring to the aforementioned
symbiotic comparison, they need a host environment to “live” in. In our
framework we call this host environment a habitat, which is characterized by
its hospitability attribute. The hospitability attribute symbolizes the amount
of “nutrients” available for digital symbionts such as a UbiAgent, and thus
combines diverse hardware parameters into a single value to describe the
computational power of potential host machines. The single hospitability
value hides irrelevant internal technical details of diverse computing plat-
forms such as CPU load, available memory, or remaining battery power, yet
allows agents to identify erroneous situations such as a crashing or overloaded
device by their low hospitability value. Poor habitat conditions endangering
agent operation trigger survival agent behavior that usually forces migration
to another habitat. Graceful degradation of agent services is also possible as
the availability of resources declines.

Computing devices serving as agent habitats in AR environments must
provide one or more displays and a network of tracking systems called a
locale to support the superimposition of virtual information over the real
world. Some parameters such as display size or the degrees of freedom of
tracking data rarely change, therefore they are stored in a hardware repos-
itory. Repository information is manually updated by a technician when a
new display device or tracking system is installed.

Habitats continuously update their current attributes in a habitat infor-
mation storage including pointers to applications they are hosting, references
to agents currently embedded in the applications, and information about
currently associated locales and displays to provide a quick overview of the
present habitats’ hardware and software infrastructure. Invariant display and
locale parameters are loaded from the repository, while dynamic parameters

4.2 UbiAgent Components 55

Figure 4.3: a) Entities and their relationships in the UbiAgent framework, b) Shared
memory area between agents and applications, c) Structure of the UbiAgent data-
base

4.2 UbiAgent Components 56

such as screen resolution are updated by the respective embedded display or
locale component.

As occasional interruptions in network connectivity and power failures of
computing devices are inevitable, habitats need a specific component that
detects their temporary inability to communicate with UbiAgents despite
their presence in the agents’ world model. This component is called the
habitat manager, which implements the “autonomic caretaker” functional-
ities described in Section 4.1.5. To prevent UbiAgents from attempting to
communicate with a non-responsive agent platform, the habitat manager re-
moves habitats from the world model unless they periodically send an “alive”
signal. The habitats keep pinging the habitat manager until it replies with
an “acknowledge” message, which reassures faultless communication with
UbiAgents until the next periodic “alive” signal is due.

4.2.1 Shared Agent and Application Memory
The dynamic nature of AR environments makes constant and reliable com-
munication between framework objects crucial. Thus the database compo-
nent plays an eminent role for UbiAgents. The database not only stores
the hardware repository, current habitat information, and persistent UbiA-
gent component attributes, but also serves as a shared memory area between
agents and applications (see Figure 4.3b). Components can register observers
in the database, which are requests for notifications about changes in certain
elements. When a particular application or agent writes a message into the
shared memory (namely it adds or updates an element in the database), all
applications and agents having registered an observer for that particular el-
ement receive a notification about the update. This mechanism makes the
database an effective communication medium in our ubiquitous AR frame-
work.

Distributed AR applications consist of several application instances con-
trolled by a dedicated master or application control. The application con-
trol maintains the global application state and distributes updates to all
instances. Similarly, UbiAgents possess a single brain that controls multiple
bodies embedded into individual application instances. Application instances
offer only an incomplete local view of the global application state for agent
bodies, while agent bodies serve only as limited proxies of the agent brain
for application instances. To overcome these limitations, communication be-
tween agents and applications happens at a higher level: the application
control and the agent brain exchange messages through the database, con-
trolling actions of application instances and agent bodies.

The application control maps internal application state to public database

4.2 UbiAgent Components 57

elements. The mapping function implements the schema concept described
in Section 4.1.2. The application control creates a transparent interface be-
tween multiple agents and applications to hide private implementation de-
tails. This interface enables already existing complex AR systems to exploit
agent services without any modifications in structure and code. By employing
multiple application controls, different schemas can be supported, allowing a
versatile use of the application in various agent systems.

The brain implementation of our UbiAgents in the demo applications is
also currently based on C++ code, however, dynamic scripting approaches
for scene graphs such as Pivy [73] enable the dynamic uploading of procedural
code, making the use of agents more flexible.

4.2.2 Agent Migration
We use the Muddleware real-time XML database [35] to implement the Ubi-
Agents’ knowledge base and shared application and agent memory. Muddle-
ware provides fast and robust access to the UbiAgent database, which has a
well-defined hierarchical structure (see Figure 4.3c). Please refer to Appen-
dix A and Section 6 for a detailed description (internal structure, DTD and
sample XML database content) of the UbiAgent database format.

The Muddleware technology uses XPath-based database queries and ob-
servers. The XPath language syntax well suits the hierarchical structure of
the UbiAgent database and enables the use of complex queries and observers
to receive information about UbiAgent components. With XPath expres-
sions agents can quickly identify habitats matching a set of infrastructure
requirements such as hospitability, display parameters, tracking data, and
application and agent attributes.

The agent brain controls a finite state machine. Each state defines a set of
desired actions for agent bodies. When entering an agent state, an observer
is registered to represent minimum expectations about the ideal environment
for the agent bodies’ actions. If the observer reports the appearance of a more
suitable habitat, the agent brain instructs the currently embedded agent body
to migrate to the new location.

Migration can happen in two ways: either by serialization techniques of
distributed shared scene graphs [86] to create a new agent body, or by activat-
ing already existing “sleeping” agent bodies while deactivating previous ones.
We also created a GUI-based UbiAgent browser to issue custom queries for
debugging purposes and to trigger forced agent migrations for simulations.

The last and current chapter have discussed design principles and re-
quirements for an animation framework supporting the creation of ubiquitous
augmented reality agents, their easy addition to AR applications, and their

4.2 UbiAgent Components 58

migration between AR spaces. The next chapter shows how to realize design
concepts by presenting implementation details for the AR Puppet and Ubi-
Agent framework components, the Muddleware-based shared memory mech-
anism, the decision-making procedure for migration between habitats, and
the scripting interface.

Chapter 5

Applications

This chapter introduces various AR agent-enabled applications with rich in-
teractive multimedia content exploiting the AR Puppet and UbiAgent frame-
works. All applications emphasize our most important design principle: there
should be no seams in the visual representation and interaction between
agents and agent-enabled applications while keeping the agent and applica-
tion code implementation independent from each other. This means that we
avoid modifying the internal application structure and code by relying on a
well-defined communication interface between agents and applications. This
interface allows agents to closely monitor the applications’ internal state,
which enables proper and timely agent reactions to application events and
thus yields the impression of a close integration at code level and the agents’
awareness of current application state. The following applications will be
presented in detail:

• AR Lego: This application presents a machine assembly and main-
tenance scenario, where two AR Puppet-based agents assist an un-
trained user to assemble and maintain a LEGO Mindstorms R© robot.
The agents autonomously assess the physical and semantic status of
the robot construction procedure and generate appropriate animated
instructions.

• Monkeybridge: This application describes an AR game in which two
users play against each other by building a bridge consisting of real and
virtual elements for their monster-like avatars across a virtual ocean.
The shape and spatial distribution of the bridge elements influence the
decisions of the AR Puppet-based behavior engine that autonomously
generates actions for character motion and affective behavior without
explicit scripting or other user instructions.

59

5.1 AR Lego 60

• Virtual Tour Guide: This application demonstrates integration with
the APRIL AR authoring framework [47] to simplify the authoring
process. A virtual human agent is controlled by AR Puppet to serve
as a tour guide for an indoor AR navigation system. The agent is
turned into an APRIL component that communicates with the large
and complex navigation application solely through dedicated input and
output attributes. The AR agent-enabled application is automatically
generated from an XML-based APRIL description.

• Character Animation Studio: This UbiAgent-based scenario creates a
spatially and cognitively continuous workspace in a character anima-
tion studio by employing a pose-tracked PDA as a tangible data transfer
device. The system automatically recognizes which animator worksta-
tion to activate based on the current application context derived from
the PDA’s current location and minimum hardware and software re-
quirements set by the current character configuration and manipulation
stage.

• Ubiquitous Technician: In this scenario the UbiAgent framework seam-
lessly combines several previously independent AR applications into
a single ubiquitous application that assists a technician in locating
and executing typical location-dependent installation and configuration
tasks. The set of participating AR applications can be dynamically ex-
tended by providing an attribute schema mapping internal application
state to standard attributes monitored by UbiAgent components.

5.1 AR Lego
The AR Lego application implements the AR Puppet framework’s example
scenario described in Section 3.3.1. This scenario demonstrates how to fully
utilize real world features with the help of autonomous agents. AR Lego im-
plements a machine assembly and maintenance scenario, in which two agents
are employed to educate an untrained user to assemble, test and maintain
machines composed of active (engines and sensors) and passive (cogwheels,
gears, frames) parts.

The two agents are a real LEGO Mindstorms R© robot and a virtual an-
imated repairman. The PC-based application communicates with the robot
via an infrared channel, through which it sends commands to control the at-
tributes of the active parts (e.g. engine voltage and direction, sensor configur-
ation) and queries the current robot state (e.g. sensor values, communication
channel failures, or battery level).

5.1 AR Lego 61

Figure 5.1: Work environment in AR Lego

5.1.1 Application Scenario
Upon starting the application, the user has a set of real LEGO R© building
blocks (see Figure 5.1). The system provides step-by-step assembly instruc-
tions as to which block to mount next and how to verify whether the user is
at the correct stage in the construction.

The verification of passive parts (i.e. inactive bricks) is only possible by
visually comparing the appearance of the physical model to the virtual. We
have built an accurate virtual 3D model of the full robot using a CAD editor
[62] and superimpose it over the real robot. It is possible to switch between
a full model representation allowing a careful comparison with the physical
model or a reduced representation showing only the next brick to be mounted
to prevent obstructing the view of the real parts during construction.

Although more complex, testing whether the active parts (engines and
sensors) have been mounted correctly is a more straightforward task. After
mounting an engine the application instructs the robot by an infrared com-
mand to turn the engine on. If mounted in the right position and correct
direction, the engine and all moving parts connected to it should behave as
demonstrated by overlaid animated virtual models. Similarly, if we mounted
the sensors properly, the right type and range of data should arrive from the
robot. The system checks and visually reports inconsistencies so that the
user can go back one or more steps to double-check the construction.

5.1 AR Lego 62

5.1.2 Agent-Application Communication
Figure 5.2 provides an overview of relevant application output attributes that
agents monitor to update their world model estimating the application state,
and input attributes that agents control to interact with the application and
provide feedback. The assembly application’s interface object provides the
agent with all information required to describe the next building block to
be mounted. It outputs the current construction step so that the agent is
aware of the user’s progress, i.e. what has been and needs to be constructed.
Then the appropriate LEGO block gets generated, which is then linked to
the agent’s hands.

If the size parameter of the block is below a certain threshold, the object
is linked to and carried in one hand, otherwise it is held in both hands
because the object has been perceived as “heavy”. The position of the next
block allows the movement from the agent’s current location to the tile’s
target location to be planned by a path planning algorithm to avoid bumping
into the already constructed model (see Figure 5.3). The block’s suggested
orientation instructs the agent to put the block into the correct pose before
mounting.

Finally, the virtual block is added to the real robot using either a default
gesture or special gesture sequences (e.g. turn around, push in, twist, etc.)
if an animation hint is provided. There are steps that do not include any
LEGO blocks, e.g. instructing the user to turn the construction around if
the robot’s relative orientation hides important details for the next step.
Figure 5.4 shows screenshots of typical maintenance steps in the AR Lego
application.

5.1.3 LEGO robot agent
Engines and sensors (push, light, rotation, temperature etc.) are important
components of the robot since an erroneous connection or misconfiguration
would lead to erroneous behavior. It is desirable that users can quickly verify
whether they are connected and functioning correctly.

By turning our physical robot into an AR agent, these tests become intu-
itive. The robot agent is able to monitor the current status of the assembly
application and generate actions that are synchronized with the repairman.
This means that as soon as the user finishes mounting an engine, the robot
attempts to turn the engine on. In case of incorrect behavior, the current or
previous construction steps have to be repeated. Sensors are equally impor-
tant entities. As soon as they are mounted, the user is invited to test them,
for example by pushing the push sensor or holding a color plate in front of

5.1 AR Lego 63

Figure 5.2: Communication between the agents and the AR Lego maintenance ap-
plication

the light sensor while watching the results of the sensor query commands.
LEGO-like tangible interfaces for real-time interaction have already in-

spired researchers [87]. Using a LEGO Mindstorms robot appears to be an
appropriate choice to build and test machine prototypes for the following
reasons:

• It is easy to build and export a precise virtual counterpart of new robot
models using a free LEGO CAD editor [62], therefore there is a smooth
modeling pipeline.

• The LEGO Mindstorms kit enables application developers to build
cost-effective and desktop-sized prototypes for real life, factory-sized
machines. By extending our approach it becomes possible to create
application scenarios where technicians of factory machinery receive
instant help in the form of visual instructions superimposed on top of
a real machine that maintaints a bidirectional communication channel
with a control computer containing a user’s manual.

• A “central brain” unit called RCX is able communicate with a PC run-

5.1 AR Lego 64

Figure 5.3: Path planning by the virtual repairman to avoid collision with real robot
(the computed path is symbolized by connected orange line segments)

Figure 5.4: Screenshots of typical maintenance steps in AR Lego: a) The virtual re-
pairman agent explains where and how to mount the next robot part, b) The agent
instructs to connect a robot engine and a sensor, c), Visualization of live sensor
readings from the physical robot’s light sensors, d) Using the robot’s augmented
representation synchronized with the real representation to explain the robot’s in-
ternal structure

5.1 AR Lego 65

Figure 5.5: Tracked PocketPC as a multi-purpose interaction device: (left) Tangible
interface to manipulate the virtual puppeteer, (right) Displaying a control GUI for
the LEGO robot using the PUC technology

ning the AR Puppet framework with infrared commands using a com-
munication tower, which makes controlling and monitoring straightfor-
ward. The RCX can set and query engine parameters such as on/off
state, voltage and direction, configure and query various sensors, and
send status information such as acknowledgement of a finished com-
mand, battery power and other useful data.

• LEGO is fun to work with and is familiar to many people.

To correctly overlay virtual information, we need to track the current
construction model’s pose in the physical environment. Mounting the track-
ing marker on the RCX is an obvious choice since this is the basic building
block present in all interactive robots. It contains important control buttons
and an LCD display, which should not be covered by tiles, so there is always
free space for the mounting of markers, which are integrated into the LEGO
bricks.

5.1.4 Interaction
The user interacts with the assembly application and the LEGO robot not
only by carrying out assembly and maintenance steps but also by using a
tracked PDA, which acts as a multi-purpose interaction device (see Figure
5.5). The PDA runs a client relying on the Personal Universal Controller

5.2 Monkeybridge 66

technology explained in Section 7.3.1. Thus the PDA not only serves as a
tangible, physical interface to move the virtual repairman and virtual LEGO
tiles around in the physical environment but it also renders a PUC-based
graphical user interface (GUI) on the PDA screen, which can be used to
move between the assembly steps and control the LEGO robot’s engines
and sensors at run-time. The PDA has a wireless network card for cable-free
interaction and a tracking marker structure mounted on the back of the case.

We exploit the fact that the application is aware of the current pose of
the PocketPC to create the following gestures:

• The virtual repairman holds the next block in the construction sequence
while standing on the local user’s PDA. The user can freely observe it
from all angles by moving the device around.

• As soon as the user places the PDA near the real robot, the character
moves from the PDA’s local coordinate system to the physical LEGO
robot’s local coordinate system and starts explaining where and how
to place the LEGO tile.

• After the explanation is finished, the user can pick up the character
again with the PDA, which binds it to the PDA’s coordinate system
and commands it to display the next building block.

5.2 Monkeybridge
Monkeybridge is a multiplayer game, where users place real and virtual ob-
jects onto a physical surface, thus influencing the behavior of virtual animated
characters (see concept image in Figure 5.6). During the development of the
game we have been examining the use of embodied autonomous agents in
AR gaming. We are interested in how “smart” software and hardware com-
ponents influence multiplayer game experience.

5.2.1 Motivation of AR Gaming
A key element in games and stories is fantasy. While playing, a virtual,
imaginary world is created within our mind, inhabited by characters obeying
our imagination. In classic make-believe games this fantasy world and their
characters connect to the real environment through physical game props to
which various roles are assigned, thus making heretofore passive objects ac-
tive players in the game story. AR applications are aiming at achieving the
same effect by superimposing a virtual world on top of the real environment.

5.2 Monkeybridge 67

Figure 5.6: Concept image of the Monkeybridge game: the two monster-like char-
acters autonomously follow the terrain defined by real and virtual building blocks

As pointed out by Stapleton and colleagues in their mixed-fantasy frame-
work [92], the combination of the real and virtual help suspend disbelief
and enrich the audience’s fantasy experience. AR is able to visually change
real world attributes, make passive objects appear animated and play sound
effects besides sounds in the real environment to further enhance the at-
mosphere of the perceived mixed environment. In AR games physical game
props appear to coexist with virtual game objects, enabling the creation of
rich and atmospheric environments leveraging infinitely detailed and realistic
physical game elements and interactive virtual objects.

In collaborative virtual game environments co-players are often repre-
sented by avatars. The behavior of the avatars is constrained and controlled
by the game logic, which maps player actions to the set of capabilities and
behavior elements of the avatars. In addition to players there is often a large
variety of non-player characters serving as allies, bystanders or competitors.
As games become increasingly complex, it is desirable that some workload
is taken off from both game developers and players by adding autonomy to
player and non-player characters.

An autonomous character does not need constant user guidance or thor-
oughly scripted behavior prepared for all possible situations. Instead, it
proactively makes decisions based on events coming from sensors present
in its environment. Thus only high-level goals are needed to be set, while

5.2 Monkeybridge 68

Figure 5.7: Building a bridge across a virtual ocean in Monkeybridge

the character’s reasoning engine takes care of low-level details to achieve
the goals as quickly as possible. Our Monkeybridge game employs such a
character that appears to have a “brain” behind its movements, which is
implemented by embodied autonomous agents.

5.2.2 Application Scenario
A “monkey bridge” is a fragile wooden construction over a river in South-East
Asia [28]. People frequently risk their lives as they try to keep their balance
crossing to the other side. In this game players dynamically build a monkey
bridge for their own monster-like characters using virtual and physical pieces
of landing stage, which vary in shape. The goal is to reach a dedicated target
in a virtual ocean.

Figure 5.7 and 5.10 provide screenshots of typical game scenes from the
users’ viewpoint. In both images a bridge has already been built for a char-
acter, whereas the bridge consists of virtual blocks (models with the dark
wooden texture) and physical tiles (bright balsa-wood and stone cubes show-
ing through the virtual objects). A user is holding the next building block
in his hand.

Players do not have direct influence on the game characters’ behavior;
instead they indirectly control character movement by providing the agents

5.2 Monkeybridge 69

Figure 5.8: Virtual and physical building blocks in Monkeybridge: a) Virtual bridge
elements, b) Physical bridge elements, c) Physical obstacles

with building blocks to walk on above the virtual ocean. In a typical setup
the ocean is divided into 10x10 cells yielding a 1m x 1m rectangular physical
game board, however, the grid and cell size can be customized. Each cell may
host a building block functioning either as a bridge element or an obstacle.
All possible building blocks can be seen in Figures 5.8a-c. Bridge elements
are either physical or virtual and are composed of simple geometrical shapes
that fit together smoothly, while obstacles are physical objects that serve as
strategic hindrances to players as well as decoration elements.

The virtual bridge elements are auto-generated in a similar way to Tetris
games and are dynamically laid onto the game board by the players. The
position and orientation of the blocks are automatically snapped to the cells
to make positioning easier. If left unmoved above an unoccupied cell for a

5.2 Monkeybridge 70

given time, the block becomes fixed, and the player occupies the given cell.
A player is allowed to place a tile only into cells that are adjacent to other
cells already occupied by the player.

The real building blocks are crafted from stone and wood. Unlike their
virtual counterparts, the position and orientation of the physical blocks are
fixed during the game, although they can be arbitrarily configured before
start-up. The physical blocks represent the start and target platforms for
the characters as well as strategic points to reach.

We have built two physical obstacles: a lighthouse with rotating spot-
lights and a volcano puffing real, illuminated smoke. The fun factor of seeing
the volcano puffing smoke or the rotating lights of the lighthouse motivates
players to lead the path of the monsters towards these objects, imposing in-
fluence on play strategy. The casing of the obstacles can be quickly assembled
from paper templates which then host electric parts such as engines, LEDs
and a smoke generator. Our test setup lets users manually control electric
parts functions using a custom-made control box.

5.2.3 Autonomous Game Characters
The monster-like characters are embodied autonomous agents and therefore
their behavior does not require careful and detailed scripting. Instead a ded-
icated control logic or virtual “brain” decides which animations and sound
effects to play, which direction to turn or whether the target has been reached.
The only factors that directly influence agent behavior are the spatial distri-
bution, pose and shape of the virtual and physical building blocks placed on
the game board. Figure 5.9a and b provide illustration.

The characters autonomously choose: the path they walk on; decide how
to get from one platform to the other, e.g. jump up or down when there is a
slight difference in height between platform edges; automatically choose the
straightest path from several available tiles; and fall into the water if there is
no suitable piece of landing stage to walk on. They happily cheer with their
hands up when they win, and cry over a lost game to add affective content
to the game.

5.2.4 Domains of Game Experience
Recent researcher papers on AR gaming [22] [57] [68] have established the
convention of discussing how game elements contribute to user stimuli in
individual domains of game experience, therefore we also provide our own
summary.

5.2 Monkeybridge 71

• Mental domain: We attempt to create the illusion of a real marine
landscape by using various visual and aural elements. Visual and au-
dio effects help suspend disbelief, therefore enhance the mental image
created by the players’ own fantasy. In our game a flock of animated
virtual seagulls fly around squawking while realistically animated 3D
ocean waves boom below. The seagulls’ movement is controlled by a
boid algorithm based on the work of Reynolds [83]. The physical bridge
blocks are made of stone and wood while their virtual counterparts use
similar textures. Additional real world decoration elements such as our
lighthouse and volcano offer unlimited opportunities to create a pow-
erful game atmosphere. If registered correctly, physical objects appear
to be washed by synthetic ocean waves, further blurring the boundary
between the real and virtual.

• Emotional domain: The emotional experience is predominantly deliv-
ered by the animated monster agents. Animations and sound effects
imply that the monsters possess a lazy and dull yet likeable personality.
Since virtual characters situated in AR environments give the impres-
sion of possessing a real, tangible body that is part of the player’s own
environment, characters appear more lifelike. In addition, the almighty
nature of the character control deciding about life and death attaches
players more emotionally to the creatures they are responsible for.

• Physical domain: As previously discussed, physical activity greatly en-
hances the playful nature of games. Playing with Monkeybridge also
involves a considerable amount of body movement because users con-
stantly have to find the best cell to place the next building block while
preventing the opponents from reaching their target first. A Head-Up
Display (HUD) provides an overview about the currently occupied cells
allowing strategic plans. Time pressure causes tension in the game that
comes from the suicidal attitude of the characters. Similar to the vir-
tual rodents of the famous Lemmings game [97], the monster agents
keep walking forward, even if there is no bridge platform ahead to step
on.

• Social domain: This domain is strongly connected to the physical do-
main. In AR opponents are natural parts of the environment preserv-
ing such important communicational cues as body and facial gestures.
While the players compete against one another to occupy cells, they
unwittingly block the other users’ hand, camera etc., which may result
in debates or jokes.

5.2 Monkeybridge 72

5.2.5 Game Setups
Similarly to all applications presented in this section, our game is grounded
in the Studierstube AR platform, the modular structure of which enables ex-
periments with several game setups using various tracking systems, displays
and interaction devices. The game can be configured to be a distributed
application or to run on a single computer. Before deciding for a setup, fi-
nancial and technical factors such as cost, installation time and calibration
efforts of the tracking system and display need to be considered.

We realized three demo setups to test Monkeybridge. The first and sim-
plest one runs on a single computer without video background, and uses a
simple keyboard-based tracking simulator. This is not an AR application,
only VR, serving as a simulator for evaluating usability and development
purposes. The second prototype relies on a multi-user setup with two com-
puters sharing application data and tracking information provided by the
ARToolKit optical marker recognition system. This setup requires two com-
puters equipped with webcams and three optical markers: a large calibration
marker to register the physical game board with the virtual game environ-
ment, and two small markers acting as user interaction devices to place the
bridge blocks. The live video stream recorded by the cameras is augmented
on the user’s computer screen residing next to the physical game board. Al-
though this setup is highly portable, requires simple calibration, lacks cables
and can built at low cost, it has significant drawbacks such as inferior track-
ing quality severely affected by lighting conditions and occlusion, camera
distortion and static viewpoint. The reason why the cameras have to remain
fixed after an initial calibration phase is the fact that we place several props
onto the game board at start-up which would cause the tracking algorithm
to lose the game board calibration marker during recognition.

The third setup uses the Flock of Birds magnetic tracking system from
Ascension to track two Sony Glasstron optical see-through HMDs and two
Plexiglas pucs to place the virtual tiles. This setup requires a specially manu-
factured table lacking any metal parts (screws, bolts etc.) to avoid distortion
of the magnetic field. As tracking quality is superior to the previous setup and
the HMDs provide dynamical viewpoint change, users have a strong sense of
presence. The tracking system and the HMDs need precise calibration every
time the game is installed in a new location.

Despite the superior visual quality the magnetic setup offers, it is heavily
tethered, which might come as a nuisance to some players. This problem
could be overcome by a fourth setup variant which we haven’t implemented
yet: a natural feature tracking-based solution using a handheld tablet PC
serving as a window onto the augmented world.

5.2 Monkeybridge 73

Figure 5.9: Autonomous agent behavior: a) Motion planning: choosing animation
and sound based on platform type, b) Path planning depending on the spatial dis-
tribution of available blocks

5.2 Monkeybridge 74

Figure 5.10: Optical marker tracking-based dual-user game setup

Figure 5.11: Magnetic tracker and HMD-based dual-user game setup

5.3 Virtual Tour Guide 75

5.3 Virtual Tour Guide
This application demonstrates how AR Puppet-based applications can be
authored by users without an in-depth knowledge of how to program our
AR framework. We encapsulate framework components as building blocks
within the APRIL framework (see Section 7.2 and [47]) that can be controlled
by a state machine constructed from a UML-based storyboard in APRIL’s
authoring pipeline. Firstly we describe the application to suggest its com-
plexity, then demonstrate how to hide internal implementation details and
let authors focus on high-level application functionality.

5.3.1 Application description
The Virtual Tour Guide embeds a virtual human acting as a tour guide into
a mobile indoor navigation application called Signpost [40]. The user wears
a mobile AR setup (see Figure 5.12a,b) and perceives the augmented world
through an HMD. A camera mounted above the HMD tracks fiducials placed
onto walls of the building area covered by the application (see Figure 5.12c).
The markers help locate the user within this area since the system knows
their exact position in a precisely measured virtual model of the building
that has been registered with its real counterpart.

The virtual tour guide character is placed into the reference frame of the
real building. While walking around, the character provides assistance to
find selected destinations and provides location-specific explanation about
the content of various rooms and people working in them using body ges-
tures (e.g. looking towards, pointing, asking the user to follow, etc.), 2D and
3D visual elements and sound. Since the tour guide is aware of the building
geometry, it appears to walk up real stairs and go through real doors and
walkways, thus further enhancing integrity with the user’s physical environ-
ment.

5.3.2 Integration with the APRIL Framework
The tour guide is represented by a virtual animated character, which is con-
trolled by the AR Puppet framework to execute various animation sequences
depending on and parameterized by the user’s current location within the
physical environment. Both AR Puppet and the Signpost navigation ap-
plication rely on the APRIL framework’s component model by turning AR
Puppet and Signpost into custom APRIL components, enabling the encap-
sulation of these frameworks’ high-level functionality. These components can

5.3 Virtual Tour Guide 76

Figure 5.12: Signpost user wearing a backpack-based mobile AR system: a) Back
view, b) Front view, c) Floor plan of the building where the user is guided around,
fiducial markers are marked with red triangles (All images courtesy of Vienna Uni-
versity of Technology)

Figure 5.13: Communication between the AR Puppet and Signpost systems within
the APRIL framework

5.3 Virtual Tour Guide 77

Figure 5.14: a) The Virtual Tour Guide application running on the desktop devel-
oper setup, b) An application view captured from the HMD of a user wearing the
mobile AR backpack system. In both setups a world-in-miniature view of the build-
ing model is shown and location-dependent HUD overlay graphics is presented to
the user as she roams the building

be used as black boxes by content authors that expose relevant input and out-
put fields for communication with other, external components while hiding
internal implementation details. Figure 5.13 illustrates the fields exposed by
Signpost and monitored by AR Puppet to provide the tour guide character
with relevant navigation information.

The indoor AR navigation system exposes location-based attributes to the
virtual tour guide agent. The application outputs the selected destination of
the user, the current and next room in the route suggested by the system,
the next portal to go through and a flag indicating whether the user has
reached its target location. By watching these attributes the virtual tour
guide can deliver location-based descriptions about the current room and
useful navigation information. Using hand and head gestures it is able to
show the right direction, point out locations of interest in the building, is
able to warn users when a door is approaching, and send a notification when
the destination has been reached.

The APRIL authoring pipeline is described in detail in Section 7.2, we
only briefly refer to individual stages now. The tour itself is modeled by the
APRIL storyboard as a UML state engine (a small part of the complete state
engine is shown in Figure 7.3 later. Individual stations of the guided tour are
modeled as states, triggering linear presentations when the user arrives. The
structure of the building and the different modes for the guided tour (linear
or free mode) are modeled by transitions and superstates.

In each state (i.e. specific station of the guided tour) agent commands
are issued by setting the AR Puppet component’s command attribute to a

5.4 Character Animation Studio 78

specific command string. These agent commands trigger appropriate anima-
tion sequences for the virtual human agent, therefore the agent appears to
be aware of the user’s location and surrounding environment. Transitions
between states are triggered by changes in the Signpost component’s out-
put attributes such as the position attribute marking absolute coordinates
of the user location within the building. If the state engine detects that
the position coordinates penetrate a given bounding box marking a physical
hotspot in the building, an event is generated that triggers a transition from
the current presentation state to a predefined target state, again initiating
associated agent actions.

5.3.3 Hardware Setups
The expensive and bulky mobile AR system required by the Signpost appli-
cation in its original form makes content and application authoring, debug-
ging and testing a difficult task, therefore we needed to develop a desktop
simulator system that is able to run the same navigation application with
simple keyboard input and screen-based output. The hardware abstraction
feature of APRIL conveniently hides details such as the type of display or
exact tracking setup from authors and components. Only symbolic names
are used that allow exchanging the internal implementation of the hardware
setup. When generating the executable Studierstube application, the de-
sired hardware configuration can be chosen from multiple configuration files
as long as they consistently use the same symbolic names when referring to
trackers, displays, or input devices. With this modular approach the same
AR application can be run on multiple hardware setups with minimal effort
and no code modification. See Figure 5.14 for an illustration of the Virtual
Tour Guide application running on the desktop simulator and the mobile AR
system.

5.4 Character Animation Studio
The Character Animation Studio scenario illustrates how the UbiAgent frame-
work can enhance distributed AR applications with migratable user interface
elements that automatically recognize the current application context and
proactively migrate to application instances best matching requirements dic-
tated by the current context. In this scenario the distributed application is
a character animation program and the migratable user interface element is
an animated character following users around when switching between net-
worked application instances located at diverse physical locations. Context

5.4 Character Animation Studio 79

information is determined by current user pose and minimum hardware re-
quirements for possible agent platforms such as CPU power of stationary
machines and battery level for mobile devices.

5.4.1 Application Scenario
Character animation projects in big studios rely on the collaborative work
of multiple people: modelers design the mesh, animators and programmers
create expressive behavior, and producers supervise all stages. The produc-
tion pipeline typically requires the simultaneous use of multiple computing
environments. Artists prefer to work on their personal computers, while pro-
grammers need to test characters in the target production environment such
as a game console, and producers report current progress to customers in the
presentation room. UbiAgent-enabled characters decrease the seam between
workspaces by proactively migrating to presentation environments demanded
by the current animation pipeline stage (see Figure 5.15).

In the design stage, a PDA is used as a tangible transfer medium for
characters. The PDA is pose-tracked by an ARToolKit-based fiducial marker
and webcams mounted on the designer PCs. If the mesh designer wants to
discuss potential modifications with the animator, he/she holds the PDA
in front of the webcam on the PC monitor, which indicates an intention to
“pick up” the character. The character senses the PDA’s spatial vicinity
and “jumps over” to the handheld agent platform, which is then carried to
the animator’s machine. There the character migrates again to the monitor
if the PDA enters a predefined “hot” area around the webcam. Changes
made to the character on the animator machine are persistently stored in
the UbiAgent database, therefore the next time the character is transferred
back to the modeler PC, its appearance is automatically updated to reflect
changes.

In the presentation stage the character is taken to the presentation room’s
projection screen, where an Ascension Flock of Birds magnetic tracking sys-
tem is installed. By mounting a magnetic receiver on the back of the PDA
and penetrating a predefined presentation area around the projection screen,
the character moves from a small, private handheld display to a large public
screen to show its features to a larger audience.

The continuity of the visual interface creates a spatially continuous work-
space for the collaborators and thus improves productivity. To avoid dis-
continuities in the interface and the interaction metaphor, the characters
constantly check the availability of target environments and only attempt
migration if the target platforms appear to be present and “hospitable”. This
includes for instance the periodic checking of the handheld device’s battery

5.4 Character Animation Studio 80

Figure 5.15: Enhancing the character animation pipeline with UbiAgents: a) Pick-
ing up character by PDA, b) Tangible character transfer, c) Persistent agent parame-
ter: wireframe mode preserved on PC and PDA, d) Sending character to projection
screen

level as a critical resource. If the battery level is too low, the character refuses
to be picked up by the PDA, or escapes to the nearest available display.

5.4.2 Required UbiAgent Components
To support the aforementioned scenario, character animation software pack-
ages need to be extended with UbiAgent components without modifying
often proprietary internal software structure. Although our test scenario
currently relies on our custom AR application framework, popular commer-
cial animation packages can also be enhanced by special plug-ins. Firstly,
each character animation application instance is encapsulated by a UbiAgent
application instance object. This object runs independently from the appli-
cation but continuously monitors its internal state and maps the observed
state information to external parameters such as the character’s rendering

5.4 Character Animation Studio 81

Figure 5.16: UbiAgent components in the Character Animation Studio

Figure 5.17: Communication scheme between UbiAgent components: a) Exchang-
ing messages between components using the shared memory area, b) Communi-
cation flow among UbiAgent components during a migration process

5.4 Character Animation Studio 82

mode, pose, scale, current animation sequence and level-of-detail.
The external parameters are defined by a character animation attribute

schema understood by a dedicated application control logic generating com-
mands for UbiAgent-enabled animation tools. All tools using this schema
(even if they internally rely on previously unknown, exotic software packages)
can dynamically join the virtual UbiAgent workspace without revealing their
low-level details to the character control, and thus serve as shared rendering
and manipulation resources that animators can exploit.

Besides the addition of the application control and instance objects, the
characters themselves are represented by UbiAgent bodies controlled by the
agent brain component. The agent bodies are rendered by the animation
tools using the distributed character and rendering parameters retrieved from
the shared database by the UbiAgent animation control. At the same time
the brain component monitors the PDA’s pose, and activates or deactivates
agent bodies if a user penetrates a display’s hotspot area and the “hospitabil-
ity” parameter of the corresponding habitat is above a predefined threshold.

As Figure 5.16 shows, the modeler and animator PC, the PDA, and the
presentation machine are all habitats expecting UbiAgents by running an
application to render and tweak animated 3D characters. All habitats con-
tain an instance of the distributed character animation application and a
UbiAgent body represented by the character manipulated in the application
instance. The habitats are added to and removed from the database by the
Habitat Manager component running on a dedicated server machine. This
component periodically pings all habitats to report error-free operation and
communication, and removes unresponsive habitats.

Figure 5.17 illustrates the communication scheme between UbiAgent com-
ponents using the shared agent and application memory area represented by
a database. The left image shows the message types exchanged between the
database and the components. The right image indicates the communication
flow while the UbiAgent brain migrates an agent body from one habitat to
another. Firstly, the current application status is queried by the UbiAgent
brain. Based on this status information the UbiAgent brain sets specific
hardware and software requirements, which are then transformed into habi-
tat selection filters represented by database search criteria. By regularly
querying the database with the given criteria, the UbiAgent brain gets an
overview of the capabilities of all habitats where UbiAgent bodies may reside.
Based on the current habitat requirements the UbiAgent brain activates one
or more UbiAgent bodies within new habitats while deactivating bodies in
previously active but no longer suitable habitats.

The agent brain, the XML database, and the habitat manager run on
a dedicated control PC. All components communicate via WLAN using

5.5 Ubiquitous Technician 83

Figure 5.18: Screenshots from the Ubiquitous Technician application. This applica-
tion seamlessly combines an indoor AR navigation system (a,c), an ultra-wideband
calibration aid (b), and a machine maintenance application (d)

TCP/IP and UDP messages. The handheld agent platform is installed on a
Dell Axim X51 PDA with hardware accelerated graphics, which runs Daniel
Wagner’s Klimt and FPK libraries [35] to render an animated 3D character.
The PC-based characters are based on the Cal3D skeleton-based character
animation library [18].

5.5 Ubiquitous Technician
The Ubiquitous Technician scenario demonstrates a technique how multiple
AR applications can be seamlessly combined to form a spatially distributed
“smart” environment using the UbiAgent framework. Any application com-
plying to a predefined attribute mapping scheme can be dynamically incor-
porated into this environment as its internal status is represented in a way
that can be “understood” by UbiAgents, enabling them to react to applica-
tion status changes accordingly. Firstly the application scenario is described,
which is followed by details of the attribute mapping.

5.5 Ubiquitous Technician 84

Figure 5.19: Inter-application communication flow

Figure 5.20: Communication flow between UbiAgent components

5.5 Ubiquitous Technician 85

5.5.1 Application Scenario
Technicians are a scarce resource in every research lab and company. Their
never-ending to-do list is constantly extended with requests to fix malfunc-
tioning computers, calibrate tracking systems, and maintain copy machines,
all located in different offices. The Ubiquitous Technician application pro-
vides assistance for our research lab’s technician to complete various mainte-
nance tasks on his to-do list. In this scenario we intentionally reuse elements
from previous research demonstrations to test the encapsulation and commu-
nication of complex external AR applications, and to create richer content
for our demo application.

The technician agent’s brain creates a control loop to systematically go
through the technician’s to-do items (see Figure 5.18). As each task is located
at a different place in our building, the loop first activates a modified version
of the aforementioned Signpost AR indoor navigation system (see Section
5.3) to guide the technician to the next task’s location. The navigation
application runs on a Sony VAIO U70 portable computer equipped with a
webcam tracking fiducial markers on office walls and corridors, a UbiSense
ultra-wideband (UWB) position tracker, and an IntertiaCube3 inertial sensor
to calculate the technician’s current pose inside the building. The application
displays a virtual compass suggesting the direction the technician should
follow to reach the target.

This complex AR navigation system is encapsulated by an application
controller object exposing only three attributes: current destination, cur-
rent location, and a flag indicating whether the current destination has been
reached. After arriving at the target location, the agent migrates to the AR
application associated with the current maintenance task.

The first job is to calibrate a cell of a UWB tracking system. An AR
application [63] visualizes angle-of-arrival sensor measurements by virtual
rays emanating from the physical sensors, and helps overcome problematic
situations such as multipath signals caused by reflections from metal ceil-
ings and doors. When erroneous measurements are detected, the technician
mounts a marker on a nearby surface suspected to cause the reflections. The
marker calculates the surface’s relative pose to the UWB sensors, enabling
the agent to suggest a virtual baffle to block out unwanted signals. When the
technician has finished the calibration procedure, he returns to the indoor
navigation guide, which has already received a message with the next desti-
nation from the UbiAgent brain. Again, the technician is guided to the next
task, which is the aforementioned LEGO maintenance scenario (described in
Section 5.1).

5.5 Ubiquitous Technician 86

5.5.2 Attribute Schema and Communication Flow
As Figure 5.19 and Figure 5.20 illustrate, the Ubiquitous Technician sce-
nario includes three previously independent AR applications that communi-
cate with one another using the XML database as a shared memory area.
New applications can be dynamically added to the to-do list by encapsu-
lating them with an appropriate application control. The schema of the
application control must contain a Signpost-compatible description of the
application’s location in the building, a trigger to activate the application
when the technician is nearby, and a flag indicating that the application task
has been completed, which instructs the agent brain to proceed to the next
to-do item.

The UbiAgent brain maintains a to-do list that can be extended dynam-
ically at run-time. Each list item contains information about the location
and name of a single AR application the technician can complete a task
with. When the task finishes, the agent brain gets notified and proceeds to
the next to-do list item. The item’s associated location code is sent to the
Signpost navigation system and becomes the current navigation destination.
Then Signpost guides the user to the desired location. When the destination
has been reached, Signpost notifies the UbiAgent brain, which activates the
application associated with the current task with a trigger message for the
application controller. The technician works with the active application until
the task is finished. Then the agent brain gets notified again to select the
next task, and the Ubiquitous Technician loop starts again.

Chapter 6

Implementation

In this chapter we describe the technological foundations and implemen-
tation details of the AR Puppet and UbiAgent frameworks and how they
can enhance Studierstube-based AR applications with embodied autonomous
agents.

6.1 Technological Foundations
AR applications based on the AR Puppet and UbiAgent framework assist
the manipulation of rich multimedia content with autonomous and proac-
tive software components and high-level user interaction. As described in
detail by Reitmayr [78], the implementation of interactive AR applications
includes numerous repetitive tasks such as data management, collaboration,
3D presentation, 3D interaction, control GUI, application core, and track-
ing. Instead of implementing our own modules from scratch, we build our
animated agent framework on existing open source software toolkits that en-
rich our application development process with code reusability and the joint
efforts and shared knowledge of online developer communities.

6.1.1 Requirements
We have set the following requirements for toolkits that will form the software
base of our agent framework:

• The toolkits support the development of an object-oriented hierarchical
animation framework to implement object roles described in Chapter 3
and 4. Framework objects enable the encapsulation of AR applications
as black boxes to hide internal implementation details and to offer

87

6.1 Technological Foundations 88

a high-level interface for controlling and observing application status
through input and output parameters.

• The toolkits provide a rich and extensible set of utility components
and functions for high-level access of toolkit features while preserving
a low-level interface for versatile customization.

• External toolkits can be easily integrated to extend framework func-
tionality such as a character animation library enabling multiple char-
acter formats, a speech recognition and synthesis module for multi-
modal agent-human communication, or a database manager facilitating
persistent agent memory.

• The toolkits support collaborative multi-user applications where sta-
tus information is distributed over the network between application
instances.

• Quick prototyping and rapid application development are supported by
providing a scripting interface and a set of reusable configuration files.

• Cross-platform development is allowed so that applications running on
multiple computer platforms can be enhanced with agent technologies
without significant porting efforts.

• The performance of the generated executable applications allows real-
time interaction with complex 3D applications.

This chapter presents the technical details of the toolkits which were
used in the implementation of the AR Puppet and UbiAgent frameworks,
and illustrates how these toolkits meet the above requirements by describing
individual toolkit features exploited by our software frameworks to create
agent-enabled AR applications. We selected the following toolkits to meet
the aforementioned requirements:

• Open Inventor: an open-source high-level 3D graphics toolkit for devel-
oping cross-platform interactive 3D visualization and visual simulation
applications

• OpenTracker: an extensible library solving different tasks involved in
tracking input devices and processing tracking data for virtual environ-
ments

• Studierstube: a collaborative AR framework supporting the rapid de-
velopment of mobile, collaborative and ubiquitous AR applications

6.1 Technological Foundations 89

• Cal3D: an open-source skeleton-based 3D character animation library
written in a platform and graphic API-independent way

• Muddleware: a robust, high-performance XML database supporting a
large number of clients and queries simultaneously

Figure 6.1 illustrates how agent-enabled AR applications build upon AR
Puppet, UbiAgent, and the aforementioned toolkits. Agent-enabled applica-
tions built on our framework preserve the structure and implementation of
the original core AR applications, while enabling the development of “smart”
software components that observe internal application status and proactively
generate an appropriate response by relying on AR Puppet and UbiAgent
framework services. In our implementation all AR applications are based on
the Studierstube collaborative AR framework. Studierstube extends Open
Inventor, an object-oriented high-level graphics API, with an extensible set
of utility classes supporting the rapid development of multi-user AR appli-
cations.

To facilitate collaborative AR applications where application state in-
formation is distributed over the network, Studierstube relies on services
of the Distributed Open Inventor (DIV) library, which is an extension of
Open Inventor supporting scene graphs distributed over the network. The
functionality of standard Studierstube objects is further extended with the
integration of external toolkits such as the Cal3D character animation li-
brary [18] for advanced character manipulation and rendering support, the
Muddleware real-time database [35], and other utility libraries such as the
Microsoft Speech API framework [60] for speech synthesis and recognition
or the FMOD cross-platform audio library [29]. All external libraries are
integrated into Studierstube by creating a special Inventor-based wrapper
node encapsulating framework functionalities in a standard way that can be
understood by all other objects within the scene graph.

An essential part of Studierstube is the handling of real-time 3D events
coming from tracking systems and other input devices. A big emphasis has
been put on device abstraction, which means that AR applications built on
top of Studierstube do not have to be aware of the exact hardware setup
including tracking hardware, interaction devices or networking capabilities.
Instead, they can refer to these resources by abstract names, allowing ap-
plication developers and content authors to focus on high-level concepts and
functionality. This also increases portability by allowing the same application
to run with different hardware configurations without modifying the applica-
tion itself. Studierstube relies on the OpenTracker framework to gain device
abstraction and to receive tracking events from tracking hardware devices in

6.1 Technological Foundations 90

Figure 6.1: Software stack supporting the AR Puppet and UbiAgent frameworks

a standard format understood by dedicated Studierstube components. Open-
Tracker can be easily extended by new modules handling previously unknown
hardware devices by wrapping up associated drivers as OpenTracker compo-
nents with a standard communication interface.

In the following sections we describe how each software toolkit is exploited
by the AR Puppet and UbiAgent frameworks. Instead of providing a detailed
summary and an in-depth description of each toolkit, we reference respective
literature and focus only on features relevant to AR Puppet and UbiAgent.

6.1.2 Open Inventor
Open Inventor (OIV) is a cross-platform “retained mode” 3D graphics API
originally developed by Silicon Graphics Inc. We use Systems in Motion’s im-
plementation called Coin3D, which is portable over a wide range of platforms
such as UNIX / Linux / *BSD platforms, all Microsoft Windows operating

6.1 Technological Foundations 91

systems, and Mac OS X. In-depth details about the Coin3D API and Open
Inventor concepts are described in the books The Inventor Mentor [106] and
The Inventor Toolmaker [107], and Systems in Motion’s Coin3D website [23].

Open Inventor follows an object-oriented and structured approach to de-
scribing scenes containing 3D objects, common graphical needs of 3D appli-
cations and interactions with the 3D content. As described by Strauss and
Carey [93], Open Inventor effectively tackles the “duplicate database prob-
lem”, whereby interactive graphical applications use the same data structure
to compute application state and to render the graphical output. This ap-
proach saves considerable storage and administrative overhead resulting in
increased performance, and greatly simplifies the design of interactive graph-
ical applications. This speed-up for developers, content authors, and users
is particularly precious for complex and resource intensive applications such
as AR environments.

One of the most important features of Open Inventor is extensibility.
The library provides a rich default set of utility classes to create, manipu-
late and interact with 2D and 3D objects. Users can either add their own
application-specific classes and methods or change the appearance and be-
havior of existing objects by overloading operations such as rendering or
geometric computations. Objects are abstract representations of informa-
tion that can render themselves when requested, influencing the final visual
output.

The foundation of Open Inventor’s abstract object representation is the
scene database. It stores dynamic representations of 3D scenes as directed
acyclic graphs (called scene graphs) of objects called nodes. Various classes
of nodes can be used to represent different geometries, rendering properties,
and database traversal behaviors. The database provides a set of actions
that can be applied to scene graphs or scene graph parts such as actions for
rendering, picking, computing a bounding box, event handling, or writing
the scene to a file.

The rendering process is a traversal of the scene graph where each node
affects the current state of the rendering process, therefore the order in which
nodes are traversed has a significant impact on the final visual output. The
rendering mechanism inside Open Inventor objects employs OpenGL and
thus is highly optimized to take advantage of OpenGL accelerators. During
rendering each scene graph object automatically makes proper, efficient calls
to OpenGL.

Nodes can store instance-specific information in sub-objects called fields.
Each node class can define one or more fields, with which specific value types
can be associated. Fields can be used for unidirectional or bidirectional
communication between nodes. If a field value represents an object status

6.1 Technological Foundations 92

Figure 6.2: Example scenario for non-invasive Open Inventor-based agent-
application communication

element and the field is regularly updated to reflect latest status changes,
then the field represents an output or status attribute. If external changes in
a field value are monitored by the object and influence internal object state,
then the field is an input or control attribute. If a field is either an input or an
output attribute but cannot be both at the same time (e.g. external changes
in the field value of an output-only attribute are ignored and overwritten
by the object), the field enables only unidirectional communication. In case
the field retains both functionalities simultaneously, it supports bidirectional
communication between nodes. This can be achieved by one component
giving response to another component’s stimulus.

Fields of nodes can be connected to receive updates from other fields, and
thus forming a data flow network. A special class of objects called engines

6.1 Technological Foundations 93

can be embedded in the data flow graph to process field value changes and
compute new updates to other fields. These objects are not part of the
scene graph but only of an overlaid field network graph. Components in the
AR Puppet and UbiAgent framework are all custom-made Open Inventor
scene graph nodes, nodekits (special nodes internally containing a structured
subgraph of other nodes), and engines. A few components overload some of
the default action handler functions such as rendering or traversal order to
implement custom behavior.

We exploit the fact that Studierstube-based AR applications are also built
on Open Inventor. Hence AR applications can be easily enhanced by agent
services by simply attaching a sub-scene graph containing AR Puppet or
UbiAgent components to the application scene graph. This non-invasive ap-
proach does not modify the application’s internal structure yet allows agents
to monitor internal application state by establishing field connections from
the AR application’s output attributes to dedicated agent sensor fields re-
spectively, and influence the application state by creating field connections
from dedicated agent control fields to input application attributes.

In the case of attribute monitoring, unidirectional communication chan-
nels are created from the application to the agent without interfering with
the original AR application’s operation as new outgoing field connections do
not break a field’s existing outgoing connections. On the other hand, the
agent’s application control capabilities demand careful attention from the
application developer when adding agent control services as incoming field
connections break existing incoming field connections and thus alter internal
application data flow mechanisms. Since agents do not influence the appli-
cation state directly, only through dedicated fields and field connections, it
does not matter whether the agent sub-scene graph is inserted before or after
the application scene graph.

Figure 6.2 shows an example scenario for non-invasive Open Inventor-
based agent-application communication. The application is represented by a
simplistic sub-scene graph rendering a 3D cube. The color and 3D position of
the cube can be changed through configurable parameters. The 3D position is
controlled by user interaction nodes within the application, e.g. handling 3D
events of a tracked input device. Field sensors in the agent sub-scene graph
monitor changes in the cube’s position output attribute. If the cube’s center
penetrates a configurable 3D hotspot area, sensors in the agent framework
generate an event that instructs an agent control logic to change the color of
the cube through the application’s diffuse color input attribute.

As the following sample Inventor script illustrates, the aforementioned
simple scenario can be quickly authored using Open Inventor’s powerful
scripting mechanism to assemble scene graphs and make field connections.

6.1 Technological Foundations 94

For the user interaction and agent framework subgraph we use pseudocompo-
nents to simplify graph representation and to save space. In the code below
we rely on the SoRoute Inventor-based utility object included in the Studier-
stube library (see Section 6.1.4) to make field connections outside nodes. The
hashmark character marks comments.

...

application subgraph

Separator {

transform node

DEF TRANSFORMATION Transform {

user interaction pseudocomponent

translation = MyInteractionComponent {

...

}.position

}

object material

DEF COLORMATERIAL Material {}

3D shape object

DEF 3DSHAPE Cube {}

}

...

agent framework subgraph

Separator {

agent framework pseudocomponent

DEF AGENTCOMPONENT MyAgentComponent {

hotspot Coordinate3 {

3D hotspot = 1 m3 area around origin

point [-0.5 -0.5 -0.5, 0.5 0.5 0.5]

}

field connection with standard Inventor mechanism

objectPosition = USE TRANSFORMATION.translation

}

}

field connection with the "SoRoute" Studierstube object

SoRoute {

from "AGENTCOMPONENT.colorControl"

to "COLORMATERIAL.diffuseColor"

}

...

6.1 Technological Foundations 95

6.1.3 OpenTracker
To appropriately overlay virtual objects on top of the real world, AR ap-
plications need to create and maintain an accurate model of the physical
environment. This world model is obtained and updated by sensors deliv-
ering estimates of physical properties such as pose, velocity, temperature or
light. To allow agents to understand and react to various real world events
coming from diverse tracking systems, interaction props, measuring instru-
ments, and other input devices, a standard event format needs to be used.
Moreover, the exact hardware configuration of event sources has to be ab-
stracted for agents to allow them to work with portable applications that can
run on multiple hardware configurations.

The OpenTracker framework [79] is an extensible C++ class library im-
plementing a standard way of processing tracking data for virtual environ-
ments. It provides a multi-platform, open software architecture based on
a highly modular design and a configuration syntax based on XML. Open-
Tracker provides device abstraction for applications using tracking services
and feed them with real-time tracking events. It can be flexibly extended with
new device handling modules by providing a well-defined software interface
for previously unknown devices. OpenTracker manages a generic data flow
network and describes complex manipulations of data as a series of simple
transformations in an object-oriented graph structure.

Figure 6.3 shows the 3D event data flow between OpenTracker and agent-
enabled AR applications. Firstly, tracking system components and other
input devices deliver device-specific messages to OpenTracker where they are
processed by specific handler modules integrating respective device drivers.
OpenTracker translates these proprietary messages into a standard 3D event
format containing position, orientation, button state, confidence, and time
stamp information, and creates a data flow for each individual tracking source
structure.

Studierstube employs abstract interface objects called stations to get se-
lected OpenTracker data flows into the AR application scene graphs. Stations
are identified with non-negative integer numbers that also serve as abstract
names for tracking hardware configurations generating data for OpenTracker.
Studierstube nodes may directly obtain tracking events consisting of position,
orientation and button state information from dedicated stations through a
general event handler object or use one of the numerous utility classes pro-
viding convenience functions for event handling.

Since the AR Puppet and UbiAgent frameworks are built on top of
Studierstube, their components can also register for receiving tracking events
from selected stations. Agent control logics then add semantics to standard

6.1 Technological Foundations 96

Figure 6.3: Event flow between OpenTracker and agent-enabled applications

Studierstube events by combining events from several sources with unary,
binary or tertiary operators, such as an object penetrating a hotspot area
around another tracked object or a fixed point in space, objects moving to-
wards each other, objects facing each other, etc.

6.1.4 Studierstube
Studierstube is a framework that extends the Open Inventor library and of-
fers a rich set of reusable building blocks for collaborative AR applications.
The powerful scripting mechanism of the underlying Inventor API makes
Studierstube highly suitable for prototyping and rapid application develop-
ment as the building blocks can be quickly assembled and configured to create
distributed multi-user applications with advanced interaction capabilities.

6.1 Technological Foundations 97

Figure 6.4: The hierarchical structure of software toolkits and services for Studier-
stube and agent-enabled AR applications

Figure 6.4 shows the toolkits and services Studierstube and Studierstube-
based AR applications are based on. Studierstube integrates services from
Open Inventor such as the scene graph philosophy, abstract object represen-
tation as scene graph nodes, configuration and communication through fields
and field connections, and the high degree of toolkit extensibility. Studier-
stube also closely relies on OpenTracker services such as tracking device ab-
straction, an interface for obtaining tracking data flows in a standard event
format, and easy configuration of underlying hardware structure via flexible
and reusable configuration files.

The AR Puppet and UbiAgent frameworks are built on top of Studier-
stube as an extra software layer offering agent services for Studierstube-
based AR applications. To create an agent-enabled AR application, the
agent framework components are embedded directly into the AR applica-
tion, which enables a close integration such as sharing the same rendering
area for seamless visual output and receiving the same interaction events for
maintaining an accurate world model.

Reitmayr [78] provides an extensive overview of the design principles,
building blocks and software services of Studierstube, therefore we only pro-
vide a brief description of modules that are relevant to our agent frameworks:

6.1 Technological Foundations 98

• 3D event handling: As described in Section 6.1.3, Studierstube receives
3D events from OpenTracker through stations, dedicated interface ob-
jects, in a standard format containing position, orientation, and button
state. Each station corresponds to a data flow from a specific tracking
hardware structure configured in an OpenTracker configuration script.
Studierstube provides numerous utility objects and functions to obtain
3D events from stations and use them within scene graph objects. Our
agent framework components rely on the Stb3DEventGenerator inter-
face object, the SoTrakEngine engine, and the SoTrackedArtifactKit
nodekit to receive events from selected stations.

• Distributed application management: Studierstube enables the devel-
opment of collaborative distributed AR applications by using a dis-
tributed shared scene graph that follows the semantics of a distributed
shared memory. The concept and implementation of distributed scene
graphs is built on Open Inventor yielding the Distributed Open Inven-
tor (DIV) library [36]. DIV relies on Inventor’s notification mechanism
and a reliable multicast protocol to distribute changes. Studierstube’s
built-in DIV support (e.g. with the dedicated SoDIVGroup node) al-
lows the automatic management and synchronization of multiple ap-
plication instances and master-slave rights.

• Multi-user management: Distributed applications with multiple ap-
plication instances assume the presence of multiple users. User enti-
ties and their typical parameters are encapsulated by Studierstube’s
SoUserKit class, the instances of which are managed by the SoUser-
ManagerKit object. Users view the augmented world through associ-
ated displays, which are represented by the SoDisplayKit class. Dis-
play objects provide configuration parameters and rendering support
for multiple output devices common in VR and AR applications such as
computer monitors, stereo optical and video see-through head-mounted
displays, projection screens, or virtual workbenches.

• High-level interaction support: 3D applications demand 3D graphical
user interfaces for interaction. Studierstube uses the Personal Interac-
tion Panel metaphor [95] that employs a two-handed hardware setup
consisting of a lightweight tracked handheld panel and a tracked pen.
Virtual 2D and 3D interface elements are superimposed over the hand-
held physical panel, turning it into a tangible 3D menu (handled by
SoPipKit and SoPipSheetKit) that is manipulated by a 3D cursor (han-
dled by SoPenKit) controlled by the physical pen. Studierstube pro-
vides an extensive 3D widget set for quick GUI development.

6.1 Technological Foundations 99

• Utility classes and integrated toolkits: Studierstube contains a large
set of miscellaneous utility classes such as geometric transformations,
altering the current rendering state, network communication, or scene
graph manipulation functions. Moreover, several external toolkits have
been integrated into Studierstube to extend its functionality such as the
Cal3D character animation library (see Section 6.1.5), the Muddleware
real-time XML database (see Section 6.1.6), the FMOD audio library
[29], the Microsoft Speech API [60] for speech recognition and synthesis,
and the Personal Universal Controller technology (see Section 7.3.1).

6.1.5 Cal3D
Cal3D [18] is an open source 3D character animation library written in a plat-
form and graphic-API independent way. It contains a set of utility classes
to store, manipulate and render animated skeleton-based 3D characters in
an animation package-neutral format. It does not handle the actual ren-
dering and the texture-management itself to avoid hard-coded dependencies
on libraries and APIs such as OpenGL or DirectX. The library is coded in
C++ and only depends on the STL. Cal3D comes with exporter plug-ins
for major 3D modeling and animation software packages such as 3D Studio
MAX, Maya, and Blender, making Cal3D an attractive toolkit to insert high
quality, artistic content into AR applications.

Integration into Studierstube is made by an Open Inventor-based wrap-
per class that encapsulates Cal3D’s functionalities as an Inventor nodekit
and offers an input and output field-based interface to monitor and control
character appearance and behavior. The nodekit is called SoCal3DPuppet,
following the naming convention of the AR Puppet framework it was initially
created for. Although our agent frameworks support multiple character li-
braries such as a 3D talking head or MD2-based characters (see Section 6.2.1)
for agent embodiments, Cal3D is the most advanced and flexible character
animation framework for our purposes.

In the SoCal3DPuppet nodekit all major character manipulation func-
tions can be accessed through fields: load and create a character from a
given configuration file, start/stop animation sequences, mix multiple ani-
mation sequences with blend factors, set the level-of-detail, show or hide the
character’s skin and skeleton, and manually configure bone and joint para-
meters and constraints for inverse kinematics. SoCal3DPuppet manages an
internal list shared by all nodekit instances to store already loaded charac-
ters. This character cache greatly improves performance when using a large
number of characters to create an army or crowd as already loaded characters
do not have to be initialized again, they just need to be instantiated saving

6.1 Technological Foundations 100

time and memory.
Besides fields, SoCal3DPuppet also contains several public nodekit parts

(e.g. bbCoord, bbMaterial, bbDrawStyle etc. to configure the appearance of
bounding boxes appearing around individual skeleton bones. These parts
come handy when the character is used in a modeling program such as that
presented in Section 7.3.2, where an animator adjusts the pose of each bone
to create keyframes for animation sequences and highlighting the currently
active bone provides important visual feedback. Figure 6.5 shows examples
of field- and nodekit part-based character control in a scene graph.

As later described in Section 6.2.2, high-level animation commands for
SoCal3DPuppet-based characters will be handled by the SoCal3DPuppeteer
class in the AR Puppet framework, while UbiAgent uses the nodekit directly.

Figure 6.5: Effects of field value changes in the SoCal3DPuppet nodekit. Changes
are executed in order: 1. load character file, turn on skeleton, turn off skin mesh,
set looping animation, 2. turn off skeleton, turn on skin mesh, 3. load new charac-
ter, 4. execute animation sequence, 5. turn direct manipulation mode on, highlight
currently active bone with color index array and bone material nodekit part

6.1 Technological Foundations 101

6.1.6 Muddleware
Muddleware is a real-time database inspired by the concept of Tuplespaces
[30] and implemented by Daniel Wagner. On the server side it is implemented
as a memory-mapped XML database, where all data elements are stored as
XML nodes by using an extended version of the TinyXML [98] library’s
DOM implementation. The XML data representation makes Muddleware
highly suitable for storing hierarchical data structures, where clients can
quickly retrieve and manipulate elements using queries based on the XPath
1.0 technology [112].

Besides the execution of ordinary database operations, Muddleware also
allows clients to register watchdogs or database element update events. Watch-
dogs provide a simple yet powerful publish/subscribe mechanism and allow
an easy setup of communication channels between clients. Muddleware is a
high-performance database capable of handling thousands of queries per sec-
ond and hundreds of clients simultaneously. Muddleware is highly portable
as it is based on multi-platform libraries such as ACE [2] and TinyXML.

Muddleware clients can be integrated into Studierstube and UbiAgent by
the Open Inventor class XMLLogger. Inventor nodekits derived from XML-
Logger are capable of reading/writing field values from/into a Muddleware-
based XML database. Fields can be the Inventor class’ own fields or fields
of named field containers such as nodes, nodekits and engines. XMLLogger-
based Inventor objects enable encapsulation and persistency, whereby the
database stores meaningful attributes from which object state can be re-
stored. Muddleware can also serve as a possible implementation of a dis-
tributed scene graph where the database operates as a shared memory area
between scene graph elements.

Besides setting parameters of the network connection to the database,
low-level attributes of logging operations can be configured for each field the
value of which is written into or read from the database by XMLLogger.
The container name and field name together mark a field of a named field
container in the scene graph for logging. The logging mode defines whether
the field value should be read from or written into the database or should
perform both operations in a given order. The logging mode can also define
the logging condition i.e. a given database operation should be repeatedly
performed at a configurable frequency or every time the field value is up-
dated. XPath templates create parameterizable pointers to a part of the
XML database the field values will be read from or written into. These tem-
plates contain parameters that are expanded at runtime such as the ID of
the XMLLogger object, the name of the logged field, name of the respective
field container, and an arbitrary number of custom parameters stored in an

6.1 Technological Foundations 102

ordered list that users can configure in a separate field.
Use cases in Figure 6.6 illustrate the versatile applicability of the XML-

Logger component for application distribution, object persistency, and com-
munication between objects through a shared memory area. The Inventor
script below provides an example for the object communication use case.
Figure 6.7 shows a graphical illustration of the scene graph constructed by
the script.

...

Separator {

Separator {

DEF TRANS Transform {

translation = DEF TRACKED_OBJECT SoTrakEngine {

station 0

}.translation

}

DEF TEXT SoText3 { string "Hello world!" }

}

Separator {

Transform { translation -0.1 0 0 }

DEF TEXT2 SoText3 { string "Muddleware Test" }

}

}

...

DEF XMLLOGGER XMLLogger {

id "MuddlewareTest" # object ID

XMLDB connection parameters

addressXMLDB "192.168.0.2"

portXMLDB 20000

field logging parameters

logContainerName ["TRANS", "TEXT", "TEXT2"]

logFieldName ["translation", "string", "string"]

logXPathTemplateWrite "/test/writearea/$container$/@$field$"

logXPathTemplateRead "/test/readarea/$container$/@$field$"

logFieldMode [LM_WRITE, LM_READ, LM_READ_WRITE]

logWriteMode [WM_FIELDCHANGE, WM_TIMER, WM_TIMER]

logUpdateTime [-1, 1, 4]

}

...

6.1 Technological Foundations 103

Figure 6.6: Application scenarios of the XMLLogger component: a) Distributed
applications, b) Object persistency, c) Shared memory area between objects

Figure 6.7: Graphical representation of a scene graph containing the XMLLogger
object to communicate with the Muddleware XML database

6.2 AR Puppet Implementation 104

The XMLLogger component and the Muddleware database are core build-
ing blocks of the UbiAgent framework, where they are used for maintaining a
persistent storage for agent and application attributes and a shared memory
area between agents and applications. Details can be found in Section 6.3.

6.2 AR Puppet Implementation
Similarly to Studierstube, the AR Puppet framework is a collection of Open
Inventor classes extending Inventor’s default functionality. They implement
the abstract object hierarchy depicted in Figure 3.4. In our description we
go gradually upwards in the object hierarchy by first explaining the imple-
mentation details of puppets followed by puppeteers, the choreographer, and
finally the director component. Figure 6.8 provides a general overview of
the inheritance structure of Inventor-based C++ classes making up the AR
Puppet framework.

Figure 6.8: Inheritance tree with the AR Puppet framework’s Inventor classes

6.2 AR Puppet Implementation 105

6.2.1 Puppets
Puppets represent agent embodiments and serve as wrapper classes for scene
graphs forming agent bodies and character animation libraries such as the
Cal3D toolkit as shown in Section 6.1.5. Puppets consist of one or more nodes
or nodekits derived from Inventor base classes to which character-specific at-
tribute fields are added. For instance, the SoCal3DPuppet node adds fields
to load and manipulate the appearance and behavior of skeleton-based 3D
characters built on the Cal3D library. Besides new fields, puppets usually
overload the parent node’s or nodekit’s callback functions to implement cus-
tom behavior for rendering, bounding box calculation, and raypicking.

Theoretically any Inventor scene graph can act as a puppet, however, for
our application scenarios we created three reusable puppets:

• SoCal3DPuppet: This puppet integrates the Cal3D character anima-
tion library into Open Inventor, and thus Studierstube and AR Puppet.
The puppet contains fields and functions to load, configure, and ren-
der skeleton-based animated 3D characters with rich artistic content
exported from popular 3D modeling and animation software packages.
See Section 6.1.5 for more details.

• SoFacePuppet: This puppet is a wrapper for an affective 3D talking
head component with rich facial expressions. The talking head is de-
scribed in detail in [10] and [20]. The talking head is capable of synthe-
sizing numerous facial expressions based on a synthetic facial muscle
model, performing lip synchronization to text-to-speech engine output,
rendering vascular expressions such as blushing or pallor, and exhibit-
ing lifelike behavior elements such as automatic insertion of eye blinks
and gulping.

• SoLegoPuppet: This puppet encapsulates active physical objects assem-
bled from the LEGO Mindstorms R© robot kit. This kit facilitates the
manual assembly and dynamic alteration of real robots and provides
people lacking home electronic skills with an easy and flexible way to
assemble responsive physical agent embodiments with a virtual control
interface. The control interface is implemented by the SoLegoPuppet
node, which communicates with the robot’s “brain” or control unit via
low-level infrared commands. It provides controls to turn engines on
and off, set the engine direction and power, set the sensor mode, query
sensor measurements, maintain an infrared message queue and periodi-
cally test whether the physical robot is “alive”, that is whether it sends
proper reactions to commands.

6.2 AR Puppet Implementation 106

Agent embodiments may also use a fourth puppet called SoMD2NodeKit,
which was already included in Studierstube and can render animated charac-
ters stored in the popular MD2 format of the Quake 2 computer game. The
MD2 format is rather simple as it stores character animation sequences as ver-
tex coordinate arrays, translations and scaling operations for each keyframe,
and interpolates between keyframes for smooth animation.

6.2.2 Puppeteers
Command interface

While each puppet provides its own custom interface to control appearance
and behavior, the puppeteer component implemented by the SoPuppeteerKit
Inventor class is the lowest-level object in the AR Puppet hierarchy to offer
a standard unified command interface for higher-level framework objects.
SoPuppeteerKit is derived from the SoCommandParserKit class to gain an
animation command interface facilitating a multi-level command queue, a
configurable command parser and a customizable timed command loop.

Commands supported by a certain puppeteer instance are defined in the
”commandName argumentList” format where the argument list contains the
type, order and default value of command arguments. Currently the following
basic types are supported: integer, float, and string symbolized by %d, %f,
and %s respectively. Default argument values can be specified in brackets
after the argument type. For example, the command ”setPosition %f %f

%f %d(0)” is a function setting the puppeteer’s 3D position to a specific
value within a given number of milliseconds. The function expects three
float values for the position coordinates and an integer value for the time
with a default value of 0 milliseconds. Missing arguments without default
values and type mismatches are reported as errors during parsing.

The command parser also supports complex data types used by Open
Inventor such as multi-dimensional vectors, quaternions, bounding boxes,
etc. These complex types are composed of elements of one of the three basic
argument types, e.g. a 3D vector consists of three float values. Arguments of
complex data types are expanded into basic type elements again during the
command parsing process, therefore the command syntax and parsing can
be kept simple by restricting the format to basic types only.

Multiple puppeteer commands can be issued by using command groups
to determine whether certain commands should be executed sequentially, in
parallel or in combination. Besides command groups compound commands
can also be created with complex internal dependencies that are expanded
into a hierarchical structure of simple commands by the parser. For instance

6.2 AR Puppet Implementation 107

the compound command “go to target point within given time” for a vir-
tual human agent is expanded into the command sequence “turn towards
target point”, “start looping walk animation”, “set position to target point
within given time”, and finally “start idle animation” if no other animation
command follows.

The puppeteer’s command interface makes it transparent to other com-
ponents which puppets (i.e. physical, virtual or augmented agent represen-
tations) execute puppeteer actions, which yields a unified interface for con-
trolling virtual and real objects simultaneously. Besides command handling
functions, the SoPuppeteerKit class extends SoCommandParserKit with sev-
eral additional features that are discussed in the following sections.

Puppet management and synchronization

Multiple puppets can be attached to a single puppeteer to represent the
physical, virtual, and augmented agent embodiments described in Section
3.1.1 or a distributed agent body where networked instances appear on mul-
tiple displays simultaneously. Puppets can be selectively turned on/off to
enable/disable individual representations.

Puppeteer commands are sent to all active puppets, therefore command
execution needs to be synchronized so that the puppets appear to act as a
group. This means that a command executed by multiple puppets simultane-
ously is finished only after all puppets have reported completion. The pup-
peteer component includes synchronization mechanisms to implement this
behavior.

3D interaction

Embodied animated agents in AR spaces appear to be able to freely move
around in the user’s physical environment. The position, orientation and
size of an agent body communicate relevant visual information and thus act
as symbols for guiding user attention to physical objects and locations. On
the other hand, agents can be also distracting if they clutter the display
or obstruct user view by covering important details of background objects.
Agents in AR spaces therefore need to react to various ways of basic 3D user
interaction to position or rescale agent bodies to match visual application
appearance. The puppeteer component supports various interaction modes
for each transformation element of its attached puppets. These transforma-
tion elements include translation, rotation and scale. Each element can be
set independently from the others to one of the following four modes: script,
station, drag, and external.

6.2 AR Puppet Implementation 108

The script mode lets script commands (such as setPosition, setOrienta-
tion, etc.) control a transformation element through the standard puppeteer
command interface. The station mode connects the element to the respec-
tive transformation field of a dedicated Studierstube tracking station. The
drag mode allows control by one or more 3D cursor(s) of various Studier-
stube applications (see description about the Personal Interaction Panel in
Section 6.1.4) in a drag-and-drop fashion. Finally, the external mode uses
dedicated puppeteer fields for external control by a node in the application
scene graph through field connections. The interaction modes can be changed
dynamically based on the agent’s current needs and application context.

Transformation elements consist of two components: a base and an offset
transformation. Both components’ interaction modes can be configured in-
dividually, which allows for complex interaction scenarios such as controlling
an animated character’s relative position and orientation by a script (script
mode) on a moving tracked surface (station mode) while the size of the char-
acter is controlled through a field connection from an external control logic
residing in the same scene graph as the character (external mode).

Sound and speech support

By using the Studierstube wrapper class StbSpeech integrating the Microsoft
Speech API text-to-speech library [60] and the SoFMODSound class built on
the FMOD audio library [29], embodied animated agents become capable of
speaking and producing sound effects during animation sequences. The SoP-
uppeteer object enables the synchronization of sound and speech to animation
sequences and provides toolkit-neutral control fields for speech synthesis and
audio stream control.

Hotspots

Physical and virtual objects often contain special parts that play a dedicated
and significant role within agent commands such as ”push the power but-
ton on the fax machine” in a machine maintenance application or ”pick up
object with the character’s right hand” in a computer game. We call ab-
stract references to these object parts hotspots. Application developers and
content authors may need to refer to hotspots frequently, however, low-level
details should be hidden since command semantics is more relevant for them
than quickly changing absolute parameter values. As hotspots are only valid
within the context of their respective parent object, their attributes are al-
ways local and relative. This necessitates that absolute values be calculated
before being used outside the parent puppeteer in a global reference frame.

6.2 AR Puppet Implementation 109

Puppeteers based on SoPuppeteerKit can create an arbitrary number of
hotspots by defining a string for a reference name, a 3D vector for local
position, and a quaternion for local orientation. Typical presentation (e.g.
”point at”) and locomotion (e.g. ”go to”) agent tasks mostly exploit the
position attribute, while a few other tasks require the orientation hotspot
attribute as well, for instance when attaching an object to a character’s
moving hand.

To illustrate the usefulness of hotspots, let us consider a printer main-
tenance application assisted by a virtual animated repairman agent. An
application content developer can issue the high-level command ”show me
the location of the most recent error on the printer” without actually know-
ing the nature and physical coordinates of the error. While processing the
command, the puppeteer grouping and managing various printer represen-
tations first talks to the physical printer puppet wrapping up the printer
driver. This puppet identifies the error source and its local coordinates in the
printer’s object coordinate system. The local coordinates are then translated
and rotated by using the printer’s current tracking transformation matrix to
yield absolute coordinates in the world coordinate system. These world co-
ordinates are then passed as arguments to a walking and pointing gesture
command for the virtual repairman agent’s puppeteer by the choreographer
component.

Default animation command set

The SoPuppeteerKit class contains a set of convenient basic animation com-
mands that cover typical presentation and locomotion agent tasks for ap-
plication authors such as “moving to a target”, “turning towards a point of
interest”, or “pointing to a spot”. Custom puppeteer objects derived from
SoPuppeteerKit can use these commands and their default implementation
as framework services, and implement their own custom behavior by over-
loading implementation functions and adding new commands. As described
in Section 3.2.2, puppeteers automatically adapt animation commands for
each puppet to match the current display and device profile they appear on,
apply motion constraints such as path planning to avoid obstacles or terrain
following, and implement puppeteer commands in a puppet-specific way.

Providing a default animation command set increases the reusability of
animated agent components and saves implementation work for developers
by facilitating the use of interchangeable animated agents. Let us consider an
agent-assisted navigation application. In certain contexts a full body virtual
human with rich face and body gestures can be a rewarding agent embod-
iment that serves as an exciting and motivating multimodal user interface

6.2 AR Puppet Implementation 110

element to guide users around. On the other hand, there can be cases when
the virtual character may be a nuisance to users during navigation as it may
obstruct the view by covering important background elements or cluttering
the display, or it may just simply be an overkill when a simple 2D arrow
would do just as good as the complex body gestures of a virtual tour guide.

Readapting an application to work with an entirely different animated
agent type (such as replacing the virtual human by a 2D arrow) usually
requires a lot of work in classic agent-enabled applications including replacing
animation commands, adopting a new command synchronization mechanism,
and creating new agent configuration and control interfaces. The puppeteer
component saves readaptation work by encapsulating all these features in a
single component and providing access to them through a standard interface.
This interface enables developers to simply replace a puppeteer responsible
for a certain agent type by another without changing high-level component
structure or code. Thus at application level it remains transparent which
agent executes the commands issued by content authors.

Puppeteers can be either configured manually or automatically. Manual
configuration is made by the application developer, while a control logic
such as the choreographer component can manage puppeteers without user
guidance based on preprogrammed context conditions, for instance to adapt
the user interface to the current arrangement of visual objects on a certain
display to avoid cluttering.

Default puppeteer set

The AR Puppet framework provides a set of agent types represented by
custom puppeteer objects derived from the SoPuppeteerKit class:

• SoCal3DPuppeteer: Control puppeteer for the SoCal3DPuppet node
with command interpretation for skeleton-based 3D characters, extra
commands for locomotion, pointing and idle animation, and controls
for animation blending, looping and non-looping animation sequences

• SoFacePuppeteer: Control puppeteer for the SoFacePuppet node with
command interpretation for talking heads with built-in idle animation
support and extra commands for pointing

• SoMD2Puppeteer: Control puppeteer for the SoMD2NodeKit node with
command interpretation for 3D characters, extra commands for loco-
motion, pointing and idle animation, and animation controls for looping
and non-looping animation sequences

6.2 AR Puppet Implementation 111

Figure 6.9: Replaceable puppeteers in a navigation application avoid to display
clutter

• SoLegoPuppeteer: Control puppeteer for the SoLegoPuppet node with
a custom command set for controlling and testing active elements such
as engines and sensors of responsive physical objects and their virtual
and augmented graphical representations

Figure 6.9 provides illustration for how elements of the default puppeteer
animation command set are exploited and adapted by the choreographer
component in AR Puppet.

6.2 AR Puppet Implementation 112

6.2.3 Choreographer
The choreographer component is represented by the SoChoreographerKit In-
ventor class, which is also derived from the SoCommandParserKit to inherit
facilities for scripting and command queue management. While the SoP-
uppeteerKit envelopes diverse virtual and physical agent embodiments by a
unified command interface, the SoChoreographerKit builds upon well-defined
services of SoPuppeteerKit. The most important choreographer functionali-
ties are described in the following sections.

Resolving abstract attribute references

All puppeteer objects are attached to a dedicated choreographer nodekit part
within a sub-scene graph so that puppeteers and their attributes can be di-
rectly accessed and manipulated. Due to this structure the choreographer
has always an up-to-date overview of what is happening on the “stage”, i.e.
it is aware of the detailed status information of all puppeteers and user in-
teraction props. As puppeteers are aware of only their own puppets and
thus cannot “see” other puppeteers and the application environment, high-
level agent commands coming from content authors through the director
component must be first interpreted and decomposed here and replaced by
commands understood by puppeteers. Choreographer commands target one
or more puppeteers with a parameter list containing a mixture of concrete
values (e.g. absolute 3D coordinates as parameter for a locomotion com-
mand) and abstract references (e.g. a puppeteer hotspot as parameter for a
pointing presentation command).

Choreographer commands are first parsed for macros containing abstract
attribute references written in the entityType(instanceName).attributeName
format. The macros’ instanceName element is a string identifying an instance
of a named entity of type entityType within the application scene graph
embedding the choreographer component. The following list enumerates all
possible macros with their respective entity and ID types:

• puppeteer(name): a named puppeteer derived from the SoPuppeteerKit
nodekit

• puppeteer(name).hotspot(name): a named hotspot of a named pup-
peteer in the puppeteer’s local object coordinate system

• puppeteer(name).hotspotoffset(name): transformation offset of a named
puppeteer’s named hotspot in the puppeteer’s local object coordinate
system

6.2 AR Puppet Implementation 113

• puppeteer(name).hotspotabsolute(name): a named hotspot of a named
puppeteer in the AR application’s global coordinate system (after ap-
plying the hotspot’s local transformation offset and the global pup-
peteer pose transformations)

• station(number): a Studierstube tracker object interfacing OpenTracker
and retrieving tracking data from a given station number

• user(number): a Studierstube user object with given user ID

• pen(number): a Studierstube 3D cursor object belonging to a user with
given user ID

• pip(number): a Studierstube Personal Interaction Panel object belong-
ing to a user with given user ID

• node(name): a named Inventor node in the application scene graph

Having found and parsed a macro, the choreographer retrieves a pointer to
the referenced scene graph object and queries the value of its attributeName
attribute by relying on Open Inventor’s internal field container value and type
retrieval functions and type casting mechanisms. The parser expands and
replaces the macro by its absolute value and proceeds to the next macro.
Having processed all macros, the expanded command containing concrete
and absolute attribute values is passed on to the puppeteer, which tailors
it to its puppets individually. Figure 6.10a illustrates how the Virtual Tour
Guide application (see Section 5.3) exploits attribute reference resolving.

Path planning

The choreographer component not only decomposes abstract director instruc-
tions into explicit puppeteer commands with exact parameters but (true to
its name) it also “choreographs”, modifies high-level motion-related com-
mands to make agents appear to be aware of their surrounding environment
and thus behave in a more natural way.

A prominent example is path planning. AR applications are highly dy-
namic environments, where application objects, users and their interaction
props frequently change their pose, size and other parameters influencing
the locomotion of embodied agents. While executing the simple high-level
agent command “move to a given target location”, agent embodiments need
to calculate a complex path for their movement to avoid collision with other
agents and real and virtual application objects to avoid appearing unnatural.
Because of the dynamic nature of AR applications it would be overwhelming

6.2 AR Puppet Implementation 114

Figure 6.10: Choreographer functionalities illustrated by AR Puppet applications:
a) Resolving an abstract object reference in the Virtual Tour Guide application,
b) Path planning while carrying the next robot building block to its place in AR
Lego, c) Motion planning in Monkeybridge while moving across bridge elements of
diverse shapes

for application authors to take care of path planning by themselves, therefore
the choreographer takes care of this service, making this task transparent to
authors.

At the developer level path planning is rather application-specific (e.g.
some applications may require additional, agent embodiment-specific mo-
tion planning as well), therefore there is no default implementation for path
planning in SoChoreographerKit. Agent application developers need to de-
rive their own choreographer component from SoChoreographerKit and add
their custom implementation. Figure 6.10b and c provide illustration for
path planning implementation in the AR Lego application (without motion
planning) and the Monkeybridge game (with motion planning).

6.2 AR Puppet Implementation 115

Puppeteer management

Section 6.2.2 describes the puppeteer component’s replaceability feature,
which ensures that agent representations best matching the current appli-
cation context can be selected automatically. This selection is made by
the choreographer component. Puppeteer sub-scene graphs are attached to
a choreographer nodekit part having the Studierstube class type SoMulti-
Switch. This SoSwitch-based class enables addition and removal, activation
and deactivation for an arbitrary group of its children (i.e. the puppeteers)
simultaneously at run-time. Puppeteer manipulation actions are triggered by
a control logic, which (similarly to the path planning implementation) can
be programmed in C++ by deriving a custom choreographer object from
SoChoreographerKit.

Events

Higher-level components such as the director can register events with the
choreographer to get meaningful status information about puppeteers with-
out violating the object-oriented principle of information hiding. For in-
stance, an event can be fired by the choreographer if a certain puppeteer
penetrates a given bounding box around a specific 3D object. The director
does not “see” where puppeteers currently reside in the application environ-
ment, it only gets notified by a “puppeteer entered bounding box” event.
Using the choreographer’s aforementioned abstract attribute reference mech-
anism, complex high-level events can be constructed such as testing whether
puppeteers have collided, reached a certain distance from each other, or are
approaching each other with a certain minimum velocity.

A special type of event is generated by the choreographer’s command
synchronization module. In case a complex agent command requires a pup-
peteer to wait for another to finish its actions, a synchronization mechanism
is needed. Therefore puppeteers always report when they are done with com-
mand execution, generating a “command finished” event. In case of a tem-
poral dependency, the choreographer does not forward its command queue
to the next command until it receives such an event.

6.2.4 Director
While the puppeteer and choreographer components rely on predefined build-
ing blocks and services, the director has to be rewritten for each application.
It is implemented as a state engine within a custom Inventor class derived
from a node or nodekit, which is then attached to the AR application’s scene

6.3 UbiAgent Implementation 116

graph together with the choreographer, puppeteer and puppet components.
The director’s engine states contain choreographer commands. Whenever
the director enters a state, commands contained by the state are sent to
through a field connection referencing the choreographer’s command field.
The commands are then decomposed and “choreographed” by the choreog-
rapher to match the syntax of the target puppeteers. Transitions between
director states are triggered by the aforementioned choreographer events and
user input from interaction devices and the application GUI.

In all of the example scenarios presented in Chapter 5 the director’s con-
trol logic is programmed in C++ and thus cannot be reprogrammed or up-
dated dynamically. However, with Inventor-based scripting tools such as
Pivy [73] it becomes possible to create programmable director components
where the state engine’s code can be dynamically uploaded and modified
using a Python script.

6.3 UbiAgent Implementation
As described in Section 4.2.1, all UbiAgent components communicate with
one another by means of a dedicated memory area stored in the Muddle-
ware XML database. All components must therefore share a set of common
functionalities:

• Establishing and maintaining a communication channel to the data-
base using the TCP/IP protocol and featuring automatic connection
recovery

• Writing/reading a dynamically configurable list of field values for se-
lected Open Inventor nodes and nodekits into/from the database

• Automatically checking missing, erroneous or duplicate data elements
and maintaining database integrity

• Logging connection and database operation information into a user-
specified text file for debugging and analysis

All the above functionalities are implemented by the XMLLogger Inven-
tor nodekit, which is described in Section 6.1.6 in detail. All UbiAgent
components except the agent brain and agent body objects are derived from
the XMLLogger class. They modify and extend default class behavior by
overloading its functions and adding new, component-specific routines and
fields. In the following sections we describe implementation details of each
UbiAgent component.

6.3 UbiAgent Implementation 117

6.3.1 Habitat
The habitat component is implemented by the Habitat Inventor class. It
represents a host environment consisting of a software and hardware platform
agent bodies can migrate to. The software platform stands for an application
instance agents can reside in. The hardware platform includes all computing
resources necessary to render animated agent services such as CPU power,
available memory, battery power for mobile devices, a display where agent
bodies can appear, and a tracking system or “locale” to let agents identify
users, interactions props and other relevant tracked objects. Besides the
aforementioned standard parts habitats may contain non-standard hardware
elements such as a sound card and speakers for audio output or an infrared
port to communicate with external devices using the IrDa protocol.

The agent brain continuously monitors potential habitats whether they
are suitable for hosting agent bodies. As habitats may be comprised of diverse
hardware components, it is difficult to provide a standard, absolute measure
to characterize “how good” a hardware platform is to host a particular agent
type. Therefore the Habitat object adds the “hospitability” attribute to
the default fields inherited from the XMLLogger class. The hospitability
field contains an integer number between 0 and 100, which lets the agent
brain know the amount of computational resources available for rendering a
particular agent body (0 = no resources, 100 = sufficient resources).

It is important to note that we do not aim at providing a complete solution
to offer a complex and detailed hardware platform ontology and benchmark
as usually required in software frameworks developed in the research areas
of distributed computing, pervasive computing and UbiComp. Instead we
rather provide a simple, initial implementation sufficient for testing resource-
aware software components in AR environments, therefore we use an absolute
measure for representing computation power of available agent platforms by
combining available CPU power, memory, and remaining battery power to
form a single number: (CPU load in % / 100) * (available physical memory
size / total physical memory size) * remaining battery power in %. The
remaining battery power is set to 100% in case of stationary devices.

For test purposes we implemented a Hospitability Configurator compo-
nent on the Win9x/2k/XP platform, which can generate a hospitability value
for Habitat objects in two modes. The first mode measures available CPU
power, memory and battery power of the device it is running on while de-
manding only a negligible amount of system resources not to interfere with
performance measurements. The second mode allows users to set the afore-
mentioned system performance parameters manually to support the simula-
tion of migration cases otherwise difficult or time consuming to test such

6.3 UbiAgent Implementation 118

as low battery power of mobile devices. The hospitability parameter is
then calculated from the real or simulated performance components using
the aforementioned formula. The Hospitability Configurator is a GUI-based
standalone C++ application (see Figure 6.11a for a screenshot) built on the
Microsoft Foundation Class Library (MFC). It periodically sends the current
hospitability value to one or more selected Habitat objects through a TCP/IP
socket, therefore this component can run on a remote machine as well.

The Habitat nodekit contains one or more Display objects and a Locale
object as nodekit parts. The Display and Locale inventor nodekits first ini-
tialize their fields from the database’s repository section based on a unique
ID. The repository contains permanent hardware information about the set
of possible displays and tracking systems that may be used in AR applica-
tions. This set needs to be maintained manually by a technician. Whenever
a new display or tracking hardware gets installed that can be used by AR ap-
plications, default hardware information must be entered into the repository
database, e.g. typical resolution, size and type of a display, or the accu-
racy, update rate and degrees of freedom of pose data delivered by a given
tracking system. The reason why human maintenance is favored is the fact
that basic hardware characteristics rarely change, therefore occasional man-
ual parameter update costs less time and coding efforts than implementing
and maintaining a versatile set of device-specific monitoring software tools.

After the application instance containing the Habitat object has booted
up and the display and locale hardware parameters have been initialized from
the database repository, the Display and Locale objects add child elements
containing their hardware parameters to their parent Habitat ’s database el-
ement. This hierarchical database structure indicates hardware devices cur-
rently used by the habitat and enables the use of complex queries (see Section
6.3.4) for agents searching for platforms with suitable hardware parameters.

Besides the Muddleware database the Habitat also communicates with
the Habitat Manager component using the UDP network protocol. This
component runs on a dedicated server machine (ideally on the same machine
as the Muddleware database) and ensures that only fully operational habi-
tats are stored in the database to prevent agents from attempting to migrate
to malfunctioning platforms. Habitat objects indicate their “alive” status by
pinging the Habitat Manager periodically. In case a habitat machine fails
to ping the Habitat Manager within a specific timeout due to a breakdown
(e.g. a PDA runs out of battery) or a broken network connection, the Habi-
tat Manager notices the error and removes the erroneous habitat from the
database storing potential candidates for agent migration. Once recovered,
the habitat announces its services again and restores its database entry after
the acknowledgement of the Habitat Manager.

6.3 UbiAgent Implementation 119

Figure 6.11: Screenshots of configuration and monitoring tools for the UbiAgent
framework: a) UbiAgent browser, b) Habitat Manager, c) Hospitability Configurator

6.3 UbiAgent Implementation 120

Similarly to the Hospitability Configurator, the Habitat Manager is not
Inventor-based but implemented as a standalone application using MFC-
based GUI elements. Figure 6.11b provides a screenshot. The GUI provides
feedback about the currently active habitats, their hospitability value, time
elapsed since the arrival of their last “alive” message, the remaining time
until their potential removal (time-to-live parameter), and the agents and
applications currently residing in them.

6.3.2 Application control
The ApplicationLogger object symbolizes an instance of a networked dis-
tributed AR application. In the UbiAgent framework all applications are
persistent, which means that they are able to reconstruct any desired appli-
cation state from appropriately selected state information elements stored in
a persistent database. In our framework the state of a distributed applica-
tion can be fully described by two components at an arbitrary point of time:
the global, shared application state and the local, habitat-specific application
state.

The two components are stored in two separate sections in the database.
The habitat-specific application parameters (e.g. reflecting local customiza-
tion settings or user interaction history) are stored in a child element within
the parent element of the habitat the application is running in. The global,
shared application state is stored in a special database area reserved for appli-
cation persistency. The ApplicationLogger object provides dedicated fields
to configure local and global application state information storage in the
database.

6.3.3 Agent brain and bodies
Embodied animated agents in the UbiAgent framework consist of three com-
ponents: the AgentLogger object, the AgentBrain object, and various agent-
specific scene graphs representing agent embodiments. The AgentLogger In-
ventor nodekit is responsible for agent state persistency and communication
with the Muddleware database. Similarly to distributed applications, agent
state information also consists of two components: a global, shared agent
state and local, habitat-specific information. Global agent state informa-
tion includes agent-specific attributes about appearance and behavior and is
stored in a dedicated agent persistency section in the database. The habitat-
specific state information is stored as a child element within the habitat par-
ent element to facilitate database queries of external UbiAgent components

6.3 UbiAgent Implementation 121

wishing to know the application and habitat a particular agent is working
with.

The AgentBrain Inventor node is a base class for control logics managing
agent bodies. The AgentBrain decides which application context demands
which agent bodies to activate or deactivate. It is typically implemented as
a state engine, where states are associated with hardware requirements for
habitats such as display resolution or a certain type of tracking data, and
transitions are triggered by changes in application state attributes.

The AgentBrain is not derived from the XMLLogger object but directly
from the SoNode class, facilitating complex database queries for habitats and
processing database replies. The control logic’s state engine must be imple-
mented on a case-by-case basis for each AR application as hardware require-
ments associated with application state information vary, however, the result
of habitat queries is presented in a standard format, namely a list of strings
in the AgentBrain object’s habitats field. Scene graphs representing agent
bodies can simply include a Studierstube-based engine checking whether a
given habitat ID is within the habitat list obtained by the AgentBrain from
the database.

If the database reports that a habitat is suitable for the agent brain’s
hardware platform preferences dictated by the application context, an agent
body needs to be created within the habitat using Open Inventor’s serial-
ization mechanism or if a body belonging to the agent has been already
created, it needs to be activated. In case a habitat does not match agent
preferences, the agent body needs to be deleted or simply deactivated. The
agent body’s creation/deletion and activation/deactivation mechanisms de-
pend on the application developer’s choice and needs to be implemented for
each application.

6.3.4 Database structure and queries
Agent brain implementations use the XPath 1.0 syntax [112] to store hard-
ware platform preferences for the selection of habitats. The preferences later
become parameters in queries sent to the Muddleware XML database, which
also uses XPath in its query syntax. The hierarchical structure of XML and
XPath fits the tree structure of the UbiAgent database, a graphical version
of which is shown in Figure 6.12.

The following lists presents a few examples for XPath-based habitat filters
to illustrate how agents can search for their preferred habitats using Mud-
dleware queries. All XPath queries are used as a parameter in the following
Muddleware command: GETATTRIBUTE (from all elements, xpath)

6.3 UbiAgent Implementation 122

Figure 6.12: The hierarchical structure of the UbiAgent XML database

6.3 UbiAgent Implementation 123

• look for habitats where agent called ”legomaxl” currently resides:
/ubiagent/habitats/habitat/agents/agent[@id="legomaxl"]/

ancestor::habitat/@id)

• look for habitats where the application ”arlego” resides:
/ubiagent/habitats/habitat/applications/application[@id=

"arlego"]/ancestor::habitat/@id)

• look for habitats where the agent is needed (”agentNeeded” bit is high)
in the application ”ubitrack”:
/ubiagent/habitats/habitat/applications/application

[@id="agentNeeded"]/habSpecData/field[@name="agentNeeded"

and value="1"]/ancestor::habitat/@id)

• look for habitats where the hospitability value is greater than 50:
/ubiagent/habitats/habitat/[@hospitability>50]/@id/ancestor::

habitat/@id)

• look for habitats where there is a projector with a resolution of min.
1024x768:
/ubiagent/habitats/habitat/displays/display[(@res x>=1024

and @res y>=768) and @type="projector"]/ancestor::habitat/

@id)

• look for habitats where there is a 6DOF tracking system:
/ubiagent/habitats/habitat/locale[@dof="6"]/ancestor::

habitat/@id)

• look for habitats where agent ”mr virtuoso” resides and there is an
hmd and a magnetic 6DOF tracking system:
/ubiagent/habitats/descendant::agent[@id="mr virtuoso"]

/ancestor::habitat/displays/display[@type="hmd"]/

ancestor::habitat/locale[@type="magnetic" and @dof="6"]/

ancestor::habitat/@id)

For low- and high-level debugging and simulation purposes (e.g. forced
migration) we developed the UbiAgent browser tool, which is an MFC GUI-
based standalone program containing parameterizable shortcuts for UbiAgent-
related Muddleware queries and commands. Figure 6.11c shows a screenshot.

6.3.5 Integration of AR Puppet into UbiAgent
The AR Puppet and UbiAgent frameworks have been developed to solve two
different sets of problems for AR agents. Firstly, AR Puppet facilitates a

6.3 UbiAgent Implementation 124

standard command interface for controlling virtual and physical agent rep-
resentations and the resolution of abstract attribute references for high-level
agent commands. On the other hand, UbiAgent supports agent migration
between various hardware and software platforms by enabling agents to mon-
itor current application state and respective platform requirements, and thus
to choose the most suitable platform to render current agent actions on.

Figure 6.13 illustrates how application developers can exploit the services
of both AR Puppet and UbiAgents simultaneously. As application status is
monitored by the Director object in AR Puppet, it can be extended with
ApplicationLogger ’s capability of communicating with the Muddleware data-
base to support persistent application state. As each application requires
its own specific Director implementation, a combined Inventor class merg-
ing both component’s capabilites can be implemented with little effort by
deriving the Director from ApplicationLogger instead of a plain SoNode.

Another point of integration is at the agent representation management
level as the Puppeteer and AgentBrain objects share similar functionalities.
The Puppeteer manages software-based agent representations that usually
run on the same machine such as a robot’s virtual, physical or augmented
counterpart. In contrast, the AgentBrain serves rather as a manager for
hardware-based agent representations residing on different computing devices
and displays. If an application needs to handle complex combinations of local
and remote as well as software- and hardware-based agent embodiments at
the same time, then a custom Puppeteer nodekit needs to be created that
incorporates the AgentBrain capability of locating remote agent bodies and
platforms in the Muddleware database based on preferences specified in the
XPath format. Thus the AR Puppet framework’s Puppet terminology fully
covers the agent body entity within the UbiAgent framework.

6.3
U

biA
gen

t
Im

plem
en

tation
125Figure 6.13: Integrating UbiAgent components into an AR Puppet-assisted Inventor application’s scene graph

Chapter 7

Authoring

This chapter presents how to author agent-enabled AR applications in a
quick and efficient way by integrating agent components and services into
an application while leaving its structure intact. Firstly, the powerful Open
Inventor scripting mechanism is presented followed by the description of the
high-level authoring language called APRIL. Finally, scenarios for immersive,
dynamic agent configuration and content creation are presented.

7.1 Scripting with Inventor
The AR Puppet and UbiAgent frameworks are both implemented in Inventor,
therefore we can rely on its powerful scripting mechanism to author agent-
enabled AR applications. In both frameworks agent components exchange
data with applications only through field connections. This is a non-invasive
way of communication (see Section 6.1.2 for details), which enables applica-
tion authors to simply add the agent components’ script representation to
the application scene graph and create field connections either by the built-in
Inventor mechanism or the Studierstube-based SoRoute object.

Figure 7.2 illustrates how AR Puppet components are added to the AR
Lego example AR application scenario (see Section 5.1) in a simple, non-
invasive way. The AR Puppet sub-scene graph’s root is the Director, which
is attached to the scene graph root outside the AR application’s scene graph.
The Choreographer object (derived from SoChoreographerKit), the puppeteers
SoLegoPuppeteer and SoCal3DPuppeteer, and all associated puppets are at-
tached to the agent sub-scene graph in a hierarchical structure shown in the
figure. The director component communicates with the AR Lego application
through field connections querying application output fields and controlling
application input fields.

127

7.1
S
criptin

g
w
ith

In
ven

tor
128

Figure 7.1: Integrating UbiAgent components into the Character Animation Studio application’s Inventor scene graph

7.1 Scripting with Inventor 129

Figure 7.2: Integrating AR Puppet components into the AR Lego application’s Open
Inventor-based scene graph

Figure 7.1 shows how UbiAgent components are integrated into the Char-
acter Animation Studio application (see Section 5.4). In the UbiAgent frame-
work the ApplicationLogger object monitors dedicated fields of the applica-
tion scene graph through field connections in a non-invasive way. In case of
a distributed application each application instance needs to be connected to
a separate ApplicationLogger object that writes output application attribute
values into the Muddleware database and reads input application attribute
values from the database for that particular instance. Master/slave rights
for reading and writing attributes for multiple networked ApplicationLogger
objects are either preconfigured in the scene graph or assigned dynamically
based on the respective application instance’s activity i.e. where the latest
interaction events have come from.

Besides the ApplicationLogger object delivering application events, agents
rely on the AgentLogger object to send and receive attribute updates to/from
the database that influence the agent body’s appearance and behavior. In
the example scenario of Figure 7.1 the agent body’s scene graph contains
an SoCal3DPuppet to serve as the actual agent embodiment. All distributed
agent bodies embedded into application instances are controlled by the Agent-
Brain component through the network. The AgentBrain sits on a dedicated
machine and contains some control program to manage agent embodiments.

The application instance’s hardware environment is represented by the

7.2 Scripting with APRIL 130

Habitat object, which is also attached to the application scene graph. The
Habitat object contains the Display and Locale objects that deliver infor-
mation to the database about the display and tracking system the habitat’s
corresponding AR application instance relies on. The habitat communicates
with the Habitat Manager object that - similarly to the AgentBrain object
- resides on a dedicated machine and regularly checks habitats for erroneous
behavior or broken communication. Communication between UbiAgent com-
ponents residing on different machines is made through the Muddleware XML
database using a communication network such as LAN or WLAN.

The Inventor-based authoring approach is naturally suitable for rapid pro-
totyping and adding agent services to Studierstube-based AR applications.
Currently there is no support for legacy applications and other AR software
frameworks, therefore interfaces and wrapper classes for non-Studierstube-
based applications must be implemented on a case-by-case basis.

7.2 Scripting with APRIL
APRIL [47] is a high-level descriptive language for authoring presentations
in augmented reality. For agent-enabled AR applications AR Puppet objects
need to be turned into APRIL components by wrapping up relevant input
and output fields of respective Open Inventor objects such as SoPuppeteerKit
and SoChoreographerKit-based nodes and nodekits. Appendix B presents an
example how to turn the SoChoreographerKit class into an APRIL compo-
nent, and then how to create a simple application with several APRIL-based
AR Puppet components with a simple APRIL script.

In the APRIL workflow AR applications are modeled by the APRIL sto-
ryboard as a UML state engine in the user’s favorite UML authoring tool. A
small part of an example state engine from the Virtual Tour Guide applica-
tion (see Section 5.3) is shown in Figure 7.3. Individual stations of the guided
tour are modeled as states, triggering linear presentations when the user ar-
rives. The structure of the building and the different modes for the guided
tour (linear or free mode) are modeled by transitions and superstates. The
graphical representation of the state engine was created with the Poseidon
UML modeling tool [74].

The UML-based storyboard is exported into an XMI file [110], the official
XML-based standard for serializing UML diagrams. This XMI description
is then simplified and included into an APRIL script file to represent the
presentation’s story. This draft presentation script is then fine-tuned using
standard graphical or text-based XML editors such as XMLSpy [111], where
script commands controlling the APRIL-based AR Puppet component are

7.3 Immersive Content Authoring 131

Figure 7.3: A part of the APRIL framework-based Virtual Tour Guide storyboard’s
UML state engine

inserted into the presentation states’ action list. In each state agent com-
mands are issued by setting the puppeteer or choreographer component’s
command attribute to a specific command string. These agent commands
trigger appropriate animation sequences, therefore the agent appears to be
aware of the application’s current state.

7.3 Immersive Content Authoring
While tools to author content for AR applications and animated agents have
been based on strong roots in classic computer graphics and VR, we ar-
gue that augmented reality should exploit medium-specific techniques to
smoothen its production workflow. This means that AR has to penetrate
its own authoring pipeline to let content developers fully experience and un-
derstand the novel environment of AR applications and tailor the content to
this new medium.

In this section we do not describe a complete solution for immersive au-
thoring of standalone applications as already presented by Lee et al. [48].
Instead we describe three case studies that explore novel ways of immersive
configuration and authoring of content elements for AR applications and em-
bodied animated agents. The software implementation of all case studies is
built on our AR Puppet framework.

7.3 Immersive Content Authoring 132

Figure 7.4: Overview of the Personal Universal Controller-based agent configur-
ation pipeline

Figure 7.5: PDA-based PUC client as a Graphical and Tangible User Interface

7.3 Immersive Content Authoring 133

7.3.1 Personal Universal Controller
An innovative way to configure AR agents is using the Personal Universal
Controller (PUC) technology [66]. Figure 7.4 illustrates how the technology
works. To support PUC, an agent needs to provide an XML-based description
of its relevant, configurable attributes and its supported commands together
with the command syntax. The agent runs a PUC service by attaching an
SoPucServer Studierstube node to the agent scene graph and making field
connections to relevant fields. The PUC service is listening to incoming
connections from PUC clients. The client software is implemented on var-
ious devices and platforms including PCs, PDAs and smartphones. When
connected to a PUC service, the PUC client queries the services attribute
description, and then renders a graphical user interface (GUI) to control the
listed attributes. A PUC service can accept multiple clients, which enables
collaborative, multi-user configuration.

Figure 7.5 shows a control GUI rendered on a PocketPC. By checking
the “skeleton” control checkbox (marked with an ellipsoid) the user changes
the rendering mode from mesh to skeleton mode to reveal the underlying
bone structure. Mobile devices implementing the PUC technology provide
an intuitive way to configure AR agents as the user can simply walk up to an
agent in her physical environment, connect to it to query its PUC description,
and then tweak attributes dynamically using the GUI just generated on the
fly. If the agent exposes the commands it understands together with their
syntax in the XML description, a template can be generated with which the
user can directly test the effect of script commands.

7.3.2 Keyframe Creation for Animated Characters
Modelers and animators often rely on real-life references to build and animate
3D characters for games or film production. Videotaping a real subject and
the manipulation of mock-ups support the creation of precise and expressive
character animation in virtual content creation environments such as 3D
modeling and animation packages. Figure 7.6a shows a real person posing
for an artist who is creating the balancing animation for the virtual monster
character shown in Figure 7.6b and Figure 3.9.

Professional artists use motion capture techniques or other expensive
means of acquiring motion data such as the Monkey kinematic tracker device
[26] and the Dinosaur Input Device [42] to create an essential initial data set
for the final, refined animation. Similarly, within an AR environment the
animated virtual model and the real-world reference are merged to form a
single interactive modeling instrument.

7.3 Immersive Content Authoring 134

Figure 7.6: Immersive keyframe creation for animated characters: a) Real actor
posing to provide reference for a virtual animated character, b) Resulting balancing
animation, c),d) Screenshots of our immersive keyframe creation tool in mesh and
skeleton mode

We use a wooden mannequin as an input device to animate skeleton-
based anthropomorphic 3D characters. The head and limbs of the man-
nequin are pose-tracked. The system maps real-time pose data to rotation
information for the joints of the character skeleton using the Cyclic Co-
ordinate Descent (CCD) inverse kinematics technique [105] extended with
rotational constraints for joints (see Figure 7.6c and d for illustration). We
extended the Cal3D character animation library-based SoCal3DPuppet In-
ventor nodekit with the CCD inverse kinematics module to let users directly
manipulate joint rotation. Keyframes are stored in the standard Cal3D for-
mat, therefore animations created with our tool can be replayed either within
our modeling application to receive immediate feedback about the animation
sequence’s correctness, or they can be imported into 3D Studio MAX to allow
animators to refine the animation in a professional modeling and animation
software package.

7.3 Immersive Content Authoring 135

Our AR-based immersive modeling tool not only enables close interac-
tion with virtual models by using tangible objects but also the creation of
complex motions such as walking up stairs or lifting a ball. Animators can
use an actual physical model of stairs or a ball and their respective virtual
counterpart in concert with the character to create realistic motions.

7.3.3 Immersive Music Composition
Music has only recently emerged as an important medium for AR applications
[17] [75]. The Augmented Piano Tutor application serves as a piano teacher
that educates users about basic chords and scales in an AR environment.
It uses a desktop-based AR setup using a real keyboard that communicates
with the control PC with MIDI in and out messages, a webcam, and a mon-
itor to combine the real and the virtual scene. Section 3.2.1 and Figure
3.5b explain how the hardware setup and the MIDI keyboard’s physical and
virtual representation are implemented as puppets within the AR Puppet
framework.

As shown in Figure 7.7, the real keyboard is augmented with virtual
information that instructs users to hit certain keys in a defined order while
giving feedback as to which keys have been pressed correctly and which ones
were pressed by mistake. Sound is generated on the physical keyboard by
MIDI commands in accordance with the visual feedback blended into the
user’s view, therefore the boundary between the user situated in the real
environment with the instrument and the “teacher” giving instructions from
the virtual world appears to be blurred.

Figure 7.7: Screenshots from the AR Piano Tutor application

7.3 Immersive Content Authoring 136

The synthetic information is always synchronized with the audio. When
the user is instructed to play a certain chord on the keyboard, the piano
keys yielding the chord are visually highlighted indicating which should be
pressed, while the very same chord is played on the keyboard to create a
mental connection between the two. When the user tries to imitate the
chord, the correctly pressed and missed keys are marked with different colors
on top of the real keys, giving a hint how the error should be rectified.

This system can be used as an advanced music composition tool of-
fering the complex functions and rich visual feedback of a sequencer pro-
gram running on a PC, while preserving the simplicity and freedom of a
keyboard. While the sequencer module analyzes the tunes currently being
played, it could also suggest harmonizing background chords and appropriate
solo melodies to be played immediately on the keyboard.

Chapter 8

Conclusions

This thesis has presented steps toward creating “smart” and adaptive soft-
ware components for AR applications and discussed techniques previously un-
explored in AR such as using physical objects as output modalities in human-
agent communication, emergent behavior of virtual animated 3D objects em-
bedded into the physical world, multi-user interface adaptation, proactive
interface migration and opportunistic exploitation of dynamic resources typ-
ical for UbiComp systems. We showed through numerous example applica-
tion scenarios that AR interfaces enhanced by embodied autonomous agents
possessing the aforementioned characteristics can enrich human-computer
interaction.

The thesis introduced the AR Puppet and the UbiAgent software frame-
works to support the embedding of autonomous animated agents into AR
applications at low cost. These frameworks have been built on the power-
ful Studierstube collaborative AR framework, which allows experimentation
with a wide range of AR applications, tracking technology, hardware plat-
forms and various stationary and mobile displays. We presented in-depth
implementation details how to program and author agent-assisted AR appli-
cations.

We believe that animated agents bring new challenges and fresh per-
spectives for AR. Although we tried to carefully obtain feedback about the
usability of the demonstrated agent-enabled AR applications, as most impor-
tant future work AR agents need to be formally evaluated in the following
aspects:

• Behavior: the effectiveness of various gestures and the necessary amount
of anthropomorphic features in agent behavior

• Appearance: the optimal size and placement of virtual agent embodi-
ments on various displays to let agents be informative yet not obtrusive

137

138

• Autonomy: the amount of agent autonomy / user guidance required
and tolerated by users

• Interaction: required set of real and virtual world events to be measured
for efficient agent-human interaction

• Migration: required agent feedback in visual and aural form to miti-
gating the visual and cognitive gap while migrating between disjunct
workspaces

Weiser [103] questions the usefulness of embodied interface agents by jux-
taposing them with Ubicomp systems. He argues that assistant-like interfaces
increase the seam between humans and computers, which conflicts with the
fundamental goals of Ubicomp. We believe that empowering our interface
agents with proactive behavior minimizes the required explicit user input
to ensure correct agent operation, which makes agent presence less appar-
ent in the interface. We also agree with Weiser’s argument that some users
do want personal assistants as butlers acting at their command (see Figure
8.1), therefore the potential use of embodied animated agents in Ubicomp
environments is justified.

User preference for agent representations spans a wide spectrum between
lifelike and non-anthropomorphic embodiments. The robot maintenance ap-
plication used a human-like animated character, while the calibration aid em-
ployed simple geometrical shapes to visualize application state. While non-
verbal communication may increase the information bandwidth of agents, in
some AR systems a simple arrow may prove more useful than a full-body
animated character. A possible solution to match preferences and purposes
of a wide range of users and applications may be the employment of multiple
agent bodies with varying level of realism and detail. The appropriate agent
body would either be explicitly selected by the user, or automatically chosen
by the application matching the amount of information currently shown on
the display to avoid clutters.

Another important variable in agent systems is the amount of proactivity
ranging between submission and aggression. Humans are normally suspicious
about systems that exclude users from the decision making loop. On the
other hand, the complexity of computing systems including AR systems will
soon reach a level where direct manipulation interfaces become so saturated
with controllable parameters that users will have no other choice than del-
egating interface manipulation tasks. We also share Lieberman’s point [49]
that agents are rather suited for making uncritical decisions, therefore we
should let agents make a suggestion instead of immediate actions. A typical

139

UbiAgent example for this approach is the grace period allowing appropriate
user response before agent migration.

We created our own ontology for adaptive AR systems without the in-
tention of completeness. However, an exhaustive ontology would be highly
desirable, in particular if based on standards such as WSDL [109]. This would
allow information sharing between UbiAgents and other AR and agent sys-
tems, supporting resource sharing between diverse computing systems. An-
other important issue for future work is to eliminate vulnerability caused by
the current framework implementation based on a single central database,
which makes our system prone to network and computer failures.

Figure 8.1: Some users do prefer to employ digital butlers (image created with
Photoshop)

Appendix A

UbiAgent XML Database Format

The integrity of the UbiAgent XMLD database can be verified any time by
using the following Document Type Definition (DTD):

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT agent (attribute?)>

<!ATTLIST agent

ID CDATA #REQUIRED

>

<!ELEMENT agents (agent+)>

<!ELEMENT application (attribute?)>

<!ATTLIST application

ID CDATA #REQUIRED

>

<!ELEMENT applications (application+)>

<!ELEMENT artifact (attribute)>

<!ATTLIST artifact

ID CDATA #REQUIRED

>

<!ELEMENT artifacts (artifact)>

<!ELEMENT attribute EMPTY>

<!ATTLIST attribute

name CDATA #REQUIRED

value CDATA #REQUIRED

>

<!ELEMENT current_agent EMPTY>

<!ATTLIST current_agent

ID CDATA #REQUIRED

>

141

142

<!ELEMENT current_agents (current_agent+)>

<!ELEMENT current_application EMPTY>

<!ATTLIST current_application

ID CDATA #REQUIRED

>

<!ELEMENT current_applications (current_application)>

<!ELEMENT display EMPTY>

<!ATTLIST display

description CDATA #REQUIRED

resolution_x CDATA #REQUIRED

resolution_y CDATA #REQUIRED

colordepth CDATA #REQUIRED

stereo CDATA #REQUIRED

tracked CDATA #REQUIRED

type CDATA #REQUIRED

>

<!ELEMENT habitat (location, display, current_agents,

current_applications)>

<!ATTLIST habitat

ID CDATA #REQUIRED

hospitability CDATA #REQUIRED

description CDATA #REQUIRED

status CDATA #REQUIRED

>

<!ELEMENT habitats (habitat+)>

<!ELEMENT location EMPTY>

<!ELEMENT ubiagent (habitats, agents, applications, artifacts)>

A typical snapshot of the UbiAgent database during the Ubiquitous Tech-
nician demo:

<?xml version=” 1 .0 ” standalone=”no” ?>
< !DOCTYPE ubiagent SYSTEM ”ubiagent XMLDB . dtd”>
<ubiagent>
<hab i t a t s>

<hab i ta t id=” hab i t a t l ap top ” d e s c r i p t i o n=” Is tvan&apos ; s
laptop ” h o s p i t a b i l i t y=”53”>
<d i s p l a y s>

<d i sp l ay id=” d i sp l ay mon i t o r l ap top ” d e s c r i p t i o n=”
Laptop d i sp l ay ” type=”monitor ” r e s x=”1680”
r e s y=”1050” s t e r e o=”FALSE” tracked=”FALSE” />

143

</ d i s p l a y s>
<app l i c a t i o n s>

<app l i c a t i on id=” app l i c a t i on mig ra t i onTe s t ”>
<agents>

<agent id=” agent mr v i r tuoso ” />
</ agents>
<habSpecData>

< f i e l d name=”agentCounter ” value=”1” />
< f i e l d name=”positionPDA” value=”0 0 0” />
< f i e l d name=”stationNumberPDA” value=”0” />

</habSpecData>
</ app l i c a t i on>

</ app l i c a t i o n s>
< l o c a l e id=” l o c a l e d e s k t op l ap t op ” d e s c r i p t i o n=”1

l o c a l , 1 remote” type=” a r t o o l k i t ” dof=”6” />
</ hab i ta t>
<hab i ta t id=” hab i ta t pc ” d e s c r i p t i o n=”VRLab PC”

h o s p i t a b i l i t y=”37”>
<d i s p l a y s>

<d i sp l ay id=” d i sp l ay mon i to r pc ” d e s c r i p t i o n=”VRLab
demo machine” type=”monitor ” r e s x=”1280” r e s y

=”1024” s t e r e o=”FALSE” tracked=”FALSE” />
</ d i s p l a y s>
<app l i c a t i o n s>

<app l i c a t i on id=” app l i c a t i on mig ra t i onTe s t ”>
<agents />
<habSpecData>

< f i e l d name=”agentCounter ” value=”0” />
< f i e l d name=”positionPDA” value=”0 0 0” />
< f i e l d name=”stationNumberPDA” value=”1” />

</habSpecData>
</ app l i c a t i on>

</ app l i c a t i o n s>
< l o c a l e id=” l o c a l e d e s k t op p c ” d e s c r i p t i o n=”1 l o c a l

d i s t r i b u t e d ” type=” a r t o o l k i t ” dof=”6” />
</ hab i ta t>
<hab i ta t id=” habi tat pda ” d e s c r i p t i o n=” De l l Axim X51

PDA” h o s p i t a b i l i t y=”30”>
<d i s p l a y s>

<d i sp l ay id=” d i sp lay pda ” d e s c r i p t i o n=” De l l Axim
X51 sc r e en ” type=”pda” r e s x=”640” r e s y=”480”
s t e r e o=”FALSE” tracked=”TRUE” />

</ d i s p l a y s>

144

<app l i c a t i o n s>
<app l i c a t i on id=” app l i c a t i on mig ra t i onTe s t ”>

<agents />
<habSpecData>

< f i e l d name=”agentCounter ” value=”0” />
</habSpecData>

</ app l i c a t i on>
</ app l i c a t i o n s>
< l o c a l e id=” l o c a l e pda ” d e s c r i p t i o n=” ro t a t i on with

s t y l u s ” type=”mouse” dof=”2” />
</ hab i ta t>

</ hab i t a t s>
<pe r s i s t e n c y>

<app l i c a t i o n s>
<app l i c a t i on id=” app l i c a t i on mig ra t i onTe s t ”>

< f i e l d name=”wantAgentInHabitat ” value=” habi tat pda
” />

< f i e l d name=” la s tAc t i v eS ta t i on Index ” value=”0” />
< f i e l d name=” hab i t a tF i l t e r ” value=” @ho sp i t ab i l i t y&

gt ;40 ” />
< f i e l d name=” d i s p l a yF i l t e r ” value=” (@res x> ;=1024

and @res y> ;=768) and @type=&apos ; p r o j e c t o r&
apos ; ” />

< f i e l d name=” l o c a l e F i l t e r ” value=”@type=&apos ;
magnetic&apos ; and @dof=6” />

< f i e l d name=” di s tanceThresho ld ” value=” 0.40000001 ”
/>

</ app l i c a t i on>
<app l i c a t i on id=” app l i c a t i o n a r l e g o ”>

< f i e l d name=” cons t ruc t i onStep ” value=”21” />
</ app l i c a t i on>
<app l i c a t i on id=” app l i c a t i o n s i g np o s t ”>

< f i e l d name=” de s t i n a t i on ” value=” vr lab ” />
</ app l i c a t i on>
<app l i c a t i on id=” app l i c a t i o n ub i s e n s e c a l i b ” />

</ app l i c a t i o n s>
<agents>

<agent id=” agent mr v i r tuoso ”>
< f i e l d name=” s t a t e ” value=” mr v i r t u o s o i d l e 1 ” />
< f i e l d name=”wireframe ” value=”FALSE” />

</ agent>
<agent id=” agen t t e chn i c i an ” />

</ agents>

145

<ob j e c t s />
</ p e r s i s t e n c y>
<r e po s i t o r y>

<d i s p l a y s>
<d i sp l ay id=” d i sp l ay mon i t o r l ap top ” d e s c r i p t i o n=”

Laptop d i sp l ay ” type=”monitor ” r e s x=”1680” r e s y=
”1050” s t e r e o=”FALSE” tracked=”FALSE” />

<d i sp l ay id=” d i sp l ay mon i to r pc ” d e s c r i p t i o n=”VRLab
demo machine” type=”monitor ” r e s x=”1280” r e s y=”
1024” s t e r e o=”FALSE” tracked=”FALSE” />

<d i sp l ay id=” d i s p l a y p r o j e c t o r ” d e s c r i p t i o n=”VRLab
p r o j e c t o r ” type=” p r o j e c t o r ” r e s x=”1024” r e s y=”
768” s t e r e o=”FALSE” tracked=”FALSE” />

<d i sp l ay id=” d i sp lay pda ” d e s c r i p t i o n=” De l l Axim X51
sc r e en ” type=”pda” r e s x=”640” r e s y=”480” s t e r e o=
”FALSE” tracked=”TRUE” />

<d i sp l ay id=” d i sp l ay mon i t o r t ab l e t p c ” d e s c r i p t i o n=”
Sony VAIO U70 sc r e en ” type=”monitor ” r e s x=”800”
r e s y=”600” s t e r e o=”FALSE” tracked=”TRUE” />

</ d i s p l a y s>
< l o c a l e s>

< l o c a l e id=” lo ca l e k eyboa rd ” d e s c r i p t i o n=”0−3
keyboard s t a t i o n s ” type=”keyboard” dof=”6” />

< l o c a l e id=” l o c a l e d e s k t op l ap t op ” d e s c r i p t i o n=”1
l o c a l , 1 remote” type=” a r t o o l k i t ” dof=”6” />

< l o c a l e id=” l o c a l e d e s k t op p c ” d e s c r i p t i o n=”1 l o c a l
d i s t r i b u t e d ” type=” a r t o o l k i t ” dof=”6” />

< l o c a l e id=” l o ca l e magne t i c ” d e s c r i p t i o n=”5 l o c a l
d i s t r i b u t e d ” type=”magnetic ” dof=”6” />

< l o c a l e id=” l o c a l e pda ” d e s c r i p t i o n=” ro t a t i on with
s t y l u s ” type=”mouse” dof=”2” />

< l o c a l e id=” l o c a l e s i g n p o s t ” d e s c r i p t i o n=” bu i l d ing
t rack ing f o r indoor nav igat ion ” type=” a r t o o l k i t ”
dof=”6” />

< l o c a l e id=” l o c a l e u b i s e n s e ” d e s c r i p t i o n=”UbiSense
u l t ra−wideband t rack ing ” type=”uwb” dof=”3” />

</ l o c a l e s>
</ r epo s i t o r y>

</ ubiagent>

Appendix B

AR Puppet-based APRIL
components

The following code illustrates how to turn Open Inventor-based AR Puppet
objects into ARPIL components. The code shows the choreographer compo-
nent’s APRIL implementation.

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<component id=” choreographer ” xmlns=” ht tp : //www.

s tud i e r s tube . org / a p r i l ” xmlns :x s i=” ht tp : //www.w3 . org
/2001/XMLSchema−i n s t anc e ” xs i : s chemaLocat ion=” ht tp : //www
. s tud i e r s t ube . org / a p r i l . . / . . / . . / . . / t o o l s /APRIL/ ap r i l−
component . xsd”>

< i n t e r f a c e>
<input id=” id ” type=”SFString ” default=””/>
<input id=”command” type=”MFString”/>
<input id=”commandType” type=”MFString”/>
<input id=”puppeteerName” type=”MFString”/>
<input id=” t a r g e tL i s t ” type=”MFString”/>
<input id=” parameterLis t ” type=”MFString”/>
<input id=”dataNeedsVal idat ion ” type=”SFBool” default=”

FALSE”/>
<input id=”dataVal id ” type=”SFTrigger ”/>
<input id=”purgeQueue” type=”SFTrigger ”/>
<input id=” responseIndex ” type=”SFInt32” default=”0”/>
<output id=”commandList” type=”MFString”/>
<output id=”commandFormatList” type=”MFString”/>
<output id=” response ” type=”MFString”/>
<output id=” responseIndex ” type=”MFInt32”/>
<output id=”finishedCommand” type=”SFTrigger ”/>

147

148

<output id=”finishedCommandData” type=”MFString”/>
<output id=” f i n i s h e dA l l ” type=”SFTrigger ”/>
<output id=” re spons eS t r i ng ” type=”SFString ”/>
<part id=”puppeteers ”/>

</ i n t e r f a c e>
<implementation type=”OpenInventor” r e qu i r e s=” . . / apps/

ARPuppet/arpuppet#SoChoreographerKit ”>

DEF <id /> Separator {
DEF Choreographer SoChoreographerKit {

puppeteers Separator {
<sub id=”puppeteers ”/>

}
id <in id=” id ”/>
command <in id=”command”/>
puppeteerName <in id=”puppeteerName”/>
commandType <in id=”commandType”/>
t a r g e tL i s t <in id=” t a r g e tL i s t ”/>
parameterLis t <in id=” parameterLis t ”/>
dataNeedsVal idat ion <in id=”dataNeedsVal idat ion ”/>
dataVal id <in id=”dataVal id ”/>
purgeQueue <in id=”purgeQueue”/>

}

DEF In f o SoInfo {
s t r i n g = SoSelectOne {

type SoMFString
input = USE Choreographer . r e sponse
index = USE Choreographer . re sponseIndex

} . output
}

}

<out id=”commandList”><id /> Choreographer . commandList</
out>

<out id=”commandFormatList”><id /> Choreographer .
commandFormatList</out>

<out id=” response ”><id /> Choreographer . r e sponse</out>
<out id=” responseIndex ”><id /> Choreographer .

responseIndex</out>
<out id=”finishedCommand”><id /> Choreographer .

finishedCommand</out>

149

<out id=”finishedCommandData”><id /> Choreographer .
finishedCommandData</out>

<out id=” f i n i s h e dA l l ”><id /> Choreographer . f i n i s h e dA l l</
out>

<out id=” re spons eS t r i ng ”> I n f o . s t r i n g</out>

</ implementation>
</component>

Having created an APRIL-based component for all AR Puppet objects,
we can create a simple, keyboard tracking-based AR application. The ap-
plication has a choreographer component controlling two puppeteers: an
SoCal3DPuppeteer-based embodied autonomous agent and a “dummy” pup-
peteer that we only use here to store hotspots for demonstration purposes.
The application has two states. The first state contains a choreographer
command that instructs the Cal3D-based character called “cally” to go to
the location marked by the absolute 3D coordinates of the “dummy” pup-
peteer’s “spot0” hotspot in 3 seconds. When the command is finished, the
application waits for 2 seconds, and then an automatic transition is made
to the second state, where the choreographer instructs the Cal3D character
to go to the application coordinate system’s origin in 2 seconds. When the
user presses a button that is automatically displayed on a head-up display,
a transition is made back to the first state, and the loop starts from the
beginning.

The APRIL script of the aforementioned application is shown here:

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
< !DOCTYPE a p r i l SYSTEM ” . . / . . / s tud i e r s tube / t o o l s / a p r i l /

a p r i l . dtd”>
<a p r i l xmlns=” ht tp : //www. s tud i e r s tube . org / a p r i l ” xmlns :ot=”

ht tp : //www. s tud i e r s tube . org / opentracker ” xmlns :x s i=”
ht tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”
xs i : s chemaLocat ion=” ht tp : //www. s tud i e r s tube . org / a p r i l
. . / . . / s tud i e r s tube / t o o l s / a p r i l / a p r i l . xsd”>

<setup s r c=”keyboard . aps”/>
<pr e s en ta t i on id=” charac te rTes t ” name=”APRIL + AR Puppet

Test ”>
<s to ry>

<scene name=”one” i n i t i a l=” true ”/>
<scene name=”two”/>
<t r a n s i t i o n event=”12” source=”one” ta r g e t=”two”

guard=””/>

150

<t r a n s i t i o n event=”21” source=” four ” t a r g e t=”one”
guard=””/>

</ s to ry>
<ca s t>

<ac to r id=” choreographer ” s r c=” . . /APRIL/components/
choreographer . apc”>

<input id=” id ” value=” choreographer ”/>
<ch i l d r en id=”puppeteers ”>

<ac to r id=”puppeteer1 ” s r c=” . / ca l3dpuppeteer . apc”
>

<input id=” id ” value=” c a l l y ”/>
<input id=”whichPuppets” value=”0”/>
<input id=” tracked ” value=”1”/>
<input id=” s t a t i o n ” value=”4”/>
<input id=”boundingBoxOn” value=”TRUE”/>
<input id=” animat ionPre f ix ” value=” c a l l y ”/>
<ch i l d r en id=”puppets ”>

<ac to r id=” ca l3d ” s r c=” . . /APRIL/components/
model . apc”>

<input id=” s r c ” value=” content / cal3dPuppet .
i v ”/>

<input id=” v i s i b l e ” va lue=”1”/>
</ ac to r>

</ ch i l d r en>
</ ac to r>
<ac to r id=”puppeteer2 ” s r c=” . . /APRIL/components/

puppeteer . apc”>
<input id=” id ” value=”dummy”/>
<input id=”hotspotName” value=” ’ spot0 ’ , ’ spot1

’ , ’ spot2 ’ ”/>
<input id=”hotspotCoord” value=”−0.2 0 0 , 0 . 2 0

0 , 0 0 0”/>
</ ac to r>

</ ch i l d r en>
</ ac to r>

</ ca s t>
<behav ior s>

<behavior scene=”one”>
<entry>

<s e t ac to r=” choreographer ” input=”command” to=”
’ c a l l y : goTo puppeteer (dummy) .
hot spotabso lu t e (spot0) . p 3000 ’ ”/>

</ entry>

151

</ behavior>
<behavior scene=”two”>

<entry>
<s e t ac to r=” choreographer ” input=”command” to=”

’ c a l l y : goTo 0 0 0 2000 ’ ”/>
</ entry>

</ behavior>
</ behav ior s>
< i n t e r a c t i o n s>

<event id=”12”>
<t imeout time=”PT2. 0 S”/>

</ event>
<event id=”21”>

<buttonact ion v i r t u a l=” true ” capt ion=”12” auto=”
f a l s e ”/>

</ event>
</ i n t e r a c t i o n s>

</ pr e s en ta t i on>
</ a p r i l>

Bibliography

[1] 3D Studio MAX product website. http://www.autodesk.com/

3dsmax/.

[2] ACE website. http://www.cs.wustl.edu/∼schmidt/ACE.html.

[3] T. Akenine-Möller and E. Haines. In Real-time Rendering, 2nd edition.
A K Peters Ltd., 2002.

[4] M. Anabuki, H. Kakuta, H. Yamamoto, and H. Tamura. Welbo: An
embodied conversational agent living in mixed reality space, extended
abstracts. In Proc. of Conference on Human Factors in Computing
Systems (CHI’00), pages 10–11, The Hague, The Netherlands, 2000.

[5] ARToolKitPlus website. http://www.studierstube.org/handheld

ar/artoolkitplus.php.

[6] R. T. Azuma. A survey of augmented reality. Presence, Teleoperators
and Virtual Environments, 6(4):355–385, 1997.

[7] R. T. Azuma and C. Furmanski. Evaluating label placement for aug-
mented reality view management. In Proc. IEEE and ACM Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR 2003),
pages 66–75, Tokyo, Japan, 2003.

[8] S. Balcisoy, M. Kallmann, R. Torre, P. Fua, and D. Thalmann. In-
teraction techniques with virtual humans in mixed environments. In
Proc. of International Symposium on Mixed and Augmented Reality
(ISMAR’01), Tokyo, Japan, 2001.

[9] R. Bane and T. Höllerer. Interactive tools for virtual x-ray vision in
mobile augmented reality. In Proc. of International Symposium on
Mixed and Augmented Reality (ISMAR’04), pages 52–62, Arlington,
VA, USA, 2004.

153

http://www.autodesk.com/3dsmax/
http://www.autodesk.com/3dsmax/
http://www.cs.wustl.edu/~schmidt/ACE.html
http://www.studierstube.org/handheld_ar/artoolkitplus.php
http://www.studierstube.org/handheld_ar/artoolkitplus.php

Bibliography 154

[10] I. Barakonyi and M. Ishizuka. A 3d agent with synthetic face and
semiautonomous behavior for multimodal presentations. In Proc. of
the Multimedia Technology and Applications Conference (MTAC2001),
pages 21–25, Irvine, CA, USA, 2001. IEEE Computer Society Press.

[11] I. Barakonyi and D. Schmalstieg. Augmented reality agents in the
development pipeline of computer entertainment. In Proc. of Inter-
national Conference on Entertainment Computer (ICEC’05), Sanda,
Japan, 2005.

[12] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher, S. Riss,
C. Sandor, and M. Wagner. Design of a component-based augmented
reality framework. In Proc. of International Symposium on Augmented
Reality (ISAR’01), pages 45–54, New York, NY, USA, 2001.

[13] S. Benford and L. Fahlén. A spatial model of interaction in large virtual
environments. In Proc. of European Conference on Computer Supported
Cooperative Work (ECSCW’93), pages 109–124, Milan, Italy, 1993.

[14] H. Benko, E. W. Ishak, , and S. Feiner. Cross-dimensional gestural
interaction techniques for hybrid imrnersive environments. In Proc. of
Virtual Reality Conference (VR’05), pages 209–216, Bonn, Germany,
2005.

[15] M. E. Bratman. In Intentions, Plans, and Practical Reason, Cam-
bridge, MA, USA, 1987. Harvard University Press.

[16] A. Butz, T. Höllerer, S. Feiner, B. MacIntyre, and C. Beshers. En-
veloping users and computers in a collaborative 3d augmented reality.
In Proc. of International Workshop on Augmented Reality (IWAR’99),
pages 35–44, San Francisco, CA, USA, 1999.

[17] O. Cakmakci and F. Berard. An augmented reality based learning
assistant for electric bass guitar. In Proc. of the 10th International
Conference on Human-Computer Interaction, Crete, Greece, 2003.

[18] Cal3D website. http://cal3d.sourceforge.net/.

[19] M. Cavazza, O. Martin, F. Charles, S. J. Mead, and X. Marichal. In-
teracting with virtual agents in mixed reality interactive storytelling.
In Proc. of Intelligent Virtual Agents, Kloster Irsee, Germany, 2003.

[20] N. P. Chandrasiri, I. Barakonyi, T. Naemura, M. Ishizuka, and H. Ha-
rashima. Internet communication using real-time facial expression
analysis and synthesis. IEEE Multimedia, 11(3):20–29, 2004.

http://cal3d.sourceforge.net/

Bibliography 155

[21] A. Cheok, W. Weihua, X. Yang, S. Prince, F. S. Wan, M. Billinghurst,
and H. Kato. Interactive theatre experience in embodied and wearable
mixed reality space. In Proc. of International Symposium on Mixed
and Augmented Reality (ISMAR’02), Darmstadt, Germany, 2002.

[22] A. D. Cheok, K. H. Goh, W. Liu, F. Farbiz, S. W. Fong, S. L. Teo,
Y. Li, and X. Yang. Human pacman: a mobile, wide-area entertainment
system based on physical, social, and ubiquitous computing. Personal
and Ubiquitous Computing, 8(2):71–81, 2004.

[23] Coin website. http://www.coin3d.org/.

[24] D. Drascic, J. J. Grodski, P. Milgram, K. Ruffo, P. Wong, and S. Zhai.
Argos: A display system for augmenting reality. In Extended Abstract
and Video, Proc. of INTERCHI ’93: Human Factors in Computing
Systems, page 521, Amsterdam, Netherlands, 1993.

[25] B. R. Duffy, G. M. OHare, A. N. Martin, J. F. Bradley, and B. Schön.
Agent chameleons: Agent minds and bodies. In Proc. of International
Conference on Computer Animation and Social Agents (CASA’03),
New Brunswick, NJ, USA, 2003.

[26] C. Esposito, W. B. Paley, and J. Ong. Of mice and monkeys: A special-
ized input device for virtual body animation. In Proc. of Symposium
on Interactive 3D Graphics, Monterey, CA, USA, 1995.

[27] S. Feiner, B. MacIntyre, , and D. Seligmann. Knowledge-based aug-
mented reality. Communication of the ACM, 36(7):52–62, 1993.

[28] M. Florence and R. Storey. Vietnam. Lonely Planet Publications, 2001.

[29] FMOD website. http://www.fmod.org/.

[30] D. Gelernter. Generative communication in linda. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 7(1):80–
112, 1985.

[31] M. Georgeff, B. Pell, M. Pollack, M. Tambe, and M. Wooldridge.
The belief-desire-intention model of agency. In Proc. Of International
Workshop on Intelligent Agents, pages 1–10, Heidelberg, Germany,
1999.

[32] S. Greenberg and C. Fitchett. Phidgets: Easy development of physical
interfaces through physical widgets. In Proc. of ACM Symposium on

http://www.coin3d.org/
http://www.fmod.org/

Bibliography 156

User Interface Software and Technology (UIST 2001), pages 209–218,
Orlando, FL, USA, 2001.

[33] A. Greenfield. In Everyware : The Dawning Age of Ubiquitous Com-
puting. New Riders Press, 2006.

[34] M. Gutierrez, F. Vexo, and D. Thalmann. Controlling virtual humans
using pdas. In Proc. of the 9th International Conference on Multimedia
Modelling (MMM’03), Taiwan, 2003.

[35] Handheld AR libraries website. http://www.studierstube.org/

handheld ar/.

[36] G. Hesina, D. Schmalstieg, A. Fuhrmann, and W. Purgathofer. Distrib-
uted open inventor: A practical approach to distributed 3d graphics.
In Proc. of ACM Virtual Reality Software and Technology (VRST’99),
pages 74–81, London, UK, 1999.

[37] P. Horn. Autonomic computing: Ibms perspective on the state of
information technology. IBM Corporation, 2001.

[38] S. Julier, M. Lanzagorta, Y. Baillot, and D. Brown. Information filter-
ing for mobile augmented reality. Computer Graphics and Applications,
22(5):12–15, 2002.

[39] E. Kaiser, A. Olwal, D. McGee, H. Benko, A. Corradini, X. Li, P. Co-
hen, and S. Feiner. Mutual disambiguation of 3d multimodal inter-
action in augmented and virtual reality. In In Proc. of International
Conference on Multimodal Interfaces (ICMI03), pages 12–19, Vancou-
ver, Canada, 2003.

[40] M. Kalkusch, T. Lidy, M. Knapp, G. Reitmayr, H. Kaufmann, and
D. Schmalstieg. Structured visual markers for indoor pathfinding. In
Proceedings of the First IEEE International Workshop on ARToolKit
(ART02), Darmstadt, Germany, 2002. IEEE Computer Society.

[41] G. Klinker, T. Reicher, and B. Brügge. Distributed user tracking con-
cepts for augmented reality applications. In Proc. of International
Symposium on Augmented Reality (ISAR’00), pages 37–44, München,
Germany, 2000.

[42] B. Knep, C. Hayes, R. Sayre, and T. Williams. Dinosaur input de-
vice. In Proc. of Conference on Human Factors in Computing Systems
(CHI’95), pages 304–309, Denver, CO, USA, 1995.

http://www.studierstube.org/handheld_ar/
http://www.studierstube.org/handheld_ar/

Bibliography 157

[43] D. Kotz and R. S. Gray. Mobile agents and the future of the internet.
SIGOPS Operating Systems Review, 33(3):7–13, 1999.

[44] M. Kruppa and A. Krüger. Concepts for a combined use of personal
digital assistants and large remote displays. In Proc. of Simulation
and Visualization (SIMVIS’03), pages 349–361, Magdeburg, Germany,
2003.

[45] J. J. Kuffner. Autonomous Agents for Real-time Animation. PhD
thesis, Stanford University, 1999.

[46] B. Laurel. Interface agents: Metaphors with character. In B. Laurel,
editor, In The Art of Human-Computer Interface Design, Reading,
MA, USA, 1990. Addison-Wesley.

[47] F. Ledermann and D. Schmalstieg. APRIL: A high-level framework for
creating augmented reality presentations. In Proc. of the IEEE Virtual
Reality 2005 Conference (VR 2005), pages 187–194, Bonn, Germany,
2005.

[48] G. A. Lee, C. Nelles, M. Billinghurst, and G. J. Kim. Immersive au-
thoring of tangible augmented reality applications. In Proc. of IEEE
and ACM International Symposium on Mixed and Augmented Reality
2004 (ISMAR’04), pages 172–181, Arlington, VA, USA, 2004.

[49] H. Lieberman. Autonomous interface agents. In Proc. of Conference on
Human Factors in Computing Systems (CHI’97, pages 67–74, Atlanta,
GA, USA, 1997.

[50] J. Looser, M. Billinghurst, and A. Cockburn. Through the looking
glass: The use of lenses as an interface tool for augmented reality inter-
faces. In Proc. of International Conference on Computer Graphics and
Interactive Techniques in Australasia and South-East Asia (Graphite
2004), pages 204–211, Singapore, 2004. ACM Press.

[51] D. J. C. M. Sheelagh T. Carpendale and F. D. Fracchia. Distortion
viewing techniques for 3d data. In Proc. of the IEEE Conf. on In-
formation Visualization (INFO-VIS’96), pages 46–53, San Francisco,
USA, 1996. IEEE Computer Society Press.

[52] B. MacIntyre, J. D. Bolter, J. Vaughan, B. Hannigan, E. Moreno,
M. Haas, and M. Gandy. Three angry men: Dramatizing point-of-
view using augmented reality. In Proc. of SIGGRAPH 2002 Technical
Sketches, San Antonio, TX, USA, 2002.

Bibliography 158

[53] B. MacIntyre and S. Feiner. A distributed 3d graphics library. In Proc.
of SIGGRAPH’98, pages 361–370, Orlando, FL, USA, 1998.

[54] B. MacIntyre and M. Gandy. Prototyping applications with dart, the
designer’s augmented reality toolkit. In Proc. of Software Technol-
ogy for Augmented Reality Systems Workshop (STARS 2003), Tokyo,
Japan, 2003.

[55] A. MacWilliams, C. Sandor, M. Wagner, M. Bauer, G. Klinker, and
B. Brügge. Herding sheep: Live system development for distributed
augmented reality. In Proc. of International Symposium on Mixed and
Augmented Reality (ISMAR’03), pages 123–132, Tokyo, Japan, 2003.

[56] P. Maes, T. Darrell, B. Blumberg, and A. Pentland. The alive sys-
tem: Wireless, full-body interaction with autonomous agents. ACM
Multimedia Systems, 5(2):105–112, 1997.

[57] C. Magerkurth, T. Engelke, and M. Memisoglu. Augmenting the virtual
domain with physical and social elements towards a paradigm shift in
computer entertainment technology. In Proc. of Advances of Computer
Entertainment 2004 (ACE 2004, pages 163–172, Singapore, 2004.

[58] K. Mase, Y. Sumi, and R. Kadobayashi. The weaved reality: What
context-aware interface agents bring about. In Proc. of Asian Confer-
ence on Computer Vision (ACCV’00), Taipei, Taiwan, 2000.

[59] J. P. M. Massó, J. Vanderdonckt, and P. G. López. Direct manipulation
of user interfaces for migration. In Proc. of International Conference on
Intelligent User Interfaces (IUI06), pages 140–147, Sydney, Australia,
2006.

[60] Microsoft Speech API website. http://www.microsoft.com/speech/
download/sdk51/.

[61] P. Milgram, H. Takemura, A. Utsumi, and F. Kishino. Augmented
reality: A class of displays on the reality-virtuality continuum. In
Proc. of Telemanipulator and Telepresence Technologies, SPIE 2351,
pages 282–292, 1994.

[62] MLCAD website. http://www.lm-software.com/mlcad/.

[63] J. Newman, G. Schall, I. Barakonyi, A. Schürzinger, and D. Schmal-
stieg. Wide area tracking tools for augmented reality. Advances in
Pervasive Computing 2006, 207, 2006.

http://www.microsoft.com/speech/download/sdk51/
http://www.microsoft.com/speech/download/sdk51/
http://www.lm-software.com/mlcad/

Bibliography 159

[64] J. Newman, M. Wagner, M. Bauer, A. MacWilliams, T. Pintaric,
D. Beyer, D. Pustka, F. Strasser, D. Schmalstieg, and G. Klinker.
Ubiquitous tracking for augmented reality. In Proc. of International
Symposium on Mixed and Augmented Reality (ISMAR’04), pages 192–
201, Arlington, VA, USA, 2004.

[65] M. W. Newman, S. Izadi, W. K. Edwards, J. Z. Sedivy, and T. F. Smith.
User interfaces when and where they are needed: An infrastructure for
recombinant computing. In Proc. of the 15th ACM Symposium on User
Interface Software and Technology (UIST 2002), pages 171–180, Paris,
France, 2002.

[66] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R. Rosen-
feld, and M. Pignol. Generating remote control interfaces for complex
appliances. In CHILetters: ACM Symposium on User Interface Soft-
ware and Technology, pages 161–170, Paris, France, 2002.

[67] A. Nijholt, T. Rist, and K. Tuijnenbreijer. Lost in ambient intelli-
gence? In Extended abstract in Proc. of Conference on Human Factors
in Computing Systems (CHI’04) Workshop, pages 1725–1726, Vienna,
Austria, 2004.

[68] T. Nilsen, S. Linton, and J. Looser. Motivations for ar gaming. In Proc.
of Fuse 04, New Zealand Game Developers Conference, pages 86–93,
Dunedin, New Zealand, 2004.

[69] T. Noma, L. Zhao, and N. I. Badler. Design of a virtual human pre-
senter. IEEE Comp. Graphics and Applications, 20(4), 2000.

[70] K. Perlin and A. Goldberg. Improv: A system for scripting interactive
actors in virtual worlds. In Proc. of SIGGRAPH ’96, pages 205–216,
1996.

[71] W. Piekarski and B. Thomas. ARQuake: The outdoor augmented re-
ality gaming system. Communications of the ACM, 45(1):36–38, 2002.

[72] W. Piekarski and B. Thomas. An object-oriented software architecture
for 3d mixed reality applications. In Proc. of International Symposium
on Mixed and Augmented Reality (ISMAR’03), pages 247–256, Tokyo,
Japan, 2003.

[73] Pivy website. http://pivy.tammura.at/.

[74] Poseidon website. http://gentleware.com/.

http://pivy.tammura.at/
http://gentleware.com/

Bibliography 160

[75] I. Poupyrev, R. Berry, J. Kurumisawa, K. Nakao, M. Billinghurst,
C. Airola, H. Kato, T. Yonezawa, and L. Baldwin. Augmented groove:
Collaborative jamming in augmented reality. Proc. of SIGGRAPH
2000 Conference Abstract and Applications, page 77, 2000.

[76] I. Poupyrev, D. S. Tan, M. Billinghurst, H. Kato, H. Regenbrecht, and
N. Tetsutani. Developing a generic augmented-reality interface. IEEE
Computer, 35(3):44–50, 2002.

[77] B. Reeves and C. Nass. In The Media Equation: How People Treat
Computers, Television, and New Media Like Real People and Places,
New York, NY, USA, 1996. Cambridge University Press.

[78] G. Reitmayr. On Software Design for Augmented Reality. PhD thesis,
Vienna University of Technology, 2004.

[79] G. Reitmayr and D. Schmalstieg. Opentracker an open software ar-
chitecture for reconfigurable tracking based on xml. In Proc. of IEEE
Virtual Reality 2001 (VR’01), pages 285–286, Yokohama, Japan, 2001.

[80] J. Rekimoto. Pick-and-drop: A direct manipulation technique for mul-
tiple computer environments. In Proc. of User Interface Software and
Technology (UIST’97), pages 31–39, Banff, AB, Canada, 1997.

[81] J. Rekimoto and M. Saitoh. Augmented surfaces: A spatially con-
tinuous work space for hybrid computing environments. In Proc. of
Conference on Human Factors in Computing Systems (CHI’99), pages
378–385, Pittsburgh, PA, USA, 1999.

[82] O. Renault, N. Magnenat-Thalmann, and D. Thalmann. A vision-
based approach to behavioural animation. Journal of Visualization
and Computer Animation, 1(1):18–21, 1990.

[83] C. W. Reynolds. Flocks, herds, and schools: A distributed behavioral
model. Computer Graphics (Proc. of SIGGRAPH ’87), 21(4):25–34,
1987.

[84] J. Rickel and W. L. Johnson. Steve: A pedagogical agent for virtual
reality. In Proc. of International Conference on Autonomous Agents,
pages 332–333, 1998.

[85] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavári, M. Encarnação,
M. Gervautz, and W. Purgathofer. The Studierstube augmented re-
ality project. PRESENCE - Teleoperators and Virtual Environments,
11(1):32–45, 2002.

Bibliography 161

[86] D. Schmalstieg, G. Reitmayr, and G. Hesina. Distributed applications
for collaborative three-dimensional workspaces. Presence: Teleopera-
tors and Virtual Environments, 12(1):52–67, 2003.

[87] E. Sharlin, Y. Itoh, B. Watson, Y. Kitamura, S. Sutphen, and L. Liu.
Cognitive cubes: A tangible user interface for cognitive assessment.
In Proc. of Conference on Human Factors in Computing Systems
(CHI’02), pages 347–354, Minneapolis, MI, USA, 2002.

[88] B. Shneiderman. Direct manipulation: A step beyond programming
languages. IEEE Computer, 16(8):57–69, 1983.

[89] B. Shneiderman and P. Maes. Direct manipulation vs. interface agents.
Excerpts from debates at IUI’97 and CHI’97. ACM Interactions,
4(6):42–61, 1997.

[90] SONY QRIO website. http://www.sony.net/SonyInfo/QRIO/.

[91] U. Spierling, D. Grasbon, N. Braun, and I. Iurgel. Setting the scene:
playing digital director in interactive storytelling and creation. Com-
puters and Graphics, 26(1):31–44, 2002.

[92] C. Stapleton, C. Hughes, M. Moshell, P. Micikevicius, and M. Altman.
Applying mixed reality to entertainment. IEEE Computer, 35(12):122–
124, 2002.

[93] P. S. Strauss and R. Carey. An object-oriented 3d graphics toolkit.
Proc. of ACM SIGGRAPH’92, pages 341–349, 1992.

[94] M. Stringer, G. Fitzpatrick, and E. Harris. Lessons for the future:
Experiences with the installation and use of todays domestic sensors
and technologies. In Pervasive Computing, Proc. of Pervasive 2006,
Dublin, Ireland, 2006. Springer Press.

[95] Z. Szalavári and M. Gervautz. The personal interaction panel a two-
handed interface for augmented reality. Computer Graphics Forum,
6(13):335–346, 1997.

[96] D. Tennenhouse. Proactive computing. Communications of the ACM,
43(5):43–50, 2000.

[97] The Lemmings Compendium website. http://lemmings.deinonych.
com/.

[98] TinyXML website. http://www.grinninglizard.com/tinyxml/.

http://www.sony.net/SonyInfo/QRIO/
http://lemmings.deinonych.com/
http://lemmings.deinonych.com/
http://www.grinninglizard.com/tinyxml/

Bibliography 162

[99] B. Tomlinson, M. L. Yau, and E. Baumer. Embodied mobile agents.
In Proc. of International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS’06), Hakodate, Japan, 2006.

[100] H. Tramberend. Avocado: A distributed virtual reality framework. In
Proc. of Virtual Reality Conference (VR’99), pages 14–21, Houston,
TX, USA, 1999.

[101] L. Vacchetti, V. Lepetit, G. Papagiannakis, M. Ponder, and P. Fua.
Stable real-time interaction between virtual humans and real scenes. In
Proc. of International Conference on 3D Digital Imaging and Modeling
(3DIM’03), pages 449–457, Banff, AL, Canada, 2003.

[102] D. Wagner, M. Billinghurst, and D. Schmalstieg. How real should
virtual characters be? In Proc. of Conference on Advances in Computer
Entertainment Technology (ACE’06), page to appear, Los Angeles, CA,
USA, 2006.

[103] M. Weiser. Does ubiquitous computing need interface agents? In MIT
Media Lab Symposium on Interface Agents, Cambridge, MA, USA,
1992.

[104] M. Weiser and J. S. Brown. The coming age of calm technology. In
Beyond Calculation: The Next Fifty Years of Computing, pages 75–86.
Springer, 1998.

[105] C. Welman. Inverse kinematics and geometric constraints for articu-
lated figure manipulation, master thesis. 1993.

[106] J. Wernecke. In The Inventor Mentor: Programming Object-Oriented
3D Graphics with Open Inventor. Addison-Wesley, 1993.

[107] J. Wernecke. In The Inventor Toolmaker: Extending Open Inventor.
Addison-Wesley, 1994.

[108] C. Wisneski, H. Ishii, A. Dahley, M. Gorbet, S. Brave, B. Ullmer, and
P. Yarin. Ambient displays: Turning architectual space into an inter-
face between people and digital information. In Proc. of International
Workshop on Cooperative Buildings (CoBuild’98), pages 22–32, Darm-
stadt, Germany, 1998. Springer Press.

[109] WSDL website. http://www.w3.org/TR/wsdl/.

[110] XMI website. http://www.omg.org/technology/documents/

formal/xmi.htm.

http://www.w3.org/TR/wsdl/
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm

Bibliography 163

[111] XML Spy website. http://www.altova.com/.

[112] XPath 1.0 specification website. http://www.w3.org/TR/xpath.

http://www.altova.com/
http://www.w3.org/TR/xpath

Curriculum Vitae
István Barakonyi

Rossauer Lände 41/18
A-1090 Vienna, Austria
bara@ims.tuwien.ac.at

17th May 1977 Born in Zalaegerszeg, Hungary

1983-1991 Dr. Hamburger Jenő Primary School, Zalaegerszeg, Hungary

1991-1995 Zŕınyi Miklós High School, special program in mathematics,
winner of the Zŕınyi Miklós Foundation Award, Zalaegerszeg,
Hungary

1995-2000 Studies in computer science at the Budapest University
of Technology, Faculty of Electrical Engineering and Infor-
matics, Hungary, major in Multimedia and Communication
Networks

Fall 1998 Exchange student scholarship at the University of North
Texas, Denton, Texas, USA

June 2000 Graduation “Master of Science (M.Sc.) in Technical En-
gineering” from the Budapest University of Technology,
Hungary, thesis: “Multimedia Demonstration of Object
Networks”

October 2000 -
March 2002

Visiting researcher at the University of Tokyo, Japan,
Ishizuka Laboratory, supported by the Monbusho scholar-
ship of the Japanase Ministry of Education, research topic:
“Scriptable Affective 3D Talking Head”

June 2002-2006 PhD course at the Vienna University of Technology and Graz
University of Technology, Austria

October-
November
2005

Visiting researcher, National Institute of Informatics,
Prendinger Laboratory, Tokyo, Japan, research topic: “Us-
ing an Unobtrusive Eye Tracker as Input Modality for Re-
mote Collaboration in an Augmented Reality Conferencing
System”

October 2006 PhD thesis: “Ubiquitous Animated Agents for Augmented
Reality”

165

	Abstract
	Kurzfassung
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	The World as User Interface
	Augmented Reality
	Ubiquitous Computing
	Software Agents

	Contribution

	Related Work
	Adaptive User Interfaces
	Information Filtering
	Adaptive User Interface Components
	User Interface Migration

	Software Agents in AR
	Animated Characters
	Mobile Agents

	Augmented Reality Agents
	Design Requirements for Agents in AR
	Agent Representation
	Agent Behavior

	The AR Puppet Framework
	Puppet
	Puppeteer
	Choreographer
	Director
	Storyteller

	Integration with Applications
	Example Application Scenario
	Communication Flow between Components

	Interaction between the Real and Virtual
	Physical Input Affecting Virtual Output
	Virtual Input Affecting Physical Output
	Other scenarios

	Ubiquitous Augmented Reality Agents
	Improving AR Puppet
	Increasing Mobility
	Expect the Unexpected
	Multi-user Interface Adaptation
	Beliefs, Desires, Intentions
	Autonomic and Proactive Behavior

	UbiAgent Components
	Shared Agent and Application Memory
	Agent Migration

	Applications
	AR Lego
	Application Scenario
	Agent-Application Communication
	LEGO robot agent
	Interaction

	Monkeybridge
	Motivation of AR Gaming
	Application Scenario
	Autonomous Game Characters
	Domains of Game Experience
	Game Setups

	Virtual Tour Guide
	Application description
	Integration with the APRIL Framework
	Hardware Setups

	Character Animation Studio
	Application Scenario
	Required UbiAgent Components

	Ubiquitous Technician
	Application Scenario
	Attribute Schema and Communication Flow

	Implementation
	Technological Foundations
	Requirements
	Open Inventor
	OpenTracker
	Studierstube
	Cal3D
	Muddleware

	AR Puppet Implementation
	Puppets
	Puppeteers
	Choreographer
	Director

	UbiAgent Implementation
	Habitat
	Application control
	Agent brain and bodies
	Database structure and queries
	Integration of AR Puppet into UbiAgent

	Authoring
	Scripting with Inventor
	Scripting with APRIL
	Immersive Content Authoring
	Personal Universal Controller
	Keyframe Creation for Animated Characters
	Immersive Music Composition

	Conclusions
	UbiAgent XML Database Format
	AR Puppet-based APRIL components
	Bibliography
	Curriculum Vitae

